Reliable Natural-Fibre Augmented Biodegraded Polymer Composites

  • Ritu PayalEmail author


The environment and enduring issues have perceived innovative achievements in the area of materials science for the discovery of biocomposites or most favourably biodegraded polymer composites (BPC’s). BPC’s are composite materials formed by the blend of matrix or resin with natural fibres. Natural fibres offer several advantages over synthetic fibres, which make them excellent candidates in various applications. Besides having various advantages they lack in issues like resin compatibility and water absorption. This article discusses various pros and cons of BPC’s along with their source, composition, structure, manufacturing techniques, as well as mechanical properties.


Biocomposites Resin compatibility Absorption Flexibility Sustainable Biodegradable 


  1. 1.
    Wambua P, Ivens J, Verpoest I (2003) Natural fibres: can they replace glass in fibre reinforced plastics. Compos Sci Technol 63:1259–1264CrossRefGoogle Scholar
  2. 2.
    Malkapuram R, Kumar V, Yuvraj SN (2008) Recent development in natural fibre reinforced polypropylene composites. J Reinf Plast Compos 28:1169–1189CrossRefGoogle Scholar
  3. 3.
    Li X, Tabil LG, Panigrahi S, Crerar WJ (2009) The influence of fibre content on properties of injection molded flax fibre-HDPE biocomposites. Can Biosyst Eng 08–148:1–10Google Scholar
  4. 4.
    Holbery J, Houston D (2006) Natural-fibre-reinforced polymer composites in automotive applications. JOM (TMS) 58(11):80–86CrossRefGoogle Scholar
  5. 5.
    Ahmad I, Baharum A, Abdullah I (2006) Effect of extrusion rate and fibre loading on mechanical properties of twaron fibre-thermoplastic natural rubber (TPNR) composites. J Reinf Plast Compos 25:957–965CrossRefGoogle Scholar
  6. 6.
    Pickering K (2008) Properties and performance of natural-fibre composites, 1st ed. Woodhead PublishingGoogle Scholar
  7. 7.
    Hajnalka H, Racz I, Anandjiwala RD (2008) Development of HEMP fibre reinforced polypropylene composites. J Thermoplast Compos Mater 21:165–174CrossRefGoogle Scholar
  8. 8.
    Ahmad I, Baharum A, Abdullah I (2006) Effect of extrusion rate and fibre loading on mechanical properties of twaron fibre-thermoplastic natural rubber (TPNR) composites. J Reinf Plast Compos 25:957–965CrossRefGoogle Scholar
  9. 9.
    Nabi SD, Jog JP (1999) Natural fibre polymer composites: a review. Adv Polym Technol 18:351–363Google Scholar
  10. 10.
    Pickering KL (2008) Properties and performance of natural-fibre composites CRC Press, FloridaGoogle Scholar
  11. 11.
    Odian G (2004) Principles of polymerization, 4th edn. Wiley, New JerseyCrossRefGoogle Scholar
  12. 12.
    Cardon LK, Ragaert KJ, Koster RP (2010) Design and fabrication of biocomposites. Woodhead Publishing, Biomedical Composites, pp 25–43Google Scholar
  13. 13.
    Hill CAS ( 2006) Chemical modification of wood (I): acetic anhydride modification 3.1. In: Cas H (ed) Wood modification: chemical, thermal and other processes. Wiley, New Jersey, pp 45–76Google Scholar
  14. 14.
    Li X, Panigrahi S, Tabil LG (2009) A study on flax fibre-reinforced polyethylene biocomposites. Appl Eng Agr 25:525–531CrossRefGoogle Scholar
  15. 15.
    Tripathy S, Mishra S, Nayak S (1999) Novel, low-cost jute-polyester composites. Part 1: processing, mechanical properties, and SEM analysis. Polym Compos 20(1):62–71Google Scholar
  16. 16.
    Li X, Tabil LG, Panigrahi S (2007) Chemical treatments of natural fibre for use in natural fibre-reinforced composites: a review. J Polym Env 15(1):25–33CrossRefGoogle Scholar
  17. 17.
    Panigrahy BS, Rana A, Chang P, Panigrahi S (2006) Overview of flax fibre reinforced thermoplastic composites. Can Biosyst Eng J 06–165:1–12Google Scholar
  18. 18.
    Belgacem MN, Gandini A (2004) The surface modification of cellulose fibres for use as reinforcing elements in composite materials. Compos Interfaces 12(1–2):41–75Google Scholar
  19. 19.
    Wang L, Duan Y, Zhang Y, Huang R, Dong Y, Huang C, Zhou B (2016) Surface modification of poly-(p-phenylene terephthalamide) pulp with a silane containing isocyanate group for silicone composites reinforcement 21(6):505–511Google Scholar
  20. 20.
    Shah BL, Selke SE, Walters MB, Heiden PA (2008) Effects of wood flour and chitosan on mechanical, chemical, and thermal properties of polylactide. Polym Compos 29(6):655–663CrossRefGoogle Scholar
  21. 21.
    Sun-M, Lai F-CY, Yeh Wang, Hsun-C, Chan, Hsiao-F, Shen (2003) Comparative study of maleated polyolefins as compatibilizers for polyethylene/wood flour composites. Appl Polym Sci 87:487–496CrossRefGoogle Scholar
  22. 22.
