Advertisement

An Overview on Plant Fiber Technology: An Interdisciplinary Approach

  • Alan Miguel Brum da Silva
  • Sandra Maria da LuzEmail author
  • Irulappasamy Siva
  • Jebas Thangiah Winowlin Jappes
  • Sandro Campos Amico
Chapter

Abstract

Researches on plant fibers for composite applications are increasing due to the demand of materials from renewable sources, which do not consume fossil fuels during manufacture, thus avoiding greenhouse gas emissions. An interdisciplinary approach is required to cover all aspects of plant fiber research, but the actual literature shows many gaps in this sense, where many works are limited in one field of study and may present unclear conclusions. To solve this problem, we did a systematic approach in the literature to provide a review of key aspects of plant fibers, regarding biology, chemistry, and engineering.

Keywords

Lignocellulosic fibers Cell wall chemistry Surface modification Composite materials Interdisciplinary approach 

List of Abbreviations

CML

Compound middle lamella

DP

Degree of polymerization

G

Guaiacyl (G)

GAX

Glucuronoarabinoxylans

H

p-hydroxyphenyl

HG

Homogalacturonan

L

Lumen

MET

Transmission electron microscopy

MFA

Microfibrillar angle

ML

Middle lamella

OH

Hydroxyl groups

P

Primary wall

RG-I

Rhamnogalacturonan I

RG-II

Rhamnogalacturonan II

RTM

Resin transfer molding

S

Syringyl

S1

Secondary wall 1

S2

Secondary wall 2

S3

Secondary wall 3

SMC

Sheet molding compound

Notes

Acknowledgements

The authors wish to thank the CNPq, Capes and FAP-DF for financial assistance during this work.

