Synthesis and Characterization and Application of Chitin and Chitosan-Based Eco-friendly Polymer Composites

  • Aneela SabirEmail author
  • Faizah Altaf
  • Muhammad Shafiq


Chitosan is derivative of chitin is obtained from natural sources, the external skeleton of crustaceans, fungi, and insects and has to be biocompatible and decomposable. It contains N-acetyl-2-amino-2-deoxy-d-glucopyranose and 2-amino-2-deoxy-d-glucopyranose, the monomers are joined together by (1 → 4) glycosidic bonds. The removal of the acetyl group from chitin to produce chitosan needs a reaction with highly strong NaOH solution (water or alcohol based) with maintaining safe conditions that ensure the reaction mixture does not interact with oxygen and for this purpose reaction mixture is either purged with nitrogen or by adding NaBH4 so to control unwanted depolymerization and production of reactive species. It is a pliable molecule; its chemical modification can be carried out without affecting the degree of polymerization (DP) of chitosan to anchor different functional groups including primary amine and primary and secondary hydroxyl (OH) groups. There are varieties of chitosan derivatives that are produced. The surface functionalization of chitosan also done employing different enzymes termed as an enzymatic modification. Chitosan also makes blends and composite and has been applied in different filed including electrolyte membrane for fuel cell, antimicrobial activities drugs delivery, and much more application.


Chitosan Crustaceans Glycosidic bonds Drug delivery Anti-inflammatory Wound healing Deacetylation Film formation 


  1. 1.
    de Britto D, Celi Goy R, Campana Filho SP, Assis OB (2011) Quaternary salts of chitosan: history, antimicrobial features, and prospects. Int J Carbohydr ChemGoogle Scholar
  2. 2.
    Dash M, Chiellini F, Ottenbrite R, Chiellini E (2011) Chitosan—a versatile semi-synthetic polymer in biomedical applications. Prog Polym Sci 36(8):981–1014CrossRefGoogle Scholar
  3. 3.
    Bu X, Pei J, Zhang F, Liu H, Zhou Z, Zhen X et al (2018) The hydration mechanism and hydrogen bonding structure of 6-carboxylate chitooligosaccharides superabsorbent material prepared by laccase/TEMPO oxidation system. Carbohydr PolymGoogle Scholar
  4. 4.
    Ahmed S, Ikram S (2017) Chitosan: derivatives, composites and applications. WileyGoogle Scholar
  5. 5.
    Arrouze F, Essahli M, Rhazi M, Desbrieres J, Tolaimate A (2017) Chitin and chitosan: study of the possibilities of their production by valorization of the waste of crustaceans and cephalopods rejected in Essaouira. J Mat Environ Sci: Journal of Materials and Environmental Science 8(7):2251–2258Google Scholar
  6. 6.
    Hattori H, Tsujimoto H, Hase K, Ishihara M (2017) Characterization of a water-soluble chitosan derivative and its potential for submucosal injection in endoscopic techniques. Carbohyd Polym 175:592–600CrossRefGoogle Scholar
  7. 7.
    Hamed I, Özogul F, Regenstein JM (2016) Industrial applications of crustacean by-products (chitin, chitosan, and chitooligosaccharides): a review. Trends Food Sci Technol 48:40–50CrossRefGoogle Scholar
  8. 8.
    Feng Y, Kopplin G, Sato K, Draget KI, Vårum KM (2017) Alginate gels with a combination of calcium and chitosan oligomer mixtures as crosslinkers. Carbohyd Polym 156:490–497CrossRefGoogle Scholar
  9. 9.
    Gokara M, Kimavath GB, Podile AR, Subramanyam R (2015) Differential interactions and structural stability of chitosan oligomers with human serum albumin and α-1-glycoprotein. J Biomol Struct Dyn 33(1):196–210CrossRefGoogle Scholar
  10. 10.
    Ji X, Li B, Yuan B, Guo M (2017) Preparation and characterizations of a chitosan-based medium-density fiberboard adhesive with high bonding strength and water resistance. Carbohyd Polym 176:273–280CrossRefGoogle Scholar
  11. 11.
