Advertisement

Thermal Properties of Sustainable Thermoplastics Nanocomposites Containing Nanofillers and Its Recycling Perspective

  • Pooja Takkalkar
  • Sabzoi Nizamuddin
  • Gregory Griffin
  • Nhol KaoEmail author
Chapter

Abstract

Sustainable thermoplastic nanocomposites are of great importance because they possess the potential to resolve concerns on the emission of greenhouse gases, depletion of fossil fuels and pollution. The thermal characteristics of polymers and nanocomposites play a significant role in determining the suitable application of these materials. This review provides an overview of the thermal properties of sustainable thermoplastic nanocomposites incorporated with various nanofillers. Thermogravimetric/differential thermogravimetric analysis, DSC and thermal conductivity of various thermoplastic nanocomposites have been elaborated in detail. Further, the recycling perspectives of various polymers have been discussed. The thermal properties are essential characteristics to understand the behaviour of the raw material and final product. The performance and properties of the nanocomposite are greatly dependent on the polymer matrix, polymer dispersion in composite, properties and aspect ratio of fiber, the interface of fiber and matrix, and process parameters.

Keywords

Sustainable thermoplastic Nanofillers Nanocomposite Recycling 

References

  1. 1.
    Hajilary N, Shahi A, Rezakazemi M (2018) Evaluation of socio-economic factors on CO2 emissions in Iran: factorial design and multivariable methods. J Clean Prod 189:108–115CrossRefGoogle Scholar
  2. 2.
    Ghanbarzadeh B, Almasi H (2013) Biodegradable Polymers. In: Biodegradation—Life of ScienceGoogle Scholar
  3. 3.
    Madhavan KN, Nair NR, John RP (2010) An overview of the recent developments in polylactide (PLA) research. Bioresour Technol 101(22): p. 8493–501Google Scholar
  4. 4.
    Rezakazemi M, Zhang, Z (2018) 2.29 Desulfurization materials. In: a2–Dincer I (ed) Comprehensive energy systems. Elsevier, Oxford. p. 944–979Google Scholar
  5. 5.
    Pawelec Z, Bakar M (2013) Shaping mechanical and thermal properties of polymer nanocomposites. Problemy EksploatacjiGoogle Scholar
  6. 6.
    Rezakazemi M et al (2011) Simulation and determination of optimum conditions of pervaporative dehydration of isopropanol process using synthesized PVA–APTEOS/TEOS nanocomposite membranes by means of expert systems. J Membr Sci 379(1–2):224–232CrossRefGoogle Scholar
  7. 7.
    Rezakazemi M et al (2011) CFD simulation of water removal from water/ethylene glycol mixtures by pervaporation. Chem Eng J 168(1):60–67CrossRefGoogle Scholar
  8. 8.
    Bari SS, Chatterjee A, Mishra S (2016) Biodegradable polymer nanocomposites: an overview. Polym Rev 56(2):287–328CrossRefGoogle Scholar
  9. 9.
    Rezakazemi M, Vatani A, Mohammadi T (2015) Synergistic interactions between POSS and fumed silica and their effect on the properties of crosslinked PDMS nanocomposite membranes. RSC Advances 5(100):82460–82470CrossRefGoogle Scholar
  10. 10.
    Rezakazemi M, Vatani A, Mohammadi T (2016) Synthesis and gas transport properties of crosslinked poly(dimethylsiloxane) nanocomposite membranes using octatrimethylsiloxy POSS nanoparticles. J Nat Gas Sci Eng 30:10–18CrossRefGoogle Scholar
  11. 11.
    Mittal V, Mittal V (2011) Nanocomposites with biodegradable polymers: synthesis, properties, and future perspectives. In: Mittal V Mittal V.e. (eds) Oxford, New York Oxford, Oxford University PressGoogle Scholar
  12. 12.
    Raquez J-M et al (2013) Polylactide (PLA)-based nanocomposites. Prog Polym Sci 38(10–11):1504–1542CrossRefGoogle Scholar
  13. 13.
    Saheb DN, Jog JP (1999) Natural fiber polymer composites: a review. Adv Polym Technol 18(4):351–363CrossRefGoogle Scholar
  14. 14.
    Rezakazemi M, Shahidi K, Mohammadi T (2014) Synthetic PDMS composite membranes for pervaporation dehydration of ethanol. Desalin Water Treat 54(6):1–8CrossRefGoogle Scholar
  15. 15.
    Takase S, Shiraishi N (1989) Studies on composites from wood and polypropylenes II. J Appl Polym Sci 37(3):645–659CrossRefGoogle Scholar
  16. 16.
    Tibbetts GG et al (2007) A review of the fabrication and properties of vapor-grown carbon nanofiber/polymer composites. Compos Sci Technol 67(7–8):1709–1718CrossRefGoogle Scholar
  17. 17.
    Tibbetts GG, McHugh JJ (1999) Mechanical properties of vapor-grown carbon fiber composites with thermoplastic matrices. J Mater Res 14(7):2871–2880CrossRefGoogle Scholar
  18. 18.
    Sodeifian G et al (2018) Polyurethane-SAPO-34 mixed matrix membrane for CO2/CH4 and CO2/N2 separation. Chin J Chem EngGoogle Scholar
