Advertisement

Toxicological Evaluations of Nanocomposites with Special Reference to Cancer Therapy

  • Arpita Hazra Chowdhury
  • Arka Bagchi
  • Arunima BiswasEmail author
  • Sk. Manirul IslamEmail author
Chapter

Abstract

In the last few years, nanoparticles and nanocomposites have emerged as one of the promising candidates to scientists from various fields because of their immense potential to revolutionize science and technology. The nanoscale particles and composites are synthesized with a broad range of metals like gold, silver, iron, metal oxides and semiconductors. They are effective for water filtration, as a therapeutic agent, a very important agent for targeted drug delivery and also of immense importance in biomedical applications like Magnetic Resonance Imaging (MRI). The nanoscale particles have a wide range and have the potential to be used for the betterment of biomedical research, human health, and environment. Though these nanoscale materials are synthesized widely all over the world with various metals, carbon and graphene and other elements for research purposes and to understand their applications, the biological issues of toxicity associated with these materials and its impact on human health and environment are grossly unexplored. Detailed understanding of the factors regulating toxicity is lacking. A complete toxicological profile of these nanocomposites will ensure effective translation for a market available drug through clinical trial and other nano-based products. This chapter deals with the synthesis of nanocomposites, their applications and toxicological evaluation of the same in terms of human application.

Keywords

Nanocomposite drug delivery Nano-based  Nanoparticle Toxicity Cancer 

References

  1. 1.
    Danhier F, Feron O, Préat V (2010) To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release 148:135–146CrossRefGoogle Scholar
  2. 2.
    Northfelt DW, Martin FJ, Working P, Volberding PA, Russell J, Newman M, Amantea MA, Kaplan LD (1996) Doxorubicin encapsulated in liposomes containing surface-bound polyethylene glycol: pharmacokinetics, tumor localization and safety in patients with AIDS-related Kaposi’s sarcoma. J Clin Pharmacol 36:55–63CrossRefGoogle Scholar
  3. 3.
    Fang J, Nakamura H, Maeda H (2011) The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev 63:136–151CrossRefGoogle Scholar
  4. 4.
    Maeda H (2001) The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul 41:189–207CrossRefGoogle Scholar
  5. 5.
    Morghimi SM, Hunter AC, Murray JC (2001) Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev 53:283–318Google Scholar
  6. 6.
    Matsuo H, Wakasugi M, Takanaga H, Ohtani H, Naito M, Tsuruo T, Sawada Y (2001) Possibility of the reversal of multidrug resistance and the avoidance of side effects by liposomes modified with MRK-16, a monoclonal antibody to P-glycoprotein. J Control Release 77:77–86CrossRefGoogle Scholar
  7. 7.
    Lammers T, Kiessling F, Hennink WE, Storm G (2012) Drug targeting to tumors: principles, pitfalls and (pre-) clinical progress. J Control Release 161:175–187CrossRefGoogle Scholar
  8. 8.
    Mohammadreza S, Soehnlen ES, Hao J et al (2010) Dual purpose prussian blue nanoparticles for cellular imaging and drug delivery: a new generation of T1-weighted MRI contrast and small molecule delivery agents. J Mater Chem 20(25):5251–5259CrossRefGoogle Scholar
  9. 9.
    Liang X, Deng Z, Jing L et al (2013) Prussian blue nanoparticles operate as a contrast agent for enhanced photoacoustic imaging. Chem Commun 49(94):11029–11031CrossRefGoogle Scholar
  10. 10.
    Fu G, Feng S, Liu W, Yue X (2012) Prussian blue nanoparticles operate as a new generation of photothermal ablation agents for cancer therapy. Chem Commun 48(94):11567–11569CrossRefGoogle Scholar
  11. 11.
    Pina S, Oliveira JM, Reis RL (2015) Natural-based nanocomposites for bone tissue engineering and regenerative medicine: a review. Adv Mater 27:1143–1169CrossRefGoogle Scholar
  12. 12.
    Rafiee MA, Rafiee J, Wang Z, Song H, Yu Z-Z, Koratkar N (2009) Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3:3884–3890CrossRefGoogle Scholar
  13. 13.
    Mariano M, El Kissi N, Dufresne A (2014) Cellulose nanocrystals and related nanocomposites: review of some properties and challenges. J Polym Sci, Part B Polym Phys 52:791–806CrossRefGoogle Scholar
  14. 14.