    Cheon JY, Lee HM, Park WH (2018) Formation of silver nanoparticles using fluorescence properties of chitosan oligomers. Mar Drugs 16(1):11CrossRefGoogle Scholar
  12. 12.
    Naqvi S, Moerschbacher BM (2017) The cell factory approach toward biotechnological production of high-value chitosan oligomers and their derivatives: an update. Crit Rev Biotechnol 37(1):11–25CrossRefGoogle Scholar
  13. 13.
    Pillai C, Paul W, Sharma CP (2009) Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog Polym Sci 34(7):641–678CrossRefGoogle Scholar
  14. 14.
    Ahmed S, Ikram S (2016) Chitosan based scaffolds and their applications in wound healing. Achievements Life Sci 10(1):27–37CrossRefGoogle Scholar
  15. 15.
    Thanou M, Florea B, Geldof M, Junginger H, Borchard G (2002) Quaternized chitosan oligomers as novel gene delivery vectors in epithelial cell lines. Biomaterials 23(1):153–159CrossRefGoogle Scholar
  16. 16.
    Liu B, Wang D, Yu G, Meng X (2013) Adsorption of heavy metal ions, dyes and proteins by chitosan composites and derivatives—a review. J Ocean Univer China 12(3):500–508CrossRefGoogle Scholar
  17. 17.
    Prashanth KH, Tharanathan R (2007) Chitin/chitosan: modifications and their unlimited application potential—an overview. Trends Food Sci Technol 18(3):117–131CrossRefGoogle Scholar
  18. 18.
    Polnok A, Borchard G, Verhoef J, Sarisuta N, Junginger H (2004) Influence of methylation process on the degree of quaternization of N-trimethyl chitosan chloride. Eur J Pharm Biopharm 57(1):77–83CrossRefGoogle Scholar
  19. 19.
    LogithKumar R, KeshavNarayan A, Dhivya S, Chawla A, Saravanan S, Selvamurugan N (2016) A review of chitosan and its derivatives in bone tissue engineering. Carbohyd Polym 151:172–188CrossRefGoogle Scholar
  20. 20.
    Peng Y, Han B, Liu W, Xu X (2005) Preparation and antimicrobial activity of hydroxypropyl chitosan. Carbohyd Res 340(11):1846–1851CrossRefGoogle Scholar
  21. 21.
    Araldi SJ, Tudryn GJ, Hart CE, Carlton AJ (2017) Chemically modified mycological materials having absorbent properties: Google patentsGoogle Scholar
  22. 22.
    Jayakumar R, Chennazhi K, Muzzarelli R, Tamura H, Nair S, Selvamurugan N (2010) Chitosan conjugated DNA nanoparticles in gene therapy. Carbohyd Polym 79(1):1–8CrossRefGoogle Scholar
  23. 23.
    Krause T, Baumeister J, Weber D, Lang G, Beyer A, Florig E et al (2005) Hair treatment compositions containing N-hydroxy-alkyl-O-benzyl chitosans and methods of using same: Google patentsGoogle Scholar
  24. 24.
    Karp J, Joshi N, He X, Bhagchandani S (2017) Self assembled gels for controlled delivery of encapsulated agents to cartilage: Google patentsGoogle Scholar
  25. 25.
    Yin T, Zhang Y, Liu Y, Chen Q, Fu Y, Liang J, Huo M (2018) The efficiency and mechanism of N-octyl-O, N-carboxymethyl chitosan-based micelles to enhance the oral absorption of silybin. Int J Pharm 536(1):231–240CrossRefGoogle Scholar
  26. 26.
    Sashiwa H, Aiba S-I (2004) Chemically modified chitin and chitosan as biomaterials. Prog Polym Sci 29(9):887–908CrossRefGoogle Scholar
  27. 27.
    Chtchigrovsky M, Primo A, Gonzalez P, Molvinger K, Robitzer M, Quignard F, Taran F (2009) Functionalized chitosan as a green, recyclable, biopolymer-supported catalyst for the [3 + 2] Huisgen cycloaddition. Angew Chem 121(32):6030–6034CrossRefGoogle Scholar
  28. 28.
