Advertisement

Eco-friendly Polymer Composite: State-of-Arts, Opportunities and Challenge

  • V. S. AigbodionEmail author
  • E. G. Okonkwo
  • E. T. Akinlabi
Chapter

Abstract

This work explores the prospect, challenges and opportunities in an exciting breed of the polymer composite. Though the applications of polymers matrix composites are widespread and still ever increasing, one of the concerns in developing polymer matrix composites is the overall environmental impact. Technological innovation has led to the development of state of the art methods for fabricating, optimizing and characterizing these class of materials leading to new materials that are degradable but still possess excellent properties. In this work, the effect of using renewable and biodegradable reinforcement as a replacement for synthetic fillers is discussed. Also, the opportunities and challenges faced in producing these environmental friendly composites are also highlighted.

Keywords

Biocomposite Eco-friendly Polymer matrix composite Prospects State of art 

References

  1. 1.
    Mitra BC (2014) Environment friendly composite materials: biocomposites and green composites. Defence Sci J 64(3):244–261CrossRefGoogle Scholar
  2. 2.
    Layth M, Ansari MNM, Pua G, Jawaid M, Islam MS (2015) A review on natural fiber reinforced polymer composite and its applications. Int J Polym Sci 1–15. http://dx.doi.org/10.1155/2015/243947
  3. 3.
    Swaroop KV, Vinod NR, Rupendra M (2017) Numerical and experimental analysis of a natural fiber reinforced composites. Int J Mech Prod Eng 5(11):25–27Google Scholar
  4. 4.
    Anne B (2011) Environmental-friendly biodegradable polymers and composites. In: Integrated waste management, vol I. http://www.intechopen.com/books/integrated-wastemanagement-volume-iGoogle Scholar
  5. 5.
    Azwa ZN, Yousif BF, Manalo AC, Karunasena W (2013) A review on the degradability of polymeric composites based on natural fibres. Mater Des 47:424–442CrossRefGoogle Scholar
  6. 6.
    Material resources, productivity and the environment: key findings. www.oecd.org. Accessed 5 Feb 2018
  7. 7.
    Islam MS, AhmadMB Hasan M, Aziz SA, Jawaid M, Haafiz MKM, Zakaria SAH (2015) Natural fiber-reinforced hybrid polymer nanocomposites: effect of fiber mixing and nanoclay on physical, mechanical and biodegradable properties in hybrid nanocomposite. BioResources 10(1):1394–1407CrossRefGoogle Scholar
  8. 8.
    Rahmat MB, Ab-Wahid WF, Ahmad M (2015) Effect of nanoclay on tensile strength of wood plastic composite made from malaysian rice husk and polypropylene. Int J Mech Prod Eng 3(10):61–63Google Scholar
  9. 9.
    Rana S, Fangueiro R (eds) (2016) Fibrous and textile materials for composite applications. Springer, BerlinGoogle Scholar
  10. 10.
    Adeosun SO, Lawal GI, Balogun SA, Akpan EI (2012) Review of green polymer nanocomposites. J Miner Mater Charact Eng 11(4):385–416CrossRefGoogle Scholar
  11. 11.
    Asokan P, Firdoous M, Sonal W (2012) Properties and potential of bio-fibres, bio-binders, and bio-composites. Rev Adv Mater Sci 30:254–261Google Scholar
  12. 12.
    Abilash N, Sivapragash M (2013) Environmental benefits of ecofriendly natural fiber reinforced polymeric composite materials. Int J Appl Innov Eng Manage 2(1):53–59Google Scholar
  13. 13.
    Vroman I, Tighzert L (2009) Biodegradable polymers. Mater 2:307–344.  https://doi.org/10.3390/ma2020307CrossRefGoogle Scholar
  14. 14.
    El-Sherbiny IM, Ali IH (2015) Eco-friendly electrospun polymeric nanofibers-based nanocomposites for wound healing and tissue engineering. In: Thakur VK, Thakur MK (eds) Eco-friendly polymer nanocomposites processing and properties. Springer, New Delhi, pp 399–431Google Scholar
  15. 15.
    Chen HN (2012) An overview of degradable polymers.  https://doi.org/10.1021/bk-2012-1114.pr002
  16. 16.