References

  1. 1.
    Akin DE, Eder M, Burgert I, Müssig J, Slootmaker T. (2010) What are natural fibres? In: Müssig J (ed) Industrial applications of natural fibres. Wiley, Chichester, UK, pp 11–48.  https://doi.org/10.1002/9780470660324.ch2CrossRefGoogle Scholar
  2. 2.
    Anandjiwala RD, John M (2010) Sisal—cultivation, processing and products. In: Industrial applications of natural fibres. Wiley, Chichester, pp 181–95.  https://doi.org/10.1002/9780470660324.ch8CrossRefGoogle Scholar
  3. 3.
    Atmodjo MA, Hao Z, Mohnen D (2013) Evolving views of pectin biosynthesis. Annu Rev Plant Biol 64:747–79.  https://doi.org/10.1146/annurev-arplant-042811-105534CrossRefGoogle Scholar
  4. 4.
    Baley C, Busnel F, Grohens Y, Sire O (2006) Influence of chemical treatments on surface properties and adhesion of flax fibre-polyester resin. Compos Part A Appl Sci Manuf 37:1626–1637.  https://doi.org/10.1016/j.compositesa.2005.10.014CrossRefGoogle Scholar
  5. 5.
    Beakou A, Charlet K (2013) Mechanical properties of interfaces within a flax bundle—part II: numerical analysis. Int J Adhes Adhes 43:54–59.  https://doi.org/10.1016/j.ijadhadh.2013.01.013CrossRefGoogle Scholar
  6. 6.
    Biagiotti J, Puglia D, Kenny JM (2004) A Review on natural fibre-based composites-part I: structure. Proc Prop Vegetable Fibres J Nat Fibers 1(2):37–41.  https://doi.org/10.1300/j395v01n02
  7. 7.
    Bidlack J, Malone M, Benson R (1992) Molecular structure and components integration of secondary cell walls in plants. ProcOklaAcadSci 75:51–56Google Scholar
  8. 8.
    Booker RE, Sell J (1998) The nanostructure of the cell wall of softwoods and its functions in a living tree. Eur J Wood Wood Prod 56:1–8.  https://doi.org/10.1007/s001070050255CrossRefGoogle Scholar
  9. 9.
    Bourmaud A, Morvan C, Bouali A, Placet V, Perré P, Baley C (2013) Relationships between micro-fibrillar angle, mechanical properties and biochemical composition of flax fibers. Ind Crops Prod 44:343–351.  https://doi.org/10.1016/j.indcrop.2012.11.031CrossRefGoogle Scholar
  10. 10.
    Burgert I, Dunlop JWC (2011) Micromechanics of cell walls. In: Wojtaszek P (ed) Mechanical integration of plant cells and plants, vol 9, 1st edn. Springer, Berlin Heidelberg, pp 27–52.  https://doi.org/10.1007/978-3-642-19091-9Google Scholar
  11. 11.
    Caffall KH, Mohnen D (2009) The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydr Res 344:1879–1900.  https://doi.org/10.1016/j.carres.2009.05.021CrossRefGoogle Scholar
  12. 12.
    Charlet K, Béakou A (2011) Mechanical properties of interfaces within a flax bundle—part I: experimental analysis. Int J Adhes Adhes 31:875–881.  https://doi.org/10.1016/j.ijadhadh.2011.08.008CrossRefGoogle Scholar
  13. 13.
    Dalimova GN, Abduazimov KA (1994) Lignins of herbaceous plants. Chem Nat Compd 30:146–159.  https://doi.org/10.1007/BF00629995CrossRefGoogle Scholar
  14. 14.
    Donaldson LA (2001) Lignification and lignin topochemistry—an ultrastructural view. Phytochemistry 57:859–73.  https://doi.org/10.1016/s0031-9422(01)00049-8CrossRefGoogle Scholar
  15. 15.
    Drakakaki G (2015) Polysaccharide deposition during cytokinesis: challenges and future perspectives. Plant Sci 236:177–184.  https://doi.org/10.1016/j.plantsci.2015.03.018CrossRefGoogle Scholar
  16. 16.
    Drieling A, Müssig J, Graupner N, Müssig J, Piotrowski S, Carus M (2010) Economic aspects. In: Müssig J (ed) Industrial applications of natural fibres. Wiley, Chichester, UK, pp 49–86.  https://doi.org/10.1002/9780470660324.ch3CrossRefGoogle Scholar
  17. 17.
    Duval A, Lawoko M (2014) A review on lignin-based polymeric, micro- and nano-structured materials. React Funct Polym 85:78–96.  https://doi.org/10.1016/j.reactfunctpolym.2014.09.017CrossRefGoogle Scholar
