Advertisement

Extraction of Nano Cellulose Fibres and Their Eco-friendly Polymer Composite

  • Folahan Abdul Wahab Taiwo OwolabiEmail author
  • Bashiru Kayode Sodipo
Chapter

Abstract

This book chapter provides an overview of recent progress made in the area of nano-fibrillated cellulose (NFC) based nanocomposites as new bio-based products. Unlike Petroleum based and synthetic polymer nanocomposite, NFC polymer nanocomposite has many advantages due to low weight, reduced tool wearing, recyclable and biodegradable properties. The types of cellulose nanofibrils covered are those mechanical refined extracted and acid-hydrolysed plants biomass. The applications and new advances covered in this book chapter are the use of cellulose nanofibrils to reinforce polymer. The study shows that bio-composite from nanofibrillated cellulose is a good replacement in the field of medicine, automobile and construction due to their size and the ability to undergo surface chemical modification.

Keywords

Nano cellulose fibres NFC Polymer nanocomposite Nanofibers Biodegradable 

Notes

Acknowledgements

The authors are thankful to the Federal Institute of Industrial Research Oshodi Nigeria and the Kaduna State University, Nigeria for their role in the successful completion of this book chapter.

References

  1. 1.
    Brown TD, Dalton PD, Hutmacher DW (2016) Melt electrospinning today: an opportune time for an emerging polymer process. Prog Polym Sci 56:116–166Google Scholar
  2. 2.
    He K, Huo H, Zhang Q, He D, An F, Wang M, Walsh MP (2005a) Oil consumption and CO2 emissions in China’s road transport: current status, future trends, and policy implications. Energy Policy 33(12):1499–1507Google Scholar
  3. 3.
    He MC, Xie HP, Peng SP, Jiang YD (2005b) Study on rock mechanics in deep mining engineering. Chin J Rock Mechan Eng 24(16):2803–2813Google Scholar
  4. 4.
    Trache D, Hussin MH, Chuin CTH, Sabar S, Fazita MN, Taiwo OF, Hassan TM, Haafiz MM (2016) Microcrystalline cellulose: isolation, characterization and bio-composites application—a review. Int J Biol Macromole 93:789–804Google Scholar
  5. 5.
    Abe K, Iwamoto S, Yano H (2007) Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules 8(10):3276–3278Google Scholar
  6. 6.
    Cheung HY, Ho MP, Lau KT, Cardona F, Hui D (2009) Natural fibre-reinforced composites for bioengineering and environmental engineering applications. Compos B Eng 40(7):655–663Google Scholar
  7. 7.
    Mansor MR, Sapuan SM, Zainudin ES, Nuraini AA, Hambali A (2013) Hybrid natural and glass fibres reinforced polymer composites material selection using analytical hierarchy process for automotive brake lever design. Mater Des 51:484–492Google Scholar
  8. 8.
    Marsh G (2003) Next step for automotive materials. Mater Today 6(4):36–43 (Elsevier)Google Scholar
  9. 9.
    Balakrishnan H, Hassan A, Imran M, Wahit MU (2012) Toughening of polylactic acid nanocomposites: a short review. Polym-Plast Technol Eng 51(2):175–192Google Scholar
  10. 10.
    Abe K, Nakatsubo F, Yano H (2009) High-strength nanocomposite based on fibrillated chemi-thermomechanical pulp. Compos Sci Technol 69(14):2434–2437Google Scholar
  11. 11.
    Klemm D, Kramer F, Moritz S et al (2011) Nanocelluloses: a new family of nature-based materials. AngewandteChemie Int Ed 50:5438–5466Google Scholar
  12. 12.
    Abdul Khalil HPS, Bhat AH, IreanaYusra AF (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 87:963–979Google Scholar
  13. 13.
    Haafiz MM, Hassan A, HPS AK, Owolabi AF, Marliana MM, Arjmandi R, Inuwa IM, Fazita MR, Nurul MR (2017) Cellulose nanowhiskers from oil palm empty fruit bunch biomass as green fillers. Cellulose-Reinforced Nanofibre Compos 241Google Scholar
  14. 14.