    Khoo RZ, Ismail H, Chow WS (2016) Thermal and morphological properties of poly (lactic acid)/nanocellulose nanocomposites. Procedia Chem 19:788–794.  https://doi.org/10.1016/j.proche.2016.03.086CrossRefGoogle Scholar
  17. 17.
    Kocak D, Merdan N, Yuksek M, Sancak E (2013) Effects of chemical modification on mechanical properties of Luffa cylindrica. Asian J Chem 25(2):637–641CrossRefGoogle Scholar
  18. 18.
    Mohanta N, Acharya SK (2013) Tensile. Flexural and interlaminar shear properties of luffa cylindrical fibre reinforced epoxy composites. Int J Macromol Sci 3(2):6–10Google Scholar
  19. 19.
    Pai AR, Jatap RN (2015) Surface morphology and mechanical properties of some unique natural fiber reinforced polymer composites—a review. J Mater Environ Sci 6(4):907–917Google Scholar
  20. 20.
    Panneerdhass R, Baskan R, Rajkumar K, Gnanavebabu A (2014) Mechanical properties of chopped randomly oriented epoxy—luffa fiber reinforced polymer composite. Appl Mech Mater 591:103–107CrossRefGoogle Scholar
  21. 21.
    Gupta G, Gupta A, Dhanola A, Raturi A (2016) Mechanical behavior of glass fiber polyester hybrid composite filled with natural fibers. IOP conference series: materials science and engineering.  https://doi.org/10.1088/1757-899x/149/1/012091CrossRefGoogle Scholar
  22. 22.
    Hassan SB, Oghenevweta JE, Aigbodion VS (2012) Morphological and mechanical properties of carbonized waste maize stalk as reinforcement for eco-composites. Compos B 43:2230–2236CrossRefGoogle Scholar
  23. 23.
    Chen RS, AhmadS, Gan S (2016) Characterization of rice husk incorporated recycled thermoplastic blend composites. Bioresources 11(4):8470–8482Google Scholar
  24. 24.
    Safwan MM, Lin HO, Akil HM (2013) Preparation and characterization of palm kernel shell/polypropylene biocomposite and their hybrid composite with Nanosilica. BioResources 8(2):1539–1550Google Scholar
  25. 25.
    Karthik R, Sathiyamurthy S, Jayabal S, Chidambaram K (2014) Tribological behaviour of rice husk and egg shell hybrid particulated coir-polyester composites. IOSR J Mech Civil Eng 75–80. Retrieved from http://www.iosrjournals.org/iosr-jmce/papers/NCCAMABS/Volume-3/39.pdf
  26. 26.
    Prabhu R, Amin AK, Dhyanchandra A (2015) Development and characterization of low cost polymer composites from coconut coir. Am J Mater Sci 5(3C):62–68Google Scholar
  27. 27.
    Ashori A, Nourbakhsh A (2010) Bio-based composites from waste agricultural residues. Waste Manage 30:680–684CrossRefGoogle Scholar
  28. 28.
    Ravindran D, Sornakumar T, Prithvirajadurai DS, Varadharajan V (2015) Development of hybrid coconut shell powderwood dust polyester resin based composites. Int J Appl Mech Prod Eng 1(7):1–4Google Scholar
  29. 29.
    Zaini ASSM, Rus ZAM, Rahman NA, Jais FHM, Fauzan MZ, Sufian NA (2017) Mechanical properties evaluation of extruded wood polymer composites. In: 4th international conference on the advancement of materials and nanotechnology (ICAMN IV 2016), AIP conference proceedings 1877, 060005. pp 2–9.  https://doi.org/10.1063/1.4999884
  30. 30.
    Aigbodion VS, Hassan SB, Agunsoye OJ (2011) Effect of bagasse ash reinforcement on dry sliding wear behaviour of polymer matrix composites. Mater Des 33:322–327CrossRefGoogle Scholar
  31. 31.
    Atuanya CU, Aigbodion VS, Nwigbo SC (2014) Experimental study of the thermal and wear properties of recycled polyethylene/breadfruit seed hull ash particulate composites. Mater Des 53:65–73CrossRefGoogle Scholar
  32. 32.