    Abdelmouleh M, Boufi S, Salah AB, Belgacem MN, Gandini A (2002) Interaction of silane coupling agents with cellulose. Langmuir 18:3203–3208CrossRefGoogle Scholar
  23. 23.
    Gomez JA (1989) Oligomeric titanates as coupling agents for fibre-reinforced composites. Doctoral Dissertations, University of Connecticut.
  24. 24.
    Vishnyakov LP, Moroz VP, Pisarenko VA, Samelyuk AV (2007) Composites with zirconium matrix reinforced with boron and silicon carbide fibres. Powder Metall Metal Ceram 46(1–2):38–42CrossRefGoogle Scholar
  25. 25.
    Oh JT, Hong JH, Ahn Y, Kim H (2012) Reliability improvement of hemp based bio-composite by surface modification. Fibres Polym 13(6):735–739CrossRefGoogle Scholar
  26. 26.
    Natrajan S, Moses JJ (2012) Surface modification of polyester fabric using polyvinyl alcohol in alkaline. Ind J Fibre Tex Res 37:287–291Google Scholar
  27. 27.
    Faruk Omar, Bledzki Andrzej K, Fink Hans-Peter, Sain Mohini (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37:1552–1596CrossRefGoogle Scholar
  28. 28.
    Lee BH, Kim HS, Lee S, Kim HJ, Dorgan JR (2009) Bio-composites of kenaf fibers in polylactide: role of improved interfacial adhesion in the carding process. Compos Sci Tech 69:2573–2579CrossRefGoogle Scholar
  29. 29.
    Pothan LA, Thomas S (2003) Polarity parameters and dynamic mechanical behavior of chemically modified banana fiber reinforced polyester composites. Compos Sci Tech 63:1231–1240CrossRefGoogle Scholar
  30. 30.
    Xie Y, Hill CAS, Xiao Z, Militz H, Mai C (2010) Silane coupling agents used for natural fiber/polymer composites: a review, compos: part A 41:806–819CrossRefGoogle Scholar
  31. 31.
    Dong S, Saphieha S, Schreiber HP (1992) Rheological properties of corona modified cellulose/ polyethylene composites. Polym Eng Sci 32(22):6CrossRefGoogle Scholar
  32. 32.
    Lee KY, Delille A, Bismarck A (2011) Greener surface treatments of natural fibres for the production of renewable composite materials cellulose fibres: Bio- and nano-polymer composites. In: Kalia S, Kaith BS, Kaur I (eds) Springer, Berlin Heidelberg, pp 155–178Google Scholar
  33. 33.
    Nguyen MH, Kim BS, Ha JR, Song JI (2011) Effect of plasma and NaOH treatment for rice husk/PP composites. Adv Compos Mater 20(5):435–442CrossRefGoogle Scholar
  34. 34.
    Yousif BF, Ku H (2012) Suitability of using coir fibre/polymeric composite for the design of liquid storage tanks. Mater Des 36:847–853CrossRefGoogle Scholar
  35. 35.
    chanakan A, Charoenvaisarocha, Jongjit H, Joseph K (2009) Materials and mechanical properties of pretreated coir-based green composites. Compos B 40:633–637Google Scholar
  36. 36.
    Athijayamani A, Thiruchitrambalam M, Natarajan U, Pazhanivel B (2009) Effect of moisture absorption on the mechanical properties of randomly oriented natural fibres/polyester hybrid composite. Mat Sci Eng A 517:344–353CrossRefGoogle Scholar
  37. 37.
    Siddiquee (2014) Investigation of an optimum method of biodegradation process for jute polymer composites. Am J Eng Res 3(1):200–206Google Scholar
  38. 38.
    Shinji O (2008) Shinji Ochi, Mechanical properties of kenaf fibres and kenaf/PLA composites. Mech Mat 40(4–5):446–452Google Scholar
  39. 39.
    Oksman K, Skrifvars M, Selin JF (2003) Natural fibres as reinforcement in polylactic acid (PLA) composites. Comp Sci Tech 63:1317–1324CrossRefGoogle Scholar
  40. 40.
    Petinakis E, Yu L, Simon G, Dean K (2013) Natural fibre bio-composites incorporating poly(lactic acid). In: Masuelli MA (ed) Fiber reinforced polymers—the technology applied for concrete repair, Web of Science, pp 41–59Google Scholar
  41. 41.
    Hu R, Lim JK (2007) Fabrication and mechanical properties of completely biodegradable hemp fibre reinforcd polylactic acid composites. J Compos Mat 41:1655–1669CrossRefGoogle Scholar
  42. 42.
    Singh S, Mohanty AK, Sugie T, Takai Y, Hamada H (2008) Renewable resource based biocomposites from natural fiber and polyhydroxybutyrate-co-valerate (PHBV) bioplastic. Comp Part A 39(5):875–886CrossRefGoogle Scholar
  43. 43.
    Singh S, Mohanty AK (2007) Wood fiber reinforced bacterial bioplastic composites: fabrication and performance evaluation. Comp Sci Tech 67:1753–1763CrossRefGoogle Scholar
  44. 44.
    Chen B, Evans JRG (2005) Thermoplastic starch–clay nanocomposites and their characteristics. Carbohydr Polym 61:455–463CrossRefGoogle Scholar
  45. 45.
    Carrado KA, Xu L, Seifert S, Csencsits R, Bloomquist CAA (2000) Polymer–clay nanocomposites derived from polymer-silicate gels. In: Pinnavaia TJ, Beall G (eds) Polymer–clay nanocomposites. Wiley, Chichester, pp 54–55Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of ChemistryRajdhani College, University of DelhiDelhiIndia

Personalised recommendations