    Srbová J, Slováková M, Křípalová Z, Žárská M, Špačková M, Stránská D, Bílková Z (2016) Covalent biofunctionalization of chitosan nanofibers with trypsin for high enzyme stability. React Funct Polym 104:38–44CrossRefGoogle Scholar
  29. 29.
    Auzély-Velty R, Rinaudo M (2002) New supramolecular assemblies of a cyclodextrin-grafted chitosan through specific complexation. Macromolecules 35(21):7955–7962CrossRefGoogle Scholar
  30. 30.
    Martel B, Devassine M, Crini G, Weltrowski M, Bourdonneau M, Morcellet M (2001) Preparation and sorption properties of a β-cyclodextrin-linked chitosan derivative. J Polym Sci Part A: Polym Chem 39(1):169–176CrossRefGoogle Scholar
  31. 31.
    Wang J, Chen C (2014) Chitosan-based biosorbents: modification and application for biosorption of heavy metals and radionuclides. Biores Technol 160:129–141CrossRefGoogle Scholar
  32. 32.
    Badawy ME, Rabea EI, Rogge TM, Stevens CV, Smagghe G, Steurbaut W, Höfte M (2004) Synthesis and fungicidal activity of new N,O-acyl chitosan derivatives. Biomacromolecules 5(2):589–595CrossRefGoogle Scholar
  33. 33.
    Sun T, Zhu Y, Xie J, Yin X (2011) Antioxidant activity of N-acyl chitosan oligosaccharide with same substituting degree. Bioorg Med Chem Lett 21(2):798–800CrossRefGoogle Scholar
  34. 34.
    Zahir-Jouzdani F, Mahbod M, Soleimani M, Vakhshiteh F, Arefian E, Shahosseini S, Atyabi F (2018) Chitosan and thiolated chitosan: novel therapeutic approach for preventing corneal haze after chemical injuries. Carbohyd Polym 179:42–49CrossRefGoogle Scholar
  35. 35.
    Ways TM, Lau WM, Khutoryanskiy VV (2018) Chitosan and its derivatives for application in mucoadhesive drug delivery systems. Polymers 10(3):267CrossRefGoogle Scholar
  36. 36.
    Chaffanel F, Charron-Bourgoin F, Soligot C, Kebouchi M, Bertin S, Payot S et al (2018) Surface proteins involved in the adhesion of Streptococcus salivarius to human intestinal epithelial cells. Appl Microbiol Biotechnol, 1–15Google Scholar
  37. 37.
    Leitner V, Marschütz M, Bernkop-Schnürch A (2003) Mucoadhesive and cohesive properties of poly (acrylic acid)-cysteine conjugates with regard to their molecular mass. Eur J Pharm Sci 18(1):89–96CrossRefGoogle Scholar
  38. 38.
    Yuan N-Y, Tsai R-Y, Ho M-H, Wang D-M, Lai J-Y, Hsieh H-J (2008) Fabrication and characterization of chondroitin sulfate-modified chitosan membranes for biomedical applications. Desalination 234(1–3):166–174CrossRefGoogle Scholar
  39. 39.
    Zhang C, Ping Q, Zhang H, Shen J (2003) Preparation of N-alkyl-O-sulfate chitosan derivatives and micellar solubilization of taxol. Carbohyd Polym 54(2):137–141CrossRefGoogle Scholar
  40. 40.
    Shanmugam A, Kathiresan K, Nayak L (2016) Preparation, characterization and antibacterial activity of chitosan and phosphorylated chitosan from cuttlebone of Sepia kobiensis (Hoyle, 1885). Biotechnol Rep 9:25–30CrossRefGoogle Scholar
  41. 41.
    Karaki N, Aljawish A, Humeau C, Muniglia L, Jasniewski J (2016) Enzymatic modification of polysaccharides: mechanisms, properties, and potential applications: a review. Enzyme Microb Technol 90:1–18CrossRefGoogle Scholar
  42. 42.
    Thakur VK, Thakur MK (2014) Recent advances in graft copolymerization and applications of chitosan: a review. ACS Sustain Chem Eng 2(12):2637–2652CrossRefGoogle Scholar
  43. 43.