    Fragassa C, Santulli C, Pavlović A, ŠljivićM (2015) Improving performance and applicability of green composite materials by hybridization. Contemp Mater 35–43.  https://doi.org/10.7251/comen1501035f
  33. 33.
    Muthukumar S, Lingadurai K (2014) Investigating the mechanical behaviour of coconut shell and groundnut shell reinforced polymer composite. Glob J Eng Sci Res 1(3):19–23Google Scholar
  34. 34.
    Kasiviswanathan S, Santhanam K, Kumaravel A (2015) Evaluation of mechanical properties of natural hybrid fibers, reinforced polyestercomposite materials. Carbon Sci Tech 7/4:43–49 [CST-161-7-4]Google Scholar
  35. 35.
    Udhayasankar R, Karthikeyan B (2015) A review on coconut shell reinforced composites. Int J ChemTech Res CODEN (USA): IJCRGG 8(11):624–637Google Scholar
  36. 36.
    Karippa JJ, Murthy HNN, Rai KS, Sreejith M, Krishna M (2011) Study of mechanical properties of epoxy/glass/nanoclay hybrid composites. J Compos Mater 1–7Google Scholar
  37. 37.
    Meziane O, Bensedira A, Guessoum M, Haddaoui N (2016) Polypropylene-modified kaolinite composites: effect of chemical modification on mechanical, thermal and morphological properties. J Fundam Appl Sci 8(2):494–509CrossRefGoogle Scholar
  38. 38.
    Nourbakhsh A, Baghlani FF, Ashori A (2011) Nano-SiO2 filled rice husk/polypropylene composites: physico-mechanical properties. Ind Crops Prod 33:183–187CrossRefGoogle Scholar
  39. 39.
    Chauhan S, Bhushan RK (2017) Study of polymer matrix composite with natural particulate/fiber in PMC: a review. Int J Adv Res Ideas Innovations Technol 3(3):1168–1179Google Scholar
  40. 40.
    Arpitha GR, Sanjay MR, Yogesha B (2014) Review on comparative evaluation of fiber reinforced polymer matrix composites. Adv Eng Appl Sci Int J 4(4):44–47Google Scholar
  41. 41.
    Chandramohan D, Marimuthu K (2011) A review on natural fibers. IJRRAS 8(2):194–206Google Scholar
  42. 42.
    Hashim MY, Roslan MN, Amin AM, Zaidi AMA, Ariffin S (2012) Mercerization treatment parameter effect on natural fiber reinforced polymer matrix composite: a brief review. World Acad Sci Eng Technol 6:1382–1388Google Scholar
  43. 43.
    Bledzki AK, Mamun AA, Volk J (2010) Barley husk and coconut shell reinforced polypropylene composites: the effect of fibre physical, chemical and surface properties. Compos Sci Technol 70:840–846CrossRefGoogle Scholar
  44. 44.
    Rozyanty AR, Firdaus MYN, Liew TZ, Yunus NFM (2015) Kenaf-unsaturated polyester composite: the effect of different retting process of kenaf bast fiber on the mechanical properties. Mater Sci Forum 819:256–261CrossRefGoogle Scholar
  45. 45.
    Dass PM, Akinterinwa A, Adamu JN, Abba S (2015) The influence of different retting processes on the strength of fibres obtained from Poliostigma raticulatum, Grewia mollis, Cissus populnea and Hibiscus sabdariffa. Environ Nat Resour Res 5(4):41–45Google Scholar
  46. 46.
    Gopu RN, Singh A, Zimniewska M, Raghavan V (2013) Comparative evaluation of physical and structural properties of water retted and non-retted flax fibers. Fibers 1:59–69.  https://doi.org/10.3390/fib1030059CrossRefGoogle Scholar
  47. 47.
    Jawaid M, Tahir PM, Saba N (eds) (2017) Lignocellulosic fibre and biomass-based composite materials: processing, properties and applications. Woodhead Publishing, UKGoogle Scholar
  48. 48.
    Thakur VK, Thakur MK (eds) (2015) Eco-friendly polymer nanocomposites: chemistry and application. Springer, New DelhiGoogle Scholar
  49. 49.