    Owolabi AWT, Ghazali A, Wanrosli WD, Abbas FMA (2016) Effect of alkaline peroxide pre-treatment on microfibrillated cellulose from oil palm fronds rachis amenable for pulp and paper and bio-composite production. BioResources 11(2):3013–3026Google Scholar
  15. 15.
    Paakko M, Ankerfors M, Kosonen H, Nykanen A, Ahola S, Osterberg M (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8(6):1934–1941Google Scholar
  16. 16.
    Pandey JK, Kumar AP, Misra M, Mohanty AK, Drzal LT, Singh RP (2005) Recent advances in biodegradable nanocomposites. J Nanosci Nanotechnol 5:497–526Google Scholar
  17. 17.
    Saito T, Nishiyama Y, Putaux JL, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7(6):1687–1691Google Scholar
  18. 18.
    Aulin C, Ahola S, Josefsson P, Nishino T, Hirose Y, Österberg M et al (2009) Nanoscale cellulose films with different crystallinities and mesostructures—their surface properties and interaction with water. Langmuir 25(13):7675–7685Google Scholar
  19. 19.
    Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. J Appl Polym Sci 28:815–827Google Scholar
  20. 20.
    Wang YX, Tian HF, Zhang LN (2010) Role of starch nanocrystals and cellulose whiskers in synergistic reinforcement of waterborne polyurethane. Carbohydr Polym 80(3):665–671Google Scholar
  21. 21.
    Oksman K, Mathew AP, Bondeson D, Kvien I (2006) Manufacturing process of cellulose whiskers/polylactic acid nanocomposites. Compos Sci Technol 66:2776–2784Google Scholar
  22. 22.
    Sorrentino A, Vittoria GGV (2007) Potential perspectives of bionanocomposites for food packaging applications. Trends Food Sci Technol 18:84–95Google Scholar
  23. 23.
    Lamaming J, Hashim R, Sulaiman O, Leh CP, Sugimoto T, Nordin NA (2015) Cellulose nanocrystals isolated from oil palm trunk. Carbohydr Polym 127:202–208Google Scholar
  24. 24.
    John MJ, Thomas S (2008) Biofibres and biocomposites. Carbohydr Polym 71(3):343–364Google Scholar
  25. 25.
    Bataille P, Ricard L, Sapieha S (1989) Effects of cellulose fibers in polypropylene composites. Polym Compos 10:103–108Google Scholar
  26. 26.
    Hafren J, Zou WB, Cordova A (2006) Heterogeneous ‘organoclick’ derivatization of polysaccharides. Macromol Rapid Commun 27:1362–1366Google Scholar
  27. 27.
    Gruber E, Granzow C (1996) Preparing cationic pulp by graft copolymerisation. 1. Synthesis and characterization. Papier 50:293Google Scholar
  28. 28.
    Bonini C, Heux L, Cavaille JY, Lindner P, Dewhurst C, Terech P (2002) Rodlike cellulose whiskers coated with surfactant: a small-angle neutron scattering characterization. Langmuir 18:3311–3314Google Scholar
  29. 29.
    Kim DY, Nishiyama Y, Kuga S (2002) Surface acetylation of bacterial cellulose. Cellulose 9:361–367Google Scholar
  30. 30.
    Gousse C, Chanzy H, Cerrada ML, Fleury E (2004) Surface silylation of cellulose microfibrils: preparation and rheological properties. Polymer 45:1569–1575Google Scholar
  31. 31.
    Stenstad P, Andresen M, Tanem BS, Stenius P (2008) Chemical surface modifications of microfibrillated cellulose. Cellulose 15:35–45Google Scholar
  32. 32.
    Habibi Y, Heux L, Mahrouz M, Vignon MR (2008) Morphological and structural study of seed pericarp of Opuntia ficus-indica prickly pear fruits. Carbohydr Polym 72(1):102–112Google Scholar
  33. 33.
    Lu J, Askeland P, Drzal LT (2008) Surface modification of microfibrillated cellulose for epoxy composite applications. Polymer 49:1285–1296Google Scholar
  34. 34.
    Iwatake A, Nogi M, Yano H (2008) Cellulose nanofibre-reinforced polylactic acid. Compos Sci Technol 68(9):2103–2106Google Scholar
  35. 35.
    Behrens BA, Doege E, Reinsch S, Telkamp K, Daehndel H, Specker A (2007) Precision forging processes for high-duty automotive components. J Mater Process Technol 185(1):139–146Google Scholar