    Hu H, Onyebueke L, Abatan A (2010) Characterizing and modeling mechanical properties of nanocomposites-review and evaluation. J Min Mater Charact Eng 9:275–319Google Scholar
  15. 15.
    Beck JS, Vartuli JC (1996) Recent advances in the synthesis, characterization and applications of mesoporous molecular sieves. Curr Opin Solid State Mater Sci 1:76–87CrossRefGoogle Scholar
  16. 16.
    Davis ME (2002) Ordered porous materials for emerging applications. Nature 417:813–821CrossRefGoogle Scholar
  17. 17.
    Liu AM, Hidajat K, Kawi S, Zhao DY (2000) A new class of hybrid mesoporous materials with functionalized organic monolayers for selective adsorption of heavy metal ions. Chem Commun 1145–1146Google Scholar
  18. 18.
    Zhuang TY, Shi JY, Ma BC, Wang W (2010) Chiral norbornane-bridged periodic mesoporous organosilicas. J Mater Chem 20:6026–6029CrossRefGoogle Scholar
  19. 19.
    Tsou CJ, Chu CY, Mou CY (2013) A broad range fluorescent pH sensor based on hollow mesoporous silica nanoparticles, utilising the surface curvature effect. J Mater Chem B 1:5557–5563CrossRefGoogle Scholar
  20. 20.
    Heidegger S, Gößl D, Schmidt A, Niedermayer S, Argyo C, Endres S, Bein T, Bourquin C (2016) Immune response to functionalized mesoporous silica nanoparticles for targeted drug delivery. Nanoscale 8:938–948CrossRefGoogle Scholar
  21. 21.
    Li Z, Barnes JC, Bosoy A, Stoddart JF, Zink JI (2012) Mesoporous silica nanoparticles in biomedical applications. Chem Soc Rev 41:2590–2605CrossRefGoogle Scholar
  22. 22.
    Lin YS, Hurley KR, Haynes CL (2012) Critical considerations in the biomedical use of mesoporous silica nanoparticles. J Phys Chem Lett 3:364–374CrossRefGoogle Scholar
  23. 23.
    Tao X, Liu B, Hou Q, Xu H, Chen JF (2009) Enhanced accumulation and visible light-assisted degradation of azo dyes in poly (allylamine hydrochloride)-modified mesoporous silica spheres. Mater Res Bull 44:306–311CrossRefGoogle Scholar
  24. 24.
    Yuan Q, Chi Y, Yu N, Zhao N, Yan W, Li X, Dong B (2014) Amino-functionalized magnetic mesoporous microspheres with good adsorption properties. Mater Res Bull 49:279–284CrossRefGoogle Scholar
  25. 25.
    Huang CH, Chang KP, Oua HD, Chiang YC, Wanga CF (2011) Adsorption of cationic dyes onto mesoporous silica. Microporous Mesoporous Mater 141:102–109CrossRefGoogle Scholar
  26. 26.
    Li Y, Zhaou Y, Nie W, Song L, Chen P (2015) Highly efficient methylene blue dyes removal from aqueous systems by chitosan coated magnetic mesoporous silica nanoparticles. J Porous Mater 22:1383–1392CrossRefGoogle Scholar
  27. 27.
    Huang RS, Hou BF, Li HT, Fu XC, Xie CG (2015) Preparation of silver nanoparticles supported mesoporous silica microspheres with perpendicularly aligned mesopore channels and their antibacterial activities. RSC Adv 5:61184–61190CrossRefGoogle Scholar
  28. 28.
    Tian Y, Qi J, Zhang W, Cai Q, Jiang X (2014) Facile, one-pot synthesis, and antibacterial activity of mesoporous silica nanoparticles decorated with well-dispersed silver nanoparticles. ACS Appl Mater Interfaces 6:12038–12045CrossRefGoogle Scholar
  29. 29.
    Liong M, France B, Bradley KA, Zink JI (2009) Antimicrobial activity of silver nanocrystals encapsulated in mesoporous silica nanoparticles. Adv Mater 21:1684–1689CrossRefGoogle Scholar
  30. 30.
    Song J, Kim H, Jang Y, Jang J (2013) Enhanced antibacterial activity of silver/polyrhodanine-composite-decorated silica nanoparticles. ACS Appl Mater Interfaces 5:11563–11568CrossRefGoogle Scholar
  31. 31.