    Rydz J, Sikorska W, Kyulavska M, Christova D (2015) Polyester-based (bio)degradable polymers as environmentally friendly materials for sustainable development. Int J Mol Sci 16(1):564–596CrossRefGoogle Scholar
  50. 50.
    Ray SS (2013) Environmentally friendly polymer nanocomposites: types, processing and properties. Woodhead Publishing, New DelhiCrossRefGoogle Scholar
  51. 51.
    Shukla SK, Mishra AK, Arotiba OA, Mamba BB (2013) Chitosan-based nanomaterials: a state-of-the-art review. Int J Biol Macromol 1–13. http://dx.doi.org/10.1016/j.ijbiomac.2013.04.043
  52. 52.
    Saba N, Tahir PM, Jawaid M (2014) A review on potentiality of nano filler/natural fiber filled polymer hybrid composites. Polymers 6(8):2247–2273.  https://doi.org/10.3390/polym6082247CrossRefGoogle Scholar
  53. 53.
    Thomas S, Paul SA, Pothan LA, Deepa B (2011) Natural fibres: structure, properties and applications. In: Kalia S, Kaith BS, Kaur I (eds) Cellulose fibers: bio- and nano-polymer composites. Springer, BerlinGoogle Scholar
  54. 54.
    Shehu U, Audu H, Nwamara MA, Ade-Ajayi AF, Shittu UM, Isa MT (2014) Natural fibre as reinforcement for polymers: a review. SPJTS 2(1):238–253Google Scholar
  55. 55.
    Kabir MM, Wang H, Aravinthan T, Cardona F, Lau KT (2011) Effects of natural fibre surface on composite properties: a review. pp 94–99Google Scholar
  56. 56.
    Kalia S, Dufresne A, Cherian BM, Kaith BS, Averous L, Njuguna J, Nassiopoulos E (2011) Cellulose-based bio- and nanocomposites: a review. Int J Polym Sci 1–36.  https://doi.org/10.1155/2011/837875Google Scholar
  57. 57.
    Fan M, Dai D, Huang B (2012) Fourier transform infrared spectroscopy for natural fibres. In: Salih S (ed) Fourier transform—materials analysis. ISBN 978-953-51-0594-7. www.interchopen.com/books/fourier-transform–materials-analysis/Fourier-Transform-Infrared-Spectroscopy-for-natural-fibres. Accessed 5 Feb 2018Google Scholar
  58. 58.
    Kumar R, Obrai S, Sharma A (2011) Chemical modifications of natural fiber for composite material. Der Chemica Sinica 2(4):219–228Google Scholar
  59. 59.
    Anurag T (2016) Study of musa acuminata fibre reinforced composite—a review. Int J Res Aeronaut Mech Eng 4(4):29–42Google Scholar
  60. 60.
    Srinivasan R (2011) Advances in application of natural clay and its composites in removal of biological, organic, and inorganic contaminants from drinking water. Adv Mater Sci Eng 1–17.  https://doi.org/10.1155/2011/872531CrossRefGoogle Scholar
  61. 61.
    Hamid E, Raji M, Bouhfid R, Qaiss AEK (2016) Nanoclay and natural fibers based hybrid composites: mechanical, morphological, thermal and rheological properties. In: Jawaid M, Qaiss AEK, Bouhfid R (eds) Nanoclay reinforced polymer composites, engineering materials. Springer, SingaporeGoogle Scholar
  62. 62.
    Mallick PK (2018) Processing of polymermatrix composites. CRC Press, Boca RatonGoogle Scholar
  63. 63.
    Zin MH, Razzi MF, Othman SLK, Abdan K, Mazlan N (2016) A review on the fabrication method of bio-sourced hybrid composites for aerospace and automotiveapplications. IOP conference series: materials science and engineering.  https://doi.org/10.1088/1757-899x/152/1/012041CrossRefGoogle Scholar
  64. 64.
    Dong P, Prasanth R, Xu F, Wang X, Li B, Shankar R (2015) Eco-friendly polymer nanocomposite—properties and processing. In: Thakur VK, Thakur MK (eds) Eco-friendly polymer nanocomposites processing and properties. Springer, New DelhiGoogle Scholar
  65. 65.