  36. 36.
    Kosior E, Braganca RM, Fowler P (2006) Lightweight compostable packaging: literature review. Waste Resour Action Program 26:1–48Google Scholar
  37. 37.
    Kyrikou I, Briassoulis D (2007) Biodegradation of agricultural plastic films: a critical review. J Polym Environ 15(2):125–150Google Scholar
  38. 38.
    Haafiz MM, Eichhorn SJ, Hassan A, Jawaid M (2013) Isolation and characterization of microcrystalline cellulose from oil palm biomass residue. Carbohyd Polym 93(2):628–634Google Scholar
  39. 39.
    Haafiz MM, Hassan A, Khalil HA, Fazita MN, Islam MS, Inuwa IM, Marliana MM, Hussin MH (2016) Exploring the effect of cellulose nanowhiskers isolated from oil palm biomass on polylactic acid properties. Int J Biol Macromol 85:370–378Google Scholar
  40. 40.
    Ray SS, Yamada K, Okamoto M, Fujimoto Y, Ogami A, Ueda K (2003) New polylactide/layered silicate nanocomposites. 5. Designing of materials with desired properties. Polymer 44(21):6633–6646Google Scholar
  41. 41.
    Dufresne A, Kellerhals MB, Witholt B (1999) Transcrystallization in mcl-PHAs/cellulose whiskers composites. Macromolecules 32(22):7396–7401Google Scholar
  42. 42.
    Abdulkhani A, Hosseinzadeh J, Dadashi S, Mousavi M (2015) A study of morphological, thermal, mechanical and barrier. properties of PLA based biocomposites prepared with micro and nano sized cellulosic fibers. Cell Chem Technol 49(7–8):597–605Google Scholar
  43. 43.
    Evans JD, Sikdar SK (1990) Biodegradable plastics: an idea whose time has come? Chem Technol 20:38–42Google Scholar
  44. 44.
    Plackett D, Vázquez A (2004) Natural polymer sources. In: Baillie Caroline (ed) Green composites polymer composites and the environment. Woodhead Publishing Ltd/CRC Press LLC, Cambridge, pp 123–153Google Scholar
  45. 45.
    Kunioka M, Tamaki A, Doi Y (1989) Crystalline and thermal properties of bacterial copolyesters:poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and poly(3-hydroxybutyrate-co-4-hydroxybutyrate). Macromolecules 22:694Google Scholar
  46. 46.
    Ma X, Yu J, Ma Y (2005) Urea and formamide as a mixed plasticizer for thermoplastic wheat flour. Carbohydr Polym 60:111. Yang J-H, Yu J-G, Ma X (2006) Preparation and properties of etylenebisformamide. Carbohydr Polym 63(2006):218Google Scholar
  47. 47.
    Abdul Khalil HPS, Hanida S, Kang SCW, NikFuaad NA (2007) Agro-hybridcomposite: the effects on mechanical and physical properties of oil palm fiber(EFB)/glass hybrid reinforced polyester composites. J Reinf Plast Compos 26:203–218Google Scholar
  48. 48.
    Adeosun SO, Lawal GI, Balogun SA, Akpan EI (2012) Review of green polymer nanocomposites. J Miner Mater Charact Eng 11(04):385Google Scholar
  49. 49.
    Dufresne A (2003) Interfacial phenomena in nanocomposites based on polysaccharide nanocrystals. Compos Interfaces 10(4–5):369–388Google Scholar
  50. 50.
    Lai SM, Don TM, Huang YC (2006) Preparation and properties of biodegradable thermoplastic starch/poly(hydroxyl butyrate) blends. J Appl Polym Sci 100:2371–2379Google Scholar
  51. 51.
    Jang WY, Shin BY, Lee TX, Narayan R (2007) Thermal properties and morphology of biodegradable PLA/starch compatibilized blends. J Ind Eng Chem 13:457–464Google Scholar
  52. 52.
    Sarazin P, Li G, Orts WJ, Favis BD (2008) Binary and ternary blends of polylactide, polycaprolactone and thermoplastic starch. Polymer 49:599–609Google Scholar
  53. 53.
    Durango AM, Soares NFF, Benevides S, Teixeira J, Carvalho M, Wobeto C et al (2006) Development and evaluation of an edible antimicrobial film based on yam starch and chitosan. Packaging Technol Sci 19:55–59Google Scholar
  54. 54.