    Chen CC, Wu HH, Huang HY, Liu CW, Chen YN (2016) Synthesis of high valence silver-loaded mesoporous silica with strong antibacterial properties. Int J Environ Res Pub Health 13:99–112CrossRefGoogle Scholar
  32. 32.
    Park JH, Gu L, Maltzahn GV, Ruoslahti E, Bhatia SN, Sailor MJ (2009) Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat Mater 8:331–336CrossRefGoogle Scholar
  33. 33.
    Tian Y, Qi J, Zhang W, Cai W, Jiang X (2014) Facile, one-pot synthesis, and antibacterial activity of mesoporous silica nanoparticles decorated with well-dispersed silver nanoparticles. ACS Appl Mater Interfaces 6:12038–12045CrossRefGoogle Scholar
  34. 34.
    Soto RJ, Yang L, Schoenfisch MH (2016) Functionalized mesoporous silica via an aminosilane surfactant ion exchange reaction: controlled scaffold design and nitric oxide release. ACS Appl Mater Interfaces 8:2220–2231CrossRefGoogle Scholar
  35. 35.
    Agnihotri S, Mukherji S, Mukherji S (2014) Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. Rsc Adv 4:3974–3983CrossRefGoogle Scholar
  36. 36.
    Sadeghi B, Garmaroudi FS, Hashemi M, Nezhad HR, Nasrollahi A, Ardalan S, Ardalan S (2012) Comparison of the anti-bacterial activity on the nanosilver shapes: nanoparticles, nanorods and nanoplates. Adv Powder Technol 23:22–26CrossRefGoogle Scholar
  37. 37.
    Ghosh S, Vandana V (2016) Nano-structured mesoporous silica/silver composite: synthesis, characterization and targeted application towards water purification. Mater Res Bull 88:291–300CrossRefGoogle Scholar
  38. 38.
    Li H, Bian Z, Zhu J, Huo Y, Li H, Lu Y (2007) Mesoporous Au/TiO2 nanocomposites with enhanced photocatalytic activity. J Am Chem Soc 129:4538–4539CrossRefGoogle Scholar
  39. 39.
    Bhattacharyya S, Gedanken A (2008) Microwave-assisted insertion of silver nanoparticles into 3-D Mesoporous zinc oxide nanocomposites and nanorods. J Phys Chem C 112:659–665CrossRefGoogle Scholar
  40. 40.
    Hazra Chowdhury I, Ghosh S, Naskar MK (2016) Aqueous-based synthesis of mesoporous TiO2 and Ag–TiO2 nanopowders for efficient photodegradation of methylene blue. Ceram Int 42:2488–2496CrossRefGoogle Scholar
  41. 41.
    Sinha AK, Suzuki K, Takahara M, Azuma H, Nonaka T, Fukumoto K (2007) Mesostructured manganese oxide/gold nanoparticle composites for extensive air purification. Angew Chem 119:2949–2952CrossRefGoogle Scholar
  42. 42.
    Allen MJ, Tung VC, Kaner RB (2010) Honeycomb carbon: a review of graphene. Chem Rev 110:132–145CrossRefGoogle Scholar
  43. 43.
    Rao CNR, Sood AK, Subarhmanyam KS, Govindraj A (2009) Graphene: the new two- dimensional nanomaterial. Angew Chem 48:7752–7777CrossRefGoogle Scholar
  44. 44.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRefGoogle Scholar
  45. 45.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson ML, Grigorieva IV, Dubonos SV, Firsov AA (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438:197–200CrossRefGoogle Scholar
  46. 46.
    Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442:282–286CrossRefGoogle Scholar
  47. 47.
    Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov AN, Conrad AH, First PN, de Heer WA (2006) Electronic confinement and coherence in patterned epitaxial graphene. Science 312:1191–1196CrossRefGoogle Scholar
  48. 48.
    Wu J, Pisula W, Mullen K (2007) Graphenes as potential material for electronics. Chem Rev 107:718–747CrossRefGoogle Scholar
  49. 49.
    Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn JH, Kim P, Choi JY, Hong BH (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457:706–710CrossRefGoogle Scholar
  50. 50.
    Acik M, Chabal YJ (2013) A review on thermal exfoliation of graphene oxide. J Mater Sci Res 2:101–112Google Scholar
  51. 51.
    Pei S, Zhao J, Du J, Ren W, Cheng HM (2010) Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon 48:4466–4474CrossRefGoogle Scholar
  52. 52.