    Gunning M, Geever LM, Killion JA, Lyons JG, Higginbotham CL (2014) Effect of compatibilizer content on the mechanical properties of bioplastic composites via hot melt extrusion. Polym Plast Technol Eng 53:1223–1235CrossRefGoogle Scholar
  66. 66.
    Cai J, Jia M, Xue P, Ding Y, Zhou X (2013) The effect of processing conditions on the mechanical properties and morphology of self-reinforced wood-polymer composite. Polym Compos 1567–1574.  https://doi.org/10.1002/pc.22553CrossRefGoogle Scholar
  67. 67.
    Tanahashi M (2010) Development of fabrication methods of filler/polymer nanocomposites: with focus on simple melt-compounding based approach without surface modification of nanofillers. Materials 3:1593–1619.  https://doi.org/10.3390/ma3031593CrossRefGoogle Scholar
  68. 68.
    Díez EA (2014) Effect of extrusion on the electrical, mechanical and rheological properties of an ethylene butylacrylate/carbon black/graphite nanoplatelets nanocomposite. Diploma work, Department of Materials and Manufacturing Technology, Chalmers University of Technology, Gothenburg, SwedenGoogle Scholar
  69. 69.
    Peinado V, Castell P, García L, Fernández A (2015) Effect of extrusion on the mechanical and rheological properties of a reinforced poly(lactic acid): reprocessing and recycling of biobased materials. Materials 8:7106–7117.  https://doi.org/10.3390/ma8105360CrossRefGoogle Scholar
  70. 70.
    Feldmann M, Heim HP, Zarges JC (2015) Influence of the process parameters on the mechanical properties of engineering biocomposites using a twin-screw extruder. Compos Part A 1–7. http://dx.doi.org/10.1016/j.compositesa.2015.03.028
  71. 71.
    Kadam PG, Mhaske ST (2014) Effect of extrusion reprocessing on the mechanical, thermal, rheological and morphological properties of nylon 6/talc nanocomposites. J Thermoplast Compos Mater 1–19.  https://doi.org/10.1177/0892705714551591CrossRefGoogle Scholar
  72. 72.
    Poletto M (2016) Polystyrene cellulose fiber composites: effect of the processing conditions on mechanical and dynamic mechanical properties. Rev Mater 21(3):552–559CrossRefGoogle Scholar
  73. 73.
    Hajba S, Tábi T (2014) Development of natural fibre reinforced poly(lactic acid) biocomposites. In: ECCM16—16th European conference on composite materials, Seville, Spain, 22–26 June 2014, pp 1–8Google Scholar
  74. 74.
    Rassmann S, Reid RG, Paskaramoorthy R (2010) Effects of processing conditions on the mechanical and water absorption properties of resin transfer moulded kenaf fibre reinforced polyester composite laminates. Compos Part A 4(11):1612–1619CrossRefGoogle Scholar
  75. 75.
    Agubra VA, Owuor PS, Hosur MV (2013) Influence of nanoclay dispersion methods on the mechanical behavior of E-glass/epoxy nanocomposites. Nanomaterials 3:550–563.  https://doi.org/10.3390/nano3030550CrossRefGoogle Scholar
  76. 76.
    Kalia S, Kaith BS, Kaur I (2009) Pretreatments of natural fibers and their application as reinforcing material in polymer composites—a review. Polym Sci Eng 49(7):1253–1272.  https://doi.org/10.1002/pen.21328CrossRefGoogle Scholar
  77. 77.
    Cruz J, Fangueiro R (2016) Surface modification of natural fibers: a review. Procedia Eng 155:285–288CrossRefGoogle Scholar
  78. 78.
    Chern CE, Nor AI, Norhazlin Z, Ariffin H, Yunus WMZW, Then YY (2014) Enhancement of mechanical and dynamic mechanical properties of hydrophilic nanoclay reinforced polylactic acid/polycaprolactone/oil palm mesocarp fiber hybrid composites. Int J Polym Sci. http://dx.doi.org/10.1155/2014/715801
  79. 79.
    Zaaba NF, Ismail H, Jaafar M (2014) The effects of modifying peanut shell powder with polyvinyl alcohol on the properties of recycled polypropylene and peanut shell powder composites. BioResources 9(2):2128–2142CrossRefGoogle Scholar
  80. 80.