  18. 18.
    Ebringerova A, Hromadkova Z, Heinze T (2005) Hemicellulose. Adv Polym Sci 186:1–67.  https://doi.org/10.1007/b136816CrossRefGoogle Scholar
  19. 19.
    El-Gohary M (2012) The contrivance of new mud bricks for restoring and preserving the Edfa ancient granary–Sohag, Egypt. Int J Conserv Sci 3:67–78Google Scholar
  20. 20.
    Evert RF (2006) Esau’s plant anatomy.  https://doi.org/10.1002/0470047380CrossRefGoogle Scholar
  21. 21.
    Faruk O, Bledzki AK, Fink HP, Sain M (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37:1552–1596.  https://doi.org/10.1016/j.progpolymsci.2012.04.003CrossRefGoogle Scholar
  22. 22.
    Friedrich K, Evstatiev M, Angelov I, Mennig G (2007) Pultrusion of flax-polypropylene composite profiles. In: Handbook of engineering biopolymers. Carl Hanser Verlag GmbH & Co. KG, München, pp 223–36.  https://doi.org/10.3139/9783446442504.007CrossRefGoogle Scholar
  23. 23.
    Gandini A, Belgacem MN, Barkoula N-M, Peijs T, Dufresne A, Mosiewicki MA et al (2011) Interface engineering of natural fibre composites for maximum performance, 1st edn. Woodhead Publishing, CambridgeGoogle Scholar
  24. 24.
    George J, Sreekala MS, Thomas S (2001) A review on interface modification and characterization of natural fiber reinforced plastic composites. Polym Eng Sci 41:1471–1485.  https://doi.org/10.1002/pen.10846CrossRefGoogle Scholar
  25. 25.
    Grabber JH, Ralph J, Lapierre C, Barrière Y (2004) Genetic and molecular basis of grass cell-wall degradability. I. Lignin-cell wall matrix interactions. Comptes Rendus Biol 327:455–65.  https://doi.org/10.1016/j.crvi.2004.02.009CrossRefGoogle Scholar
  26. 26.
    Haigler CH (1985) The functions and biogenesis of native cellulose. In: Nevell T, Zeronian S (ed) Cellulose chemistry and its applications. Ellis Horwood Ltd., Chichester, UK, pp 30–83Google Scholar
  27. 27.
    Hänninen T, Hughes M, Baur E, Otremba F, Huber T, Graupner N, et al (2010) Composites. Industrial applications of natural fibres. Wiley, Chichester, UK, pp 381–480.  https://doi.org/10.1002/9780470660324.ch19CrossRefGoogle Scholar
  28. 28.
    Hill CAS (2006) Wood modification: chemical, thermal and other processes. Wiley, Chichester, UK.  https://doi.org/10.1002/0470021748CrossRefGoogle Scholar
  29. 29.
    Jarvis MC (2000) Interconversion of the Iα and Iβ crystalline forms of cellulose by bending. Carbohydr Res 325:150–154.  https://doi.org/10.1016/S0008-6215(99)00316-XCrossRefGoogle Scholar
  30. 30.
    John M, Anandjiwala RD (2008) Recent developments in chemical modification and characterization of natural fiber-reinforced composites. Polym Compos 29:187–207.  https://doi.org/10.1002/pc.20461CrossRefGoogle Scholar
  31. 31.
    Joshi SV, Drzal LT, Mohanty AK, Arora S (2004) Are natural fiber composites environmentally superior to glass fiber reinforced composites? Compos Part A Appl Sci Manuf 35:371–376.  https://doi.org/10.1016/j.compositesa.2003.09.016CrossRefGoogle Scholar
  32. 32.
    Kabir MM, Wang H, Aravinthan T, Cardona F, Lau K (2007) Effects of natural fibre surface on composite properties : a review. In: eddBE2011 1st international postgraduate conference engineering design and development built environment sustain, vol 27–29. Wellbeing, pp 94–99Google Scholar
  33. 33.
    Koch G, Schmitt U (2013) Topochemical and electron microscopic analyses on the lignification of individual cell wall layers during wood formation and secondary changes. Plant Cell Monogr 20:41–69.  https://doi.org/10.1007/978-3-642-36491-4_2CrossRefGoogle Scholar
  34. 34.