    Ma PC, Siddiqui NA, Marom G, Kim JK (2010) Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos A Appl Sci Manuf 41(10):1345–1367Google Scholar
  55. 55.
    Mondragón M, Arroyo K, Romero-García J (2008) Biocomposites of thermoplastic starch with surfactant. Carbohyd Polym 74:201–208Google Scholar
  56. 56.
    Piyada K, Waranyou S, Thawien W (2013) Mechanical, thermal and structural properties of rice starch films reinforced with rice starch nanocrystals. Int Food Res J 20:439–449Google Scholar
  57. 57.
    Hietala M, Mathew AP, Oksman K (2013) Bionanocomposites of thermoplastic starch and cellulose nanofibers manufactured using twin-screw extrusion. EurPolym J 49:950–956Google Scholar
  58. 58.
    Plackett D, Andersen TL, Pedersen WB, Nielsen L (2003) Biodegradable composites based on l-polylactide and jute fibres. Compos Sci Technol 63:1287–1296Google Scholar
  59. 59.
    Ray SS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28(11):1539–1641Google Scholar
  60. 60.
    Pandey JK, Ahn SH, Lee CS, Mohanty AK, Misra M (2010) Recent advances in the application of natural fibre based composites. Macromol Mater Eng 295(11):975–989Google Scholar
  61. 61.
    Lee SY, Kang IA, Doh GH, Yoon HG, Park BD, Wu Q (2008) Thermal and mechanical properties of wood flour/talc-filled polylactic acid composites: effect of filler content and coupling treatment. J Thermoplast Compos Mater 21(3):209–223Google Scholar
  62. 62.
    Qu P, Gao Y, Wu G, Zhang L (2010) Nanocomposites of poly (lactic acid) reinforced with cellulose nanofibrils. BioResources 5(3):1811–1823Google Scholar
  63. 63.
    Okubo K, Fujii T, Thostenson ET (2009) Multi-scale hybrid biocomposite: processing and mechanical characterization of bamboo fibre reinforced PLA with microfibrillated cellulose. Compos A Appl Sci Manuf 40(4):469–475Google Scholar
  64. 64.
    Kim JP, Yoon T-H, Mun SP, Rhee JM, Lee JS (2006) Wood-polyethylene composites using ethylene-vinyl alcohol copolymer as adhesion promoter. Bioresource Biotechnol 97:494–499Google Scholar
  65. 65.
    Rong MZ, Zhang MQ, Liu Y, Yang GC, Zeng HM (2001) The effect of fibre treatment on the mechanical properties of unidirectional sisal-reinforced epoxy composites. Compos Sci Technol 61:1437–1447Google Scholar
  66. 66.
    Qin C, Soykeabkaew N, Xiuyuan N, Peijs T (2008) The effect of fibre volume fraction and mercerization on the properties of all cellulose composites. Carbohydr Polym 71:458–467Google Scholar
  67. 67.
    Khalfallah M, Abbès B, Abbès F, Guo Y, Marcel V, Duval A, Vanfleteren F, Rousseau F (2014) Innovative flax tapes reinforced acrodur biocomposites: a new alternative for automotive applications. Mater Des 64:116–126Google Scholar
  68. 68.
    Chen W, Yu H, Liu Y, Chen P, Zhang M, Yunfei H (2011) Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pre-treatments. Carbohyd Polym 83:1804–1811Google Scholar
  69. 69.
    Tiffany A, Rivkin A, Cao Y, Nevo Y, Abraham E, Ben-Shalom T, Lapidot S, Shoseyov O (2016) Nanocellulose, a tiny fiber with huge applications. Curr Opin Biotechnol 39:76–88Google Scholar
  70. 70.
    Herrera N, Salaberria AM, Mathew AP, Oksman K (2016) Plasticized polylactic acid nanocomposite films with cellulose and chitin nanocrystals prepared using extrusion and compression molding with two cooling rates: effects on mechanical, thermal and optical properties. Compos A Appl Sci Manuf 83:89–97Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Folahan Abdul Wahab Taiwo Owolabi
    • 1
    Email author
  • Bashiru Kayode Sodipo
    • 2
  1. 1.Pulp and Paper divisionFederal Institute of Industrial Research OshodiOshodiNigeria
  2. 2.Department of PhysicsKaduna State UniversityKadunaNigeria

Personalised recommendations