    Wadhwa H, Kumar D, Mahendia S, Kumar S (2017) Microwave assisted facile synthesis of reduced graphene oxide-silver (RGO-Ag) nanocomposite and their application as active SERS substrate. Mater Chem Phys 194:274–282CrossRefGoogle Scholar
  53. 53.
    Saleh TA, Al-Shalalfeh MM, Al-Saadi AA (2018) Silver loaded graphene as a substrate for sensing 2-thiouracil using surface-enhanced Raman scattering. Sens Actuators B 254:1110–1117CrossRefGoogle Scholar
  54. 54.
    Dar RA, Khare NG, Cole DP, Karna SP, Srivastava AK (2014) Green synthesis of a silver nanoparticle–graphene oxide composite and its application for As(III) detection. RSC Adv 4:14432–14440CrossRefGoogle Scholar
  55. 55.
    Ju J, Chen W (2015) In situ growth of surfactant-free gold nanoparticles on nitrogen-doped graphene quantum dots for electrochemical detection of hydrogen peroxide in biological environments. Anal Chem 87:1903–1910CrossRefGoogle Scholar
  56. 56.
    Kim P, Doss NM, Tillotson JP, Hotchkiss PJ, Pan MJ, Marder SR, Li J, Calame JP, Perry JW (2009) High energy density nanocomposites based on surface modified BaTiO3 and a ferroelectric polymer. ACS Nano 3:2581–2592CrossRefGoogle Scholar
  57. 57.
    Ehrhardt C, Fettkenhauer C, Glenneberg J, Münchgesang W, Pientschke C, Großmann T, Zenkner M, Wagner G, Leipner HS, Buchsteiner AS, Diestelhorst M, Lemm S, Beige H, Ebbinghaus SG (2013) BaTiO3–P(VDF-HFP) nanocomposite dielectrics – influence of surface modification and dispersion additives. Mater Sci Eng, B 178:881–888CrossRefGoogle Scholar
  58. 58.
    Wagener P, Brandes G, Schwenke A, Barcikowski S (2011) Impact of in situ polymer coating on particle dispersion into solid laser-generated nanocomposites. Phys Chem Chem Phys 13:5120–5126CrossRefGoogle Scholar
  59. 59.
    Toor A, Pisano AP (2015) Gold nanoparticle/PVDF polymer composite with improved particle dispersion. In: Proceedings of the 15th IEEE international conference on nanotechnology, Rome, ItalyGoogle Scholar
  60. 60.
    Kanahara M, Shimomuraa M, Yabu H (2014) Fabrication of gold nanoparticle–polymer composite particles with raspberry, core–shell and amorphous morphologies at room temperature via electrostatic interactions and diffusion. Soft Matter 10:275–280CrossRefGoogle Scholar
  61. 61.
    Coulston RJ, Jones ST, Lee TC, Appel EA, Scherman EA (2011) Supramolecular gold nanoparticle–polymer composites formed in water with cucurbit[8]uril. Chem Commun 47:164–166CrossRefGoogle Scholar
  62. 62.
    Jin X, Zhou L, Zhu B, Jiang X, Zhu N (2018) Silver-dendrimer nanocomposites as oligonucleotide labels for electrochemical stripping detection of DNA hybridization. Biosens Bioelectron 107:237–243CrossRefGoogle Scholar
  63. 63.
    Zhang S, Qiu G, Ting YP, Chung TS (2013) Silver–PEGylated dendrimer nanocomposite coating for anti-foulingthin film composite membranes for water treatment. Colloids Surf, A 436:207–214CrossRefGoogle Scholar
  64. 64.
    Ruiz-Sanchez AJ, Parolo C, Miller BS, Gray ER, Schlegel K, McKendry RA (2017) Tuneable plasmonic gold dendrimer nanochains for sensitive disease detection. J Mater Chem B 5:7262–7266CrossRefGoogle Scholar
  65. 65.
    Murphy CJ, Sau TK, Gole AM et al (2005) Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications. J Phys Chem B. 109(29):13857–13870CrossRefGoogle Scholar
  66. 66.
    Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105(4):1025–1102CrossRefGoogle Scholar
  67. 67.
    Shaw CP, Fernig DG, Lévy R (2011) Gold nanoparticles as advanced building blocks for nanoscale self-assembled systems. J Mater Chem 21(33):12181–12187CrossRefGoogle Scholar
  68. 68.
    Jain PK, Huang X, El-Sayed IH, El-Sayed MA (2007) Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems. Plasmonics 2(3):107–118CrossRefGoogle Scholar
  69. 69.