    Kumar TV, Chandrasekaran M, Padmanabhan S (2017) Characteristics and mechanical properties of reinforced polymer composites. ARPN J Eng Appl Sci 12(8):2450–2454Google Scholar
  81. 81.
    Asuke F, Aigbodion VS (2016) Experiment numerical study of dry sliding wear behavior of epoxy/periwinkles shell particulate composites. J Chin Adv Mater Soc 1–17.  https://doi.org/10.1080/22243682.2015.1124736CrossRefGoogle Scholar
  82. 82.
    Hassan SB, Aigbodion VS, Patrick SN (2012) Development of polyester/eggshell particulate composites. Tribol Ind 34(4):217–225Google Scholar
  83. 83.
    Kadhum AAU, Mohammed AA (2016) Investigation the effect of natural materials on wear and hardness properties of polymeric composite materials. Iraqi J Mech Mater Eng 16(4):369–372Google Scholar
  84. 84.
    Atuanya CU, Aigbodion VS, Obiorah SO (2015) Evaluation of the mechanical properties of recycled low-density polyethylene/bean pod particulate bio-composites. J Chin Adv Mater Soc 3(4):345–358.  https://doi.org/10.1080/22243682.2015.1081077CrossRefGoogle Scholar
  85. 85.
    Sarki J, Hassan SB, Aigbodion VS, Oghenevweta JE (2011) Potential of using coconut shell particle fillers in eco-composite materials. J Alloy Compd 509:2381–2385CrossRefGoogle Scholar
  86. 86.
    Aigbodion VS, Atuanya CU, Igogori EA, AndIhom P (2013) Development of high-density polyethylene/orange peels particulate bio-composite. Gazi Univ J Sci 26(1):107–117Google Scholar
  87. 87.
    Subramani T, Krishnan S, Ganesan SK, Nagarajan G (2014) Investigation of mechanical properties in polyester and phenylester composites reinforced with chicken feather fiber. Int J Eng Res Appl 4(12):93–104Google Scholar
  88. 88.
    Kiew KS, Rahman MR, Hamdan S, Talibb ZA (2013) Maleic anhydride modified unsaturated polyester composites reinforced with chicken feather fiber: dielectric and morphological study. World Appl Sci J 25(6):899–907.  https://doi.org/10.5829/idosi.wasj.2013.25.06.1347%5bCrossRefGoogle Scholar
  89. 89.
    Oladele IO, Omotoyimbo JA, Ayemidejor SH (2014) Mechanical properties of chicken feather and cow hair fibre reinforced high density polyethylene composites. Int J Sci Technol 3(1):66–72Google Scholar
  90. 90.
    Omah AD, Okorie BA, Omah EC, EzemaI C, Aigbodion VS, Orji UU (2017) Experimental correlation between varying cassava cortex and dielectric properties in epoxy/cassava cortex dielectric particulates composites. Part Sci Technol.  https://doi.org/10.1080/02726351.2017.1307888CrossRefGoogle Scholar
  91. 91.
    Tushar S, Shirish P, Vikram D, Acharya R (2015) Natural fiber reinforced polymer composite material—a review. IOSR J Mech Civil Eng 142–147Google Scholar
  92. 92.
    Madhusudhan T, Swaroop GK (2016) A review on mechanical properties of natural fiber reinforced hybrid composites. Int Res J Eng Technol (IRJET) 3(4):2247–2251Google Scholar
  93. 93.
    Nitin S, Singh VK (2013) Mechanical behaviour of walnut reinforced composite. J Mater Environ Sci 4(2):233–238Google Scholar
  94. 94.
    Tao Y, Li P, Cai L (2016) Effect of fiber content on sound absorption, thermal conductivity and compression strength of straw fiber filled rigid polyurethane foams. BioResources 11(2):4159–4167CrossRefGoogle Scholar
  95. 95.
    Ameh AO, Isa MT, Sanusi I (2015) Effect of particle size and concentration on the mechanical properties of polyester/date palm seed particulate composites. Leonardo Electron J Practices Technol 26:65–78Google Scholar
  96. 96.