    Zhou T, Zhu Y, Li X, Liu X, Yeung KW, Wu S, Chu PK (2016) Surface functionalization of biomaterials by radical polymerization. Prog Mater Sci 83:191–235CrossRefGoogle Scholar
  44. 44.
    Carreira A, Gonçalves F, Mendonça P, Gil M, Coelho J (2010) Temperature and pH responsive polymers based on chitosan: applications and new graft copolymerization strategies based on living radical polymerization. Carbohyd Polym 80(3):618–630CrossRefGoogle Scholar
  45. 45.
    Kim KM, Son JH, Kim SK, Weller CL, Hanna MA (2006) Properties of chitosan films as a function of pH and solvent type. J Food Sci 71(3)CrossRefGoogle Scholar
  46. 46.
    Twu Y-K, Huang H-I, Chang S-Y, Wang S-L (2003) Preparation and sorption activity of chitosan/cellulose blend beads. Carbohyd Polym 54(4):425–430CrossRefGoogle Scholar
  47. 47.
    Xu Y, Du Y (2003) Effect of molecular structure of chitosan on protein delivery properties of chitosan nanoparticles. Int J Pharm 250(1):215–226CrossRefGoogle Scholar
  48. 48.
    Xu Y, Kim KM, Hanna MA, Nag D (2005) Chitosan–starch composite film: preparation and characterization. Ind Crops Prod 21(2):185–192CrossRefGoogle Scholar
  49. 49.
    Chillo S, Flores S, Mastromatteo M, Conte A, Gerschenson L, Del Nobile MA (2008) Influence of glycerol and chitosan on tapioca starch-based edible film properties. J Food Eng 88(2):159–168CrossRefGoogle Scholar
  50. 50.
    Vásconez MB, Flores SK, Campos CA, Alvarado J, Gerschenson LN (2009) Antimicrobial activity and physical properties of chitosan–tapioca starch based edible films and coatings. Food Res Int 42(7):762–769CrossRefGoogle Scholar
  51. 51.
    Nagahama H, Maeda H, Kashiki T, Jayakumar R, Furuike T, Tamura H (2009) Preparation and characterization of novel chitosan/gelatin membranes using chitosan hydrogel. Carbohyd Polym 76(2):255–260CrossRefGoogle Scholar
  52. 52.
    Cheng L, Bulmer C, Margaritis A (2015) Characterization of novel composite alginate chitosan-carrageenan nanoparticles for encapsulation of BSA as a model drug delivery system. Curr Drug Deliv 12(3):351–357CrossRefGoogle Scholar
  53. 53.
    Darder M, Colilla M, Ruiz-Hitzky E (2005) Chitosan–clay nanocomposites: application as electrochemical sensors. Appl Clay Sci 28(1–4):199–208CrossRefGoogle Scholar
  54. 54.
    Günister E, Pestreli D, Ünlü CH, Atıcı O, Güngör N (2007) Synthesis and characterization of chitosan-MMT biocomposite systems. Carbohyd Polym 67(3):358–365CrossRefGoogle Scholar
  55. 55.
    Hsu S-H, Wang M-C, Lin J-J (2012) Biocompatibility and antimicrobial evaluation of montmorillonite/chitosan nanocomposites. Appl Clay Sci 56:53–62CrossRefGoogle Scholar
  56. 56.
    Mohammadi R, Mohammadifar MA, Rouhi M, Kariminejad M, Mortazavian AM, Sadeghi E, Hasanvand S (2018) Physico-mechanical and structural properties of eggshell membrane gelatin-chitosan blend edible films. Int J Biol Macromol 107:406–412CrossRefGoogle Scholar
  57. 57.
    Hai TAP, Sugimoto R (2018) Surface modification of chitin and chitosan with poly (3-hexylthiophene) via oxidative polymerization. Appl Surf Sci 434:188–197CrossRefGoogle Scholar
  58. 58.
    Santos-Moriano P, Fernandez-Arrojo L, Mengibar M, Belmonte-Reche E, Peñalver P, Acosta F, Fernández-Lobato M (2018) Enzymatic production of fully deacetylated chitooligosaccharides and their neuroprotective and anti-inflammatory properties. Biocatal Biotransform 36(1):57–67CrossRefGoogle Scholar
  59. 59.