    Huang X, Jain PK, El-Sayed IH, El-Sayed MA (2008) Plasmonic photother-mal therapy (PPTT) using gold nanoparticles. Lasers Med Sci 23(3):217–228CrossRefGoogle Scholar
  70. 70.
    Tong L, Wei Q, Wei A, Cheng JX (2009) Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects. PhotochemPhotobiol 85(1):21–32Google Scholar
  71. 71.
    Liang S, Zhao Y, Xu S, Wu X, Chen J, Wu M, Zhao X (2015) A silica-gold-silica nanocomposite for photothermal therapy in near-infrared region 7(1):85-93Google Scholar
  72. 72.
    Mishra YK, Mohapatra S, Avasthi DK, Kabiraj D, Lalla NP, Pivin JC, Sharma H, Kar R, Singh N (2007) Gold–silica nanocomposites for the detection of human ovarian cancer cells: a preliminary study. Nanotechnology 18(34):345606CrossRefGoogle Scholar
  73. 73.
    Boisselier E, Astruc D (2009) Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. ChemSoc Rev 38(6):1759–1782Google Scholar
  74. 74.
    Rasch MR, Rossinyol E, Hueso JL, Goodfellow BW, Arbiol J, Korgel BA (2010) Hydrophobic gold nanoparticle self-assembly with phosphatidylcholine lipid: membrane-loaded and janus vesicles. Nano Lett 10(9):3733–3739CrossRefGoogle Scholar
  75. 75.
    Chen Y, Bose A, Bothun GD (2010) Controlled release from bilayer-decorated magnetoliposomes via electromagnetic heating. ACS Nano 4(6):3215–3221CrossRefGoogle Scholar
  76. 76.
    Ahmed S, Madathingal RR, Wunder SL, Chen Y, Bothun G (2011) Hydration repulsion effects on the formation of supported lipid bilayers. Soft Matter 7(5):1936–1947CrossRefGoogle Scholar
  77. 77.
    Von White G,, Chen Y, Roder-Hanna J, Bothun GD, Kitchens CL (2012) Structural and thermal analysis of lipid vesicles encapsulating hydrophobic gold nanoparticles. ACS Nano 6(6):4678–4685CrossRefGoogle Scholar
  78. 78.
    Wijaya A, Hamad-Schifferli K (2007) High-density encapsulation of Fe3O4 nanoparticles in lipid vesicles. Langmuir 23(19):9546–9550CrossRefGoogle Scholar
  79. 79.
    Xia T, Rome L, Nel A (2008) Nanobiology: particles slip cell security. Nat Mater 7(7):519–520CrossRefGoogle Scholar
  80. 80.
    Kang JH, Ko YT (2015) Lipid-coated gold nanocomposites for enhanced cancer therapy. Int J Nanomedicine 10(Spec Iss):33–45Google Scholar
  81. 81.
    Chanmee T, Ontong P, Konno K, Itano N (2014) Tumor-associated macrophages as major players in the tumor microenvironment. Cancer 6(3):1670–1690CrossRefGoogle Scholar
  82. 82.
    Lou JJ, Chua YL, Chew EH, Gao J, Bushell M, Hagen T (2010) Inhibition of hypoxiainducible factor-1alpha (HIF-1alpha) protein synthesis by DNA damage inducing agents. PLoS One 5(5):e10522CrossRefGoogle Scholar
  83. 83.
    Nath A, Pal R, Singh LM, Saikia H, Rahaman H, Ghosh SK, Mazumder R, Sengupta M (2018) Gold-manganese oxide nanocomposite suppresses hypoxia and augments pro-inflamatory cytokines in tumor associated macrophages. Int Immunopharmacol 57:157–164CrossRefGoogle Scholar
  84. 84.
    Liu Y, Lv X, Liu H, Zhou Z, Huang J, Lei S, Cai S, Chen Z, Guo Y, Chen Z, Zhou X, Nie L (2018) Porous gold nanocluster-decorated manganese monoxide nanocomposites for microenvironment-activatable MR/photoacoustic? CT Tumor Imag 10(8):3631–3638Google Scholar
  85. 85.
    Suresh L, Brahman PK, Reddy KR, Bondili JS (2018) Development of an electrochemical immunosensor based on gold nanoparticles incorporated chitosan biopolymer nanocomposite film for the detection of prostate cancer using PSA as biomarker 112:43–51Google Scholar
  86. 86.