    Shokoufa N, Nourbakhsh A, Ashkan G, Talaeipour M, Habibollah KE (2013) Investigating the effect of nanoclay on polypropylene-made cellulose composite. Res J Appl Sci Eng Technol 6(21):4022–4029.  https://doi.org/10.19026/rjaset.6.3505CrossRefGoogle Scholar
  97. 97.
    Singla RK, Maiti SN, Ghosh AK (2016) Crystallization, morphological, and mechanical response of poly(lactic acid)/lignin-based biodegradable composites. Polym Plast Technol Eng 55(5):475–485.  https://doi.org/10.1080/03602559.2015.1098688CrossRefGoogle Scholar
  98. 98.
    Pongtanayuta K, Thongpina C, Santawiteeb O (2013) The effect of rubber on morphology, thermal properties and mechanical properties of PLA/NR and PLA/ENR blends. Energy Procedia 34:888–897.  https://doi.org/10.1016/j.egypro.2013.06.826CrossRefGoogle Scholar
  99. 99.
    Alagarsamy SV, Sagayaraj AVS, Vignesh S (2015) Investigating the mechanical behaviour of coconut coir—chicken feather reinforced hybrid composite. Int J Sci Eng Technol Res (IJSETR), 4(12):4215–4221Google Scholar
  100. 100.
    Saikishore T, Rao PP, Reddy MCS (2017) Synthesis & investigation of the mechanical behaviour of luffa, groundnut shell, chicken feather and cowdung fibers reinforced epoxy composites. IJSRD Int J Sci Res Dev 5(4):42–46Google Scholar
  101. 101.
    Njoku RE, Obayi CS, Nnamchi PS (2011) Hybrid effect on the mechanical properties of sisal fiber and E-glass fiber reinforced polyester composites. Niger J Technol 30(3):97–103Google Scholar
  102. 102.
    Nalin P, Suppakula P, Atong D, Pechyen C (2014) Blend of polypropylene/poly(lactic acid) for medical packaging application: physicochemical, thermal, mechanical, and barrier properties. Energy Procedia 56:201–210CrossRefGoogle Scholar
  103. 103.
    Hassan E, Wei Y, Jiao H, Muhuo Y (2013) Dynamic mechanical properties and thermal stability of poly(lactic acid) and poly(butylene succinate) blends composites. J Fiber Bioeng Inform 6(1):85–94.  https://doi.org/10.3993/jfbi03201308CrossRefGoogle Scholar
  104. 104.
    Jompanga L, Thumsorna S, Onb JW, Surinb P, Apawet C, Tirapong C, Narin K, Narongchai OC, Srisawata N (2013) Poly(lactic acid) and poly(butylene succinate) blend fibers prepared by melt spinning technique. Energy Procedia 34:493–499CrossRefGoogle Scholar
  105. 105.
    Jia W, Gong RH, Soutis C, Hogg PJ (2014) Biodegradable fibre reinforced composites composed of polylactic acid and polybutylene succinate. Plast Rubber Compos 43(3):82–88.  https://doi.org/10.1179/1743289813Y.0000000070CrossRefGoogle Scholar
  106. 106.
    Darie-Nita RN, Vasile C, Irimia A, Lipsa R, Rapa M (2016) Evaluation of some eco-friendly plasticizers for PLA films processing. J Appl Polym Sci 1–11.  https://doi.org/10.1002/app.43223Google Scholar
  107. 107.
    Vignesh J, Selvam CM (2015) Experimental evaluation of wood dust particulate reinforced polymer composites. IRACST Eng Sci Technol Int J (ESTIJ) 5(4):226–229Google Scholar
  108. 108.
    FAO Statistical Yearbook 2014 Africa: Food and Agriculture (2014) Food and agriculture organization of the United Nations Regional Office for AfricaAccraGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • V. S. Aigbodion
    • 1
    • 2
    Email author
  • E. G. Okonkwo
    • 1
  • E. T. Akinlabi
    • 2
  1. 1.Department of Metallurgical and Materials EngineeringUniversity of NigeriaNsukkaNigeria
  2. 2.Department of Mechanical Engineering ScienceUniversity of JohannesburgAuckland ParkSouth Africa

Personalised recommendations