    Kvavadze E, Bar-Yosef O, Belfer-Cohen A, Boaretto E, Jakeli N, Matskevich Z et al (2009) 30,000-year-old wild flax fibers. Science 325:1359.  https://doi.org/10.1126/science.1175404CrossRefGoogle Scholar
  35. 35.
    Laurichesse S, Avérous L (2014) Chemical modification of lignins: towards biobased polymers. Prog Polym Sci 39:1266–1290.  https://doi.org/10.1016/j.progpolymsci.2013.11.004CrossRefGoogle Scholar
  36. 36.
    Lewis NG (1990) Lignin : occurrence, biogenesis and biodegradationGoogle Scholar
  37. 37.
    Li X, Tabil L, Panigrahi S (2007) Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. J Polym Environ 15:25–33.  https://doi.org/10.1007/s10924-006-0042-3CrossRefGoogle Scholar
  38. 38.
    Liu M, Fernando D, Daniel G, Madsen B, Meyer AS, Ale MT et al (2015) Effect of harvest time and field retting duration on the chemical composition, morphology and mechanical properties of hemp fibers. Ind Crops Prod 69:29–39.  https://doi.org/10.1016/j.indcrop.2015.02.010CrossRefGoogle Scholar
  39. 39.
    Martin N, Mouret N, Davies P, Baley C (2013) Influence of the degree of retting of flax fibers on the tensile properties of single fibers and short fiber/polypropylene composites. Ind Crops Prod 49:755–767.  https://doi.org/10.1016/j.indcrop.2013.06.012CrossRefGoogle Scholar
  40. 40.
    McDougall GJ, Morrison IM, Stewart D, Weyers JDB, Hillman JR (1993) Plant fibers—botany, chemistry and processing for industrial use. J Sci Food Agric 62:1–20.  https://doi.org/10.1002/jsfa.2740620102CrossRefGoogle Scholar
  41. 41.
    Mohnen D (2008) Pectin structure and biosynthesis. Curr Opin Plant Biol 11:266–277.  https://doi.org/10.1016/j.pbi.2008.03.006CrossRefGoogle Scholar
  42. 42.
    Müssig J, Haag K (2014) The use of flax fibres as reinforcements in composites. In: Biofiber reinforcements in composite materialsGoogle Scholar
  43. 43.
    Mwaikambo LY (2006) Review of the history, properties and application of plant fibres. African J Sci Technol 7:120–133Google Scholar
  44. 44.
    Mwaikambo LY, Tucker N, Clark AJ (2007) Mechanical properties of hemp-fibre-reinforced euphorbia composites. Macromol Mater Eng 292:993–1000.  https://doi.org/10.1002/mame.200700092CrossRefGoogle Scholar
  45. 45.
    Niklas KJ (1992) Plant Biomechanics: an engineering approach to plant form and function. The University of Chicago Press, Chicago and LondonGoogle Scholar
  46. 46.
    O’Neill MA, Ishii T, Albersheim P, Darvill AG (2004) Rhamnogalacturonan II: structure and function of a borate cross-linked cell wall pectic polysaccharide. Annu Rev Plant Biol 55:109–39.  https://doi.org/10.1146/annurev.arplant.55.031903.141750CrossRefGoogle Scholar
  47. 47.
    Pauly M, Gille S, Liu L, Mansoori N, de Souza A, Schultink A et al (2013) Hemicellulose biosynthesis. Planta 238:627–642.  https://doi.org/10.1007/s00425-013-1921-1CrossRefGoogle Scholar
  48. 48.
    Rowell R (2005) Handbook of wood chemistry and wood compositesGoogle Scholar
  49. 49.
    Rowell RM (2008) Natural fibres: types and properties. In: Properties and performance of natural-fibre composites. Elsevier, pp 3–66.  https://doi.org/10.1533/9781845694593.1.3CrossRefGoogle Scholar
  50. 50.
    Salmén L, Bergström E (2009) Cellulose structural arrangement in relation to spectral changes in tensile loading FTIR. Cellulose 16:975–982.  https://doi.org/10.1007/s10570-009-9331-zCrossRefGoogle Scholar
  51. 51.
    Salmén L, Burgert I (2009) Cell wall features with regard to mechanical performance. A review. Holzforschung 63:121–129.  https://doi.org/10.1515/HF.2009.011CrossRefGoogle Scholar
  52. 52.
    Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794.  https://doi.org/10.1177/004051755902901003CrossRefGoogle Scholar
  53. 53.