    Vasconcelos DP, Costa M, Neves N, Teixeira JH, Vasconcelos DM, Santos SG et al (2018) The use of chitosan porous 3D scaffolds embedded with resolvin D1 to improve in vivo bone healing. J Biomed Mat Res Part AGoogle Scholar
  60. 60.
    Singh G, Manohar M, Arya SK, Siddiqui WA, Stenström TA (2017) Potential biomedical applications of chitosan–and chitosan-based nanomaterials. Chitosan Deriv Compos Appl, 385–408Google Scholar
  61. 61.
    Cremar L, Gutierrez J, Martinez J, Materon L, Gilkerson R, Xu F, Lozano K (2018) Development of antimicrobial chitosan based nanofiber dressings for wound healing applications. Nanomed J 5(1):6–14Google Scholar
  62. 62.
    Heidari F, Bahrololoom ME, Vashaee D, Tayebi L (2015) In situ preparation of iron oxide nanoparticles in natural hydroxyapatite/chitosan matrix for bone tissue engineering application. Ceram Int 41(2):3094–3100CrossRefGoogle Scholar
  63. 63.
    Jayakumar R, Prabaharan M, Kumar PS, Nair S, Tamura H (2011) Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol Adv 29(3):322–337CrossRefGoogle Scholar
  64. 64.
    Choi YS, Lee S, Hong SR, Lee Y, Song K, Park M (2001) Studies on gelatin-based sponges. Part III: a comparative study of cross-linked gelatin/alginate, gelatin/hyaluronate and chitosan/hyaluronate sponges and their application as a wound dressing in full-thickness skin defect of rat. J Mat Sci: Materials in Medicine 12(1):67–73Google Scholar
  65. 65.
    Srinivasan H, Kanayairam V, Ravichandran R (2018) Chitin and chitosan preparation from shrimp shells Penaeus monodon and its human ovarian cancer cell line, PA-1. Int J Biol Macromol 107:662–667CrossRefGoogle Scholar
  66. 66.
    Abdelmalek BE, Sila A, Haddar A, Bougatef A, Ayadi MA (2017) β-Chitin and chitosan from squid gladius: biological activities of chitosan and its application as clarifying agent for apple juice. Int J Biol Macromol 104:953–962CrossRefGoogle Scholar
  67. 67.
    Kabalak M, Aracagök YD, Torun M (2017) Extraction and physicochemical properties of chitins from four different insect speciesGoogle Scholar
  68. 68.
    Sudha PN, Saranya M, Gomathi T, Gokila S, Aisverya S, Venkatesan J, Anil S (2017) Perspectives of chitin- and chitosan-based scaffolds dressing in regenerative medicine. Chitosan Deriv Comp Appl, 253–269Google Scholar
  69. 69.
    Yu Z, Lau D (2017) Flexibility of backbone fibrils in α-chitin crystals with different degree of acetylation. Carbohyd Polym 174:941–947CrossRefGoogle Scholar
  70. 70.
    Akpan E, Gbenebor O, Adeosun S (2018) Synthesis and characterisation of chitin from periwinkle (Tympanotonus fusatus (L.)) and snail (Lissachatina fulica (Bowdich)) shells. Int J Biol Macromol 106:1080–1088CrossRefGoogle Scholar
  71. 71.
    Gbenebor OP, Akpan EI, Adeosun SO (2017) Thermal, structural and acetylation behavior of snail and periwinkle shells chitin. Prog Biomat 6(3):97–111CrossRefGoogle Scholar
  72. 72.
    Kaya M, Bağrıaçık N, Seyyar O, Baran T (2015) Comparison of chitin structures derived from three common wasp species (Vespa crabro Linnaeus, 1758, Vespa orientalis Linnaeus, 1771 and Vespula germanica (Fabricius, 1793)). Arch Insect Biochem Physiol 89(4):204–217CrossRefGoogle Scholar
  73. 73.
    Silva SS, Mano JF, Reis RL (2017) Ionic liquids in the processing and chemical modification of chitin and chitosan for biomedical applications. Green Chem 19(5):1208–1220CrossRefGoogle Scholar
  74. 74.