    Rizwan M, Elma S, Lim SA, Ahmed MU (2018) AuNPs/CNOs/SWCNTs/chitosan-nanocomposite modified electrochemical sensor for label-free detection of carcinoembryonic antigen 107:211–217Google Scholar
  87. 87.
    Christou A, Stec AA, Ahmed W, Aschberger K, Amentia V (2016) A review of exposure and toxicological aspects of carbon nanotubes, and as additives to fire retardants in polymers 46(1):74–95Google Scholar
  88. 88.
    Contreras-Caceres R, Sanchez-Iglesias A, Karg M, Pastoriza-Santos I, Perez-Juste J, Pacifico J, Hellweg T, Fernández-Barbero A, Liz-Marzan LM (2008) Encapsulation and growth of gold nanoparticles in thermoresponsive microgel. Adv Mater 20:1666–1670CrossRefGoogle Scholar
  89. 89.
    Contreras-Caceres R, Pastoriza-Santos I, Alvarez-Puebla RA, Perez-Juste J, FernandezBarbero A, Liz-Marzan LM (2010) Growing Au/Ag nanoparticles within microgel colloids for improved SERS detection. Chem Eur J 16:9462–9467CrossRefGoogle Scholar
  90. 90.
    Sari TK, Takahashi F, Jin J, Zein R, Munat E (2018) Electrochemical determination of Chromium(VI) in river water with Gold nanoparticles-Graaphene nanocomposites modified electrodes 34(2):155–160Google Scholar
  91. 91.
    Yin PT, Kim TH, Choi JW, Lee KB (2013) Prospects for graphene–nanoparticle-based hybrid sensors. Phys Chem Chem Phys 15:12785–12799CrossRefGoogle Scholar
  92. 92.
    Benvidi A, Firouzabadi AD, Moshtaghiun SM, Mazloum-Ardakani M, Tezerjani MD (2015) Ultrasensitive DNA sensor based on gold nanoparticles/reduced graphene oxide/glassy carbon electrode. Anal Biochem 484:24–30CrossRefGoogle Scholar
  93. 93.
    Yang G, Li L, Rana RK, Zhu JJ (2013) Assembled gold nanoparticles on nitrogen-doped graphene for ultrasensitive electrochemical detection of matrix metalloproteinase-2. Carbon 61:357–366CrossRefGoogle Scholar
  94. 94.
    Ju J, Chen W (2015) In situ growth of surfactant-free gold nanoparticles on nitrogen-doped graphene quantum dots for electrochemical detection of hydrogen peroxide in biological environments. Anal Chem 87:1903–1910CrossRefGoogle Scholar
  95. 95.
    Wang C, Li J, Amatore C, Chen Y, Jiang H, Wang XM (2011) Gold nanoclusters and graphene nanocomposites for drug delivery and imaging of cancer cells. Angew Chem Int Ed 50:11644–11648CrossRefGoogle Scholar
  96. 96.
    Zhang G, Chang H, Amatore C, Chen Y, Jiang H, Wang X (2013) Apoptosis induction and inhibition of drug resistant tumor growth in vivo involving daunorubicin-loaded graphene–gold composites. J Mater Chem B 1:493–499CrossRefGoogle Scholar
  97. 97.
    Pinto AM, Gonçalves IC, Magalhães FD (2013) Graphene-based materials biocompatibility: a review. Colloids Surf, B 111:188–202CrossRefGoogle Scholar
  98. 98.
    Seabra AB, Paula AJ, de Lima R, Alves OL, Duran N (2014) Nanotoxicity of graphene and graphene oxide. Chem Res Toxicol 27:159–168CrossRefGoogle Scholar
  99. 99.
    Chang Y, Yang ST, Liu JH, Dong E, Wang Y, Cao A, Liu Y, Wang H (2011) In vitro toxicity evaluation of graphene oxide on A549 cells. Toxicol Lett 200:201–210CrossRefGoogle Scholar
  100. 100.
    Guo X, Mei N (2014) Assessment of the toxic potential of graphene family nanomaterials. J Food Drug Anal 22:105–115CrossRefGoogle Scholar
  101. 101.
    Shi X, Wang SH, Van Antwerp ME, Chen X, Baker JR Jr (2009) Targeting and detecting cancer cells using spontaneously formed multifunctional dendrimer stabilized gold nanoparticles 134(7):1373–1379Google Scholar
  102. 102.