    Ben SAEO, Chaabouni Y, Msahli S, Sakli F (2012) Morphological and crystalline characterization of NaOH and NaOCl treated Agave americana L. fiber. Ind Crops Prod 36:257–66.  https://doi.org/10.1016/j.indcrop.2011.09.012CrossRefGoogle Scholar
  54. 54.
    Singh SR, Kundu DK, Tripathi MK, Dey P, Saha AR, Kumar M et al (2015) Impact of balanced fertilization on nutrient acquisition, fibre yield of jute and soil quality in new gangetic alluvial soils of India. Appl Soil Ecol 92:24–34.  https://doi.org/10.1016/j.apsoil.2015.03.007CrossRefGoogle Scholar
  55. 55.
    Skoglund G, Nockert M, Holst B (2013) Viking and early middle ages northern Scandinavian textiles proven to be made with hemp. Sci Rep 3:2686.  https://doi.org/10.1038/srep02686CrossRefGoogle Scholar
  56. 56.
    Somerville C (2006) Cellulose synthesis in higher plants. Annu Rev Cell Dev Biol 22:53–78.  https://doi.org/10.1146/annurev.cellbio.22.022206.160206CrossRefGoogle Scholar
  57. 57.
    Thakur VK, Thakur MK, Gupta RK (2014) Review: raw natural fiber-based polymer composites. Int J Polym Anal Charact 19:256–271.  https://doi.org/10.1080/1023666X.2014.880016CrossRefGoogle Scholar
  58. 58.
    Thompson JE, Fry SC (2000) Evidence for covalent linkage between xyloglucan and acidic pectins in suspension-cultured rose cells. Planta 211:275–286.  https://doi.org/10.1007/s004250000287CrossRefGoogle Scholar
  59. 59.
    Unger F (1866) Botanische Streifzüge auf dem Gebiete der Culturgeschichte—Ein Ziegel der Dashurpyramide in Ägypten nach seinem Inhalte an organischen Einschlüssen. Sitzungsberichte der Kais. Akad. der Wissenschaften Wien Math. Klasse 54:33–62Google Scholar
  60. 60.
    Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Marth JD et al (2009) Symbol nomenclature for glycan representation. Proteomics 9:5398–5399.  https://doi.org/10.1002/pmic.200900708CrossRefGoogle Scholar
  61. 61.
    Viëtor RJ, Mazeau K, Lakin M, Pérez S (2000) A priori crystal structure prediction of native celluloses. Biopolymers 54:342–354.  https://doi.org/10.1002/1097-0282(20001015)54:5%3c342:AID-BIP50%3e3.0.CO;2-OCrossRefGoogle Scholar
  62. 62.
    Vogel J (2008) Unique aspects of the grass cell wall. Curr Opin Plant Biol 11:301–307.  https://doi.org/10.1016/j.pbi.2008.03.002CrossRefGoogle Scholar
  63. 63.
    Van de Weyenberg I, Ivens J, De Coster A, Kino B, Baetens E, Verpoest I (2003) Influence of processing and chemical treatment of flax fibres on their composites. Compos Sci Technol 63:1241–1246.  https://doi.org/10.1016/s0266-3538(03)00093-9CrossRefGoogle Scholar
  64. 64.
    Xie Y, Hill CAS, Xiao Z, Militz H, Mai C (2010) Silane coupling agents used for natural fiber/polymer composites: a review. Compos Part A Appl Sci Manuf 41:806–19.  https://doi.org/10.1016/j.compositesa.2010.03.005CrossRefGoogle Scholar
  65. 65.
    Yu H, Yu C (2007) Study on microbe retting of kenaf fiber. Enzyme Microb Technol 40:1806–1809.  https://doi.org/10.1016/j.enzmictec.2007.02.018CrossRefGoogle Scholar
  66. 66.
    Zah R, Hischier R, Leão AL, Braun I (2007) Curauá fibers in the automobile industry—a sustainability assessment. J Clean Prod 15:1032–40.  https://doi.org/10.1016/j.jclepro.2006.05.036CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Alan Miguel Brum da Silva
    • 1
    • 3
  • Sandra Maria da Luz
    • 2
    Email author
  • Irulappasamy Siva
    • 3
  • Jebas Thangiah Winowlin Jappes
    • 3
  • Sandro Campos Amico
    • 1
  1. 1.PPG3 M, Federal University of Rio Grande do SulPorto AlegreBrazil
  2. 2.Gama Campus—University of BrasíliaBrasília, Federal DistrictBrazil
  3. 3.Centre for Composite Materials, Kalasalingam UniversityAnand NagarIndia

Personalised recommendations