    Isono Y, Noishiki Y (2018) Method for manufacturing water-insoluble molded article and water-insoluble molded article: Google patentsGoogle Scholar
  75. 75.
    Roy JC, Salaün F, Giraud S, Ferri A, Chen G, Guan J (2017) Solubility of chitin: solvents, solution behaviors and their related mechanisms. Solubility of Polysaccharides, InTechGoogle Scholar
  76. 76.
    Tachaboonyakiat W (2017) Antimicrobial applications of chitosan. Chitosan based biomaterials, vol 2. Elsevier, pp 245–274Google Scholar
  77. 77.
    Vincendon M (1997) Regenerated chitin from phosphoric acid solutions. Carbohyd Polym 32(3–4):233–237CrossRefGoogle Scholar
  78. 78.
    Jothimani B, Sureshkumar S, Venkatachalapathy B (2017) Hydrophobic structural modification of chitosan and its impact on nanoparticle synthesis—a physicochemical study. Carbohyd Polym 173:714–720CrossRefGoogle Scholar
  79. 79.
    Jayakumar R, Menon D, Manzoor K, Nair S, Tamura H (2010) Biomedical applications of chitin and chitosan based nanomaterials—a short review. Carbohyd Polym 82(2):227–232CrossRefGoogle Scholar
  80. 80.
    Gulati K, Meher MK, Poluri KM (2017) Glycosaminoglycan-based resorbable polymer composites in tissue refurbishment. Regenerative Med 12(4):431–457CrossRefGoogle Scholar
  81. 81.
    Cao N, Lyu Q, Li J, Wang Y, Yang B, Szunerits S, Boukherroub R (2017) Facile synthesis of fluorinated polydopamine/chitosan/reduced graphene oxide composite aerogel for efficient oil/water separation. Chem Eng J 326:17–28CrossRefGoogle Scholar
  82. 82.
    Yu C, Kecen X, Xiaosai Q (2018) Grafting modification of chitosan. Biopolymer grafting. Elsevier, pp 295–364Google Scholar
  83. 83.
    Badawy ME, Rabea EI (2017) Chitosan and its modifications as biologically active compounds in different applications. Adv Physicochem Properties Biopolym (Part 2), 1Google Scholar
  84. 84.
    Olicón-Hernández DR, Uribe-Alvarez C, Uribe-Carvajal S, Pardo JP, Guerra-Sánchez G (2017) Response of ustilago maydis against the stress caused by three polycationic chitin derivatives. Molecules 22(12):1745CrossRefGoogle Scholar
  85. 85.
    Swatloski RP, Barber PS, Opichka T, Bonner JR, Gurau G, Griggs CS, Rogers RD (2017) Process for electrospinning chitin fibers from chitinous biomass solution: Google patentsGoogle Scholar
  86. 86.
    Zou H, Lin B, Xu C, Lin M, Zhan W (2018) Preparation and characterization of individual chitin nanofibers with high stability from chitin gels by low-intensity ultrasonication for antibacterial finishing. Cellulose 25(2):999–1010CrossRefGoogle Scholar
  87. 87.
    Kong K, Davies RJ, McDonald MA, Young RJ, Wilding MA, Ibbett RN, Eichhorn SJ (2007) Influence of domain orientation on the mechanical properties of regenerated cellulose fibers. Biomacromology 8(2):624–630CrossRefGoogle Scholar
  88. 88.
    Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31(7):603–632CrossRefGoogle Scholar
  89. 89.
    Khor E, Lim LY (2003) Implantable applications of chitin and chitosan. Biomaterials 24(13):2339–2349CrossRefGoogle Scholar
  90. 90.
    Khor E (2014) Chitin: fulfilling a biomaterials promise. ElsevierGoogle Scholar
  91. 91.
    Kumar MNR (2000) A review of chitin and chitosan applications. React Funct Polym 46(1):1–27CrossRefGoogle Scholar
  92. 92.
    Beier S, Bertilsson S (2013) Bacterial chitin degradation—mechanisms and ecophysiological strategies. Front Microbiol 4:149CrossRefGoogle Scholar
  93. 93.
