Advertisement

DiffuGreedy: An Influence Maximization Algorithm Based on Diffusion Cascades

  • George Panagopoulos
  • Fragkiskos D. Malliaros
  • Michalis Vazirgiannis
Conference paper
Part of the Studies in Computational Intelligence book series (SCI, volume 812)

Abstract

Finding a set of nodes that maximizes the spread in a network, known as the influence maximization problem, has been addressed from multiple angles throughout the literature. Traditional solutions focus on the algorithmic aspect of the problem and are based solely on static networks. However, with the emergence of several complementary data, such as the network’s temporal changes and the diffusion cascades taking place over it, novel methods have been proposed with promising results. Here, we introduce a simple yet effective algorithm that combines the algorithmic methodology with the diffusion cascades. We compare it with four different prevalent influence maximization approaches, on a large scale Chinese microblogging dataset. More specifically, for comparison, we employ methods that derive the seed set using the static network, the temporal network, the diffusion cascades, and their combination. A set of diffusion cascades from the latter part of the dataset is set aside for evaluation. Our method outperforms the rest in both quality of the seed set and computational efficiency.

Keywords

Influence maximization Information spreading Large-scale network analysis 

References

  1. 1.
    Bourigault, S., Lamprier, S., Gallinari, P.: Representation learning for information diffusion through social networks: an embedded cascade model. In: Proceedings of the Ninth ACM International Conference on Web Search and Data Mining, pp. 573–582. ACM (2016)Google Scholar
  2. 2.
    Cha, M., Haddadi, H., Benevenuto, F., Gummadi, P.K., et al.: Measuring user influence in twitter: the million follower fallacy. ICWSM 10(10–17), 30 (2010)Google Scholar
  3. 3.
    Chen, W., Wang, C., Wang, Y.: Scalable influence maximization for prevalent viral marketing in large-scale social networks. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1029–1038. ACM (2010)Google Scholar
  4. 4.
    Cohen, E., Delling, D., Pajor, T., Werneck, R.F.: Sketch-based influence maximization and computation: scaling up with guarantees. In: Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management, pp. 629–638. ACM (2014)Google Scholar
  5. 5.
    Du, N., Song, L., Rodriguez, M.G., Zha, H.: Scalable influence estimation in continuous-time diffusion networks. In: Advances in Neural Information Processing Systems, pp. 3147–3155 (2013)Google Scholar
  6. 6.
    Gallos, L.K., Song, C., Makse, H.A.: Scaling of degree correlations and its influence on diffusion in scale-free networks. Phys. Rev. Lett. 100(24), 248,701 (2008)Google Scholar
  7. 7.
    Goyal, A., Bonchi, F., Lakshmanan, L.V.: Learning influence probabilities in social networks. In: Proceedings of the Third ACM International Conference on Web Search and Data Mining, pp. 241–250. ACM (2010)Google Scholar
  8. 8.
    Goyal, A., Bonchi, F., Lakshmanan, L.V.: A data-based approach to social influence maximization. Proc. VLDB Endow. 5(1), 73–84 (2011)Google Scholar
  9. 9.
    Goyal, A., Lu, W., Lakshmanan, L.V.: Simpath: an efficient algorithm for influence maximization under the linear threshold model. In: 2011 IEEE 11th International Conference on Data Mining (ICDM), pp. 211–220. IEEE (2011)Google Scholar
  10. 10.
    Jendoubi, S., Martin, A., Liétard, L., Hadji, H.B., Yaghlane, B.B.: Two evidential data based models for influence maximization in twitter. Knowl. Based Syst. 121, 58–70 (2017)Google Scholar
  11. 11.
    Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 137–146. ACM (2003)Google Scholar
  12. 12.
    Kitsak, M., et al.: Identification of influential spreaders in complex networks. Nat. Phys. 6(11), 888 (2010)Google Scholar
  13. 13.
    Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., VanBriesen, J., Glance, N.: Cost-effective outbreak detection in networks. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 420–429. ACM (2007)Google Scholar
  14. 14.
    Li, C., Ma, J., Guo, X., Mei, Q.: Deepcas: an end-to-end predictor of information cascades. In: Proceedings of the 26th International Conference on World Wide Web, pp. 577–586. International World Wide Web Conferences Steering Committee (2017)Google Scholar
  15. 15.
    Malliaros, F.D., Rossi, M.E.G., Vazirgiannis, M.: Locating influential nodes in complex networks. Sci. Rep. 6, 19,307 (2016)Google Scholar
  16. 16.
    Pei, S., Morone, F., Makse, H.A.: Theories for influencer identification in complex networks. Complex Spreading Phenomena in Social Systems, pp. 125–148. Springer, Berlin (2018)Google Scholar
  17. 17.
    Qiu, J., Tang, J., Ma, H., Dong, Y., Wang, K., Tang, J.: Deepinf: modeling influence locality in large social networks. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2018) (2018)Google Scholar
  18. 18.
    Rodriguez, M.G., Balduzzi, D., Schölkopf, B.: Uncovering the temporal dynamics of diffusion networks. arXiv preprint arXiv:1105.0697 (2011)
  19. 19.
    Rodriguez, M.G., Schölkopf, B.: Influence maximization in continuous time diffusion networks. arXiv preprint arXiv:1205.1682 (2012)
  20. 20.
    Rossi, M.E.G., Vazirgiannis, M.: Exploring network centralities in spreading processes. In: International Symposium on Web Algorithms (ISWAG) (2016)Google Scholar
  21. 21.
    Saito, K., Kimura, M., Ohara, K., Motoda, H.: Learning continuous-time information diffusion model for social behavioral data analysis. In: Asian Conference on Machine Learning, pp. 322–337. Springer, Berlin (2009)Google Scholar
  22. 22.
    Saito, K., Nakano, R., Kimura, M.: Prediction of information diffusion probabilities for independent cascade model. In: International Conference on Knowledge-Based and Intelligent Information and Engineering Systems, pp. 67–75. Springer, Berlin (2008)Google Scholar
  23. 23.
    Tang, Y., Shi, Y., Xiao, X.: Influence maximization in near-linear time: a martingale approach. In: Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, pp. 1539–1554. ACM (2015)Google Scholar
  24. 24.
    Tang, Y., Xiao, X., Shi, Y.: Influence maximization: near-optimal time complexity meets practical efficiency. In: Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data, pp. 75–86. ACM (2014)Google Scholar
  25. 25.
    Vespignani, A.: Modelling dynamical processes in complex socio-technical systems. Nat. Phys. 8(1), 32 (2012)Google Scholar
  26. 26.
    Xie, M., Yang, Q., Wang, Q., Cong, G., De Melo, G.: Dynadiffuse: a dynamic diffusion model for continuous time constrained influence maximization. In: AAAI, pp. 346–352 (2015)Google Scholar
  27. 27.
    Zhang, J., Liu, B., Tang, J., Chen, T., Li, J.: Social influence locality for modeling retweeting behaviors. In: IJCAI, vol. 13, pp. 2761–2767 (2013)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • George Panagopoulos
    • 1
  • Fragkiskos D. Malliaros
    • 2
  • Michalis Vazirgiannis
    • 1
    • 3
  1. 1.Ecole PolytechniquePalaiseauFrance
  2. 2.CentraleSupélec and Inria SaclayGif-sur-YvetteFrance
  3. 3.Athens University of Economics and BusinessAthensGreece

Personalised recommendations