    Nanjwade BK, Bechra HM, Derkar GK, Manvi FV, Nanjwade VK (2009) Dendrimers: emerging polymers for drug-delivery systems. Eur J Pharm Sci 38:185–196CrossRefGoogle Scholar
  103. 103.
    Cheng Y, Wang J, Rao T, He X, Xu T (2008) Pharmaceutical applications of dendrimers: promising nanocarriers for drug delivery. Front Biosci 13:1447–1471CrossRefGoogle Scholar
  104. 104.
    Khan MK, Nigavekar SS, Minc LD, Kariapper MS, Nair BM, Lesniak WG, Balogh LP (2005) In vivo biodistribution of dendrimers and dendrimer nanocomposites—implications for cancer imaging and therapy. Technol Cancer Res Treat 4:603–613CrossRefGoogle Scholar
  105. 105.
    Leung KC, Xuan S, Zhu X, Wang D, Chak CP, Lee SF, Ho WK, Chung BC (2012) Gold and iron oxide hybrid nanocomposite materials 41(5):1911–1928Google Scholar
  106. 106.
    Rai M, Yadav A, Gade A (2001) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27(1):76–83CrossRefGoogle Scholar
  107. 107.
    Grishchenko L, Medvedeva S, Aleksandrova G, Feoktistova L, Sapozhnikov A, Sukhov B, Trofimov B (2006) Redox reactions of arabinogalactan with silver ions and formation of nanocomposites. Russian J General Chem 76(7):1111–1116CrossRefGoogle Scholar
  108. 108.
    Travan A, Pelillo C, Donati I, Marsich E, Benincasa M, Scarpa T, Semeraro S, Turco G, Gennaro R, Paoletti S (2009) Non-cytotoxic silver nanoparticle—polysaccharide nanocomposites with antimicrobial activity. Biomacromol 10(6):1429CrossRefGoogle Scholar
  109. 109.
    Chen JP (2007) Late angiographic stent thrombosis (LAST): the cloud behind the drug—eluting stent silver lining? J Invasive Cardiol 19(9):395–400Google Scholar
  110. 110.
    Kuo PL, Chen WF (2003) Formation of silver nanoparticles under structured amino groups in pseudo—dendritic poly(allylamine) derivatives. J Phys Chem B 107(41):11267–11272CrossRefGoogle Scholar
  111. 111.
    Huang H, Yuan Q, Yang X (2004) Preparation and characterization of metal—chitosan nanocomposites. Colloids Surf, B 39(1–2):31–37CrossRefGoogle Scholar
  112. 112.
    Fu J, Ji J, Fan D, Shen J (2006) Construction of antibacterial multilayer films containing nanosilver via layer—by—layer assembly of heparin and chitosan—silver ions complex. J Biomed Mater Res, Part A 79(3):665–674CrossRefGoogle Scholar
  113. 113.
    Balogh L, Swanson DR, Tomalia DA, Hagnauer GL, McManus AT (2001) Dendrimer—silver complexes and nanocomposites as antimicrobial agents 1(1):18–21Google Scholar
  114. 114.
    Sanpui P, Murugadoss A, Prasad PVD, Ghosh SS, Chattopadhyay A (2008) The antibacterial properties of a novel chitosan—Ag—nanoparticle composite. Int J Food Microbiol 124(2):142–146CrossRefGoogle Scholar
  115. 115.
    Kim KJ, Sung WS, Suh BK, Moon SK, Choi JS, Kim JG, Lee DG (2009) Antifungal activity and mode of action of silver nano-particles on Candida albicans. Biometals 22(2):235–242CrossRefGoogle Scholar
  116. 116.
    Esteban-Tejeda L, Malpartida F, Esteban-Cubillo A, Pecharroman C, Moya JS (2009) The antibacterial and antifungal activity of a soda-lime glass containing silver nanoparticles. Nanotechnology 20(8):85103CrossRefGoogle Scholar
  117. 117.
    Gajbhiye MB, Kesharwani JG, Ingle AP, Gade AK, Rai MK (2009) Fungus—mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fl uconazole. Nanomedicine 5:382–386CrossRefGoogle Scholar
  118. 118.
    Shaheen F, Hammad Aziz M, Fakhar-E-Alam M, Atif M et al (2017) An in vitro study of the photodynamic effectiveness of GO-Ag Nanocomposites against human breast cancer cells 7(11) Pii:E401Google Scholar
  119. 119.
    Gurunathan S, Han JW, Par JH (2015) Reduced graphene oxide–silver nanoparticle nanocomposite: a potential anticancer nanotherapy. Int J Nanomed 10:6257–6276CrossRefGoogle Scholar
  120. 120.