    Kumirska J, Weinhold MX, Thöming J, Stepnowski P (2011) Biomedical activity of chitin/chitosan based materials—influence of physicochemical properties apart from molecular weight and degree of N-acetylation. Polymers 3(4):1875–1901CrossRefGoogle Scholar
  94. 94.
    Younes I, Rinaudo M (2015) Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar Drugs 13(3):1133–1174CrossRefGoogle Scholar
  95. 95.
    Friedman AJ, Phan J, Schairer DO, Champer J, Qin M, Pirouz A, Modlin RL (2013) Antimicrobial and anti-inflammatory activity of chitosan–alginate nanoparticles: a targeted therapy for cutaneous pathogens. J Invest Dermatol 133(5):1231–1239CrossRefGoogle Scholar
  96. 96.
    Gooday GW (1990) The ecology of chitin degradation. Advances in microbial ecology. Springer, pp 387–430Google Scholar
  97. 97.
    Badwan AA, Rashid I, Al Omari MM, Darras FH (2015) Chitin and chitosan as direct compression excipients in pharmaceutical applications. Mar Drugs 13(3):1519–1547CrossRefGoogle Scholar
  98. 98.
    Yen M-T, Yang J-H, Mau J-L (2009) Physicochemical characterization of chitin and chitosan from crab shells. Carbohyd Polym 75(1):15–21CrossRefGoogle Scholar
  99. 99.
    Ospina Álvarez SP, Ramírez Cadavid DA, Escobar Sierra DM, Ossa Orozco CP, Rojas Vahos DF, Zapata Ocampo P, Atehortúa L (2014) Comparison of extraction methods of chitin from Ganoderma lucidum mushroom obtained in submerged culture. BioMed Res IntGoogle Scholar
  100. 100.
    Yang T-L (2011) Chitin-based materials in tissue engineering: applications in soft tissue and epithelial organ. Int J Mol Sci 12(3):1936–1963CrossRefGoogle Scholar
  101. 101.
    Hajji S, Younes I, Ghorbel-Bellaaj O, Hajji R, Rinaudo M, Nasri M, Jellouli K (2014) Structural differences between chitin and chitosan extracted from three different marine sources. Int J Biol Macromol 65:298–306CrossRefGoogle Scholar
  102. 102.
    Xu Q, Wang C-H, Wayne Pack D (2010) Polymeric carriers for gene delivery: chitosan and poly (amidoamine) dendrimers. Curr Pharm Des 16(21):2350–2368CrossRefGoogle Scholar
  103. 103.
    Chen Q, Zhang J-W, Chen L-L, Yang J, Yang X-L, Ling Y, Yang Q (2017) Design and synthesis of chitin synthase inhibitors as potent fungicides. Chin Chem Lett 28(6):1232–1237CrossRefGoogle Scholar
  104. 104.
    Tang B, Yang M, Shen Q, Xu Y, Wang H, Wang S (2017) Suppressing the activity of trehalase with validamycin disrupts the trehalose and chitin biosynthesis pathways in the rice brown planthopper, Nilaparvata lugens. Pestic Biochem Physiol 137:81–90CrossRefGoogle Scholar
  105. 105.
    Ruiz-Herrera J, Lopez-Romero E, Bartnicki-Garcia S (1977) Properties of chitin synthetase in isolated chitosomes from yeast cells of Mucor rouxii. J Biol Chem 252(10):3338–3343Google Scholar
  106. 106.
    Wang P, Bi S, Wu F, Xu P, Shen X, Zhao Q (2017) Differentially expressed genes in the head of the 2nd instar pre-molting larvae of the nm2 mutant of the silkworm, Bombyx mori. PloS One 12(7):e0180160CrossRefGoogle Scholar
  107. 107.
    Cohen E (2001) Chitin synthesis and inhibition: a revisit. Pest Manag Sci 57(10):946–950CrossRefGoogle Scholar
  108. 108.
    Yang M, Wang Y, Jiang F, Song T, Wang H, Liu Q, Kang L (2016) miR-71 and miR-263 jointly regulate target genes chitin synthase and chitinase to control locust molting. PLoS Genet 12(8):e1006257CrossRefGoogle Scholar
  109. 109.
    Bowen A, Chen-Wu J, Momany M, Young R, Szaniszlo P, Robbins P (1992) Classification of fungal chitin synthases. Proc Natl Acad Sci 89(2):519–523CrossRefGoogle Scholar
  110. 110.
    Chen Q, Jin S, Zhang L, Shen Q, Wei P, Wei Z et al (2017) Regulatory functions of trehalose-6-phosphate synthase in the chitin biosynthesis pathway in Tribolium castaneum (Coleoptera: Tenebrionidae) revealed by RNA interference. Bull Entomol Res, 1–12Google Scholar
  111. 111.
    Kaya M, Sargin I, Tozak KÖ, Baran T, Erdogan S, Sezen G (2013) Chitin extraction and characterization from Daphnia magna resting eggs. Int J Biol Macromol 61:459–464CrossRefGoogle Scholar
  112. 112.
    Kaya M, Karaarslan M, Baran T, Can E, Ekemen G, Bitim B, Duman F (2014) The quick extraction of chitin from an epizoic crustacean species (Chelonibia patula). Nat Prod Res 28(23):2186–2190CrossRefGoogle Scholar
  113. 113.
    Philibert T, Lee BH, Fabien N (2017) Current status and new perspectives on chitin and chitosan as functional biopolymers. Appl Biochem Biotechnol 181(4):1314–1337CrossRefGoogle Scholar
  114. 114.
    Jayakumar R, Nair S, Furuike T, Tamura H (2010) Perspectives of chitin and chitosan nanofibrous scaffolds in tissue engineering. Tissue Engineering, IntechGoogle Scholar
  115. 115.
    Madihally SV, Matthew HW (1999) Porous chitosan scaffolds for tissue engineering. Biomaterials 20(12):1133–1142CrossRefGoogle Scholar
  116. 116.
    Dev A, Binulal N, Anitha A, Nair S, Furuike T, Tamura H, Jayakumar R (2010) Preparation of poly (lactic acid)/chitosan nanoparticles for anti-HIV drug delivery applications. Carbohyd Polym 80(3):833–838CrossRefGoogle Scholar
  117. 117.
    Mourya V, Inamdar NN, Tiwari A (2010) Carboxymethyl chitosan and its applications. Adv Mat Lett 1(1):11–33CrossRefGoogle Scholar
  118. 118.
    Huang Y, Yao M, Zheng X, Liang X, Su X, Zhang Y et al. (2015) Effects of chitin whiskers on physical properties and osteoblast culture of alginate based nanocomposite hydrogels. Biomacromolecules 16(11):3499–3507CrossRefGoogle Scholar
  119. 119.
    Mathew ME, Mohan JC, Manzoor K, Nair S, Tamura H, Jayakumar R (2010) Folate conjugated carboxymethyl chitosan–manganese doped zinc sulphide nanoparticles for targeted drug delivery and imaging of cancer cells. Carbohyd Polym 80(2):442–448CrossRefGoogle Scholar
  120. 120.
    Wu S, Huang Z, Yue J, Liu D, Wang T, Ezanno P, Pan H (2015) The efficient hemostatic effect of Antarctic krill chitosan is related to its hydration property. Carbohyd Polym 132:295–303CrossRefGoogle Scholar
  121. 121.
    Komi DEA, Sharma L, Cruz CSD (2017) Chitin and its effects on inflammatory and immune responses. Clin Rev Allergy Immunol, 1–11Google Scholar
  122. 122.
    Elieh-Ali-Komi D, Hamblin MR (2016) Chitin and chitosan: production and application of versatile biomedical nanomaterials. Int J Adv Res 4(3):411Google Scholar
  123. 123.
    Morganti P, Palombo P, Palombo M, Fabrizi G, Cardillo A, Svolacchia F, Mezzana P (2012) A phosphatidylcholine hyaluronic acid chitin–nanofibrils complex for a fast skin remodeling and a rejuvenating look. Clin Cosmet Invest Dermatol 5:213CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Polymer Engineering and TechnologyUniversity of the PunjabLahorePakistan
  2. 2.Department of Environmental SciencesFatima Jinnah Women UniversityRawalpindiPakistan

Personalised recommendations