    Ghaseminezhad SM, Shojaosadati SA (2016) Evaluation of the antibacterial activity of Ag/Fe3O4 nanocomposites synthesized using starch 144:454–463Google Scholar
  121. 121.
    Fakhri A, Tahami S, Nejad PA (2017) Preparation and characterization of Fe3O4-Ag2O quantum dots decorated cellulose nanofibers as a carrier of anticancer drugs for skin cancer 175:83–88Google Scholar
  122. 122.
    Ponnaiah SK, Periakaruppan P, Vellaichamy B (2018) New electrochemical sensor based on a silver-doped iron oxide nanocomposite coupled with polyaniline and its sensing application for picomolar level detection of uric acid in human blood and urine samplesGoogle Scholar
  123. 123.
    Jin X, Zhou L, Zhu B, Jiang X, Zhu N (2018) Silver-dendrimer nanocomposites as oligonucleotide labels for electrochemical stripping detection of DNA hybridization 107:237–243Google Scholar
  124. 124.
    Wang YZ, Hao N, Feng QM, Shi HW, Xu JJ, Che HY (2016) A ratiometric electrochemiluminiscence detection for cancer cells using g-C3N4 nanosheet and Ag-PANAM-luminol nanocomposites 77:76–82Google Scholar
  125. 125.
    Matai I, Sachdev A, Gopinath P (2015) Multicomponent 5-fluorouracil loaded PANAM stabilized-silver nanocomposites synergistically induce apoptosis in human cancer cells 3(3):457–68Google Scholar
  126. 126.
    Naha PC, Byrne HJ (2013) Generation of intracellular reactive oxygen species and genotoxicity effect to exposure of nanosized polyamidoamine (PAMAM) dendrimers in PLHC-1 cells in vitro. Aquat Toxicol 132–133:61–72CrossRefGoogle Scholar
  127. 127.
    Jones CF, Campbell RA, Brooks AE, Assemi S, Tadjiki S, Thiagarajan G, Mulcock C, Weyrich AS, Brooks BD, Ghandehari H et al (2012) Cationic PAMAM dendrimers aggressively initiate blood clot formation. ACS Nano 6:9900–9910CrossRefGoogle Scholar
  128. 128.
    Sun Y, Guo F, Zou Z, Li C, Hong X, Zhao Y, Wang C, Wang H, Liu H, Yang P et al (2015) Cationic nanoparticles directly bind angiotensin-converting enzyme 2 and induce acute lung injury in mice. Part Fibre Toxicol 12:4CrossRefGoogle Scholar
  129. 129.
    Akhtar S, Al-Zaid B, El-Hashim AZ, Chandrasekhar B, Attur S, Benter IF (2016) Impact of PANAM delivery systems on signal transduction pathways in vivo: modulation of ERK1/2 and p 38 MAP kinase signaling in the normal and diabetic kidney 514(2):353–363Google Scholar
  130. 130.
    Heiden TC, Dengler E, Kao WJ, Heideman W, Peterson RE (2007) Developmental toxicity of low generation PAMAM dendrimers in zebrafish. Toxicol Appl Pharmacol 225:70–79CrossRefGoogle Scholar
  131. 131.
    Naha PC, Mukherjee SP, Byrne HJ (2018) Toxicology of engineered nanoparticles: Focus on poly (amidoamine) dendriers 15(2) pii:E338Google Scholar
  132. 132.
    Wang X, Wang Y, Jiang M, Shan Y, Jin X, Gong M, Wang X (2018) Functional electrospun nanofibers-based electrochemiluminiscence immunosensor for detection of the TSP53 using RuAg/SiO2NPs as signal enhancers 548:15–22Google Scholar
  133. 133.
    Song Y, Jiang H, Wang B, Kong Y, Chen J (2018) Silver-incorporated mussel-inspired polydopamine coatings on mesoporous silica as an efficient nanocatalyst and antimicrobial agent 10(2):1792–1801Google Scholar
  134. 134.
    Cao T, Li Z, Xiong Y, Yang Y, Xu S, Bisson T, Gupta R, Xu Z (2017) Silica-silver nanocomposites as regenerable sorbents for Hg0 removal of flue gases 51(20):11909–11917Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of KalyaniKalyani NadiaIndia
  2. 2.Department of ZoologyUniversity of KalyaniKalyani NadiaIndia

Personalised recommendations