  19. 19.
    Rezakazemi M et al (2017) Methods for the preparation of organic–inorganic nanocomposite polymer electrolyte membranes for fuel cells. In: Inamuddin D, Mohammad A, Asiri AM (eds) Organic-inorganic composite polymer electrolyte membranes. Springer, Cham. p. 311–325Google Scholar
  20. 20.
    Rezakazemi M et al (2014) State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): an overview on current status and future directions. Prog Polym Sci 39(5):817–861CrossRefGoogle Scholar
  21. 21.
    Baheri B et al (2014) Performance of PVA/NaA mixed matrix membrane for removal of water from ethylene glycol solutions by pervaporation. Chem Eng Commun 202(3):316–321CrossRefGoogle Scholar
  22. 22.
    Shahverdi M et al (2013) Pervaporation study of ethylene glycol dehydration through synthesized (PVA-4A)/polypropylene mixed matrix composite membranes. Polym Eng Sci 53(7):1487–1493CrossRefGoogle Scholar
  23. 23.
    Rostamizadeh M et al (2013) Gas permeation through H2-selective mixed matrix membranes: experimental and neural network modeling. Int J Hydrogen Energy 38(2):1128–1135CrossRefGoogle Scholar
  24. 24.
    Rezakazemi M, Mohammadi T (2013) Gas sorption in H2-selective mixed matrix membranes: experimental and neural network modeling. Int J Hydrogen Energy 38(32):14035–14041CrossRefGoogle Scholar
  25. 25.
    Rezakazemi M, Shahidi K, Mohammadi T (2012) Sorption properties of hydrogen-selective PDMS/zeolite 4A mixed matrix membrane. Int J Hydrogen Energy 37(22):17275–17284CrossRefGoogle Scholar
  26. 26.
    Rezakazemi M, Shahidi K, Mohammadi T (2012) Hydrogen separation and purification using crosslinkable PDMS/zeolite a nanoparticles mixed matrix membranes. Int J Hydrogen Energy 37(19):14576–14589CrossRefGoogle Scholar
  27. 27.
    Dashti A, Harami HR, Rezakazemi M (2018) Accurate prediction of solubility of gases within H2-selective nanocomposite membranes using committee machine intelligent system. Int J Hydrogen Energy 43(13):6614–6624CrossRefGoogle Scholar
  28. 28.
    Rezakazemi M et al (2017) H 2 -selective mixed matrix membranes modeling using ANFIS, PSO-ANFIS, GA-ANFIS. Int J Hydrogen Energy 42(22):15211–15225CrossRefGoogle Scholar
  29. 29.
    Oksman K, Skrifvars M, Selin J-F (2003) Natural fibres as reinforcement in polylactic acid (PLA) composites. Compos Sci Technol 63(9):1317–1324CrossRefGoogle Scholar
  30. 30.
    Aji I et al (2011) Thermal property determination of hybridized kenaf/PALF reinforced HDPE composite by thermogravimetric analysis. J Therm Anal Calorim 109(2):893–900CrossRefGoogle Scholar
  31. 31.
    Frone AN et al (2013) Morphology and thermal properties of PLA–cellulose nanofibers composites. Carbohyd Polym 91(1):377–384CrossRefGoogle Scholar
  32. 32.
    Pei A, Zhou Q, Berglund LA (2010) Functionalized cellulose nanocrystals as biobased nucleation agents in poly(l-lactide) (PLLA)—crystallization and mechanical property effects. Compos Sci Technol 70(5):815–821CrossRefGoogle Scholar
  33. 33.
    Takkalkar P et al (2018) Preparation of square-shaped starch nanocrystals/polylactic acid based bio-nanocomposites: morphological, structural, thermal and rheological properties. In: Waste and biomass valorizationGoogle Scholar
  34. 34.
    Mukherjee T et al (2013) Improved dispersion of cellulose microcrystals in polylactic acid (PLA) based composites applying surface acetylation. Chem Eng Sci 101:655–662CrossRefGoogle Scholar
  35. 35.
    Narimissa E et al (2012) Morphological, mechanical, and thermal characterization of biopolymer composites based on polylactide and nanographite platelets. Polym Compos 33(9):1505–1515CrossRefGoogle Scholar
  36. 36.
    Narimissa E et al (2012) Influence of nano-graphite platelet concentration on onset of crystalline degradation in polylactide composites. Polym Degrad Stab 97(5):829–832CrossRefGoogle Scholar
  37. 37.
    Kaushik A, Singh M, Verma G (2010) Green nanocomposites based on thermoplastic starch and steam exploded cellulose nanofibrils from wheat straw. Carbohyd Polym 82(2):337–345CrossRefGoogle Scholar
  38. 38.
    Cao X et al (2008) Starch-based nanocomposites reinforced with flax cellulose nanocrystals. Express Polym Lett 2(7):502–510CrossRefGoogle Scholar
  39. 39.
    Goffin A-L et al (2011) Poly (ɛ-caprolactone) based nanocomposites reinforced by surface-grafted cellulose nanowhiskers via extrusion processing: morphology, rheology, and thermo-mechanical properties. Polymer 52(7):1532–1538CrossRefGoogle Scholar
  40. 40.
    Lepoittevin B et al (2002) Poly (ε-caprolactone)/clay nanocomposites prepared by melt intercalation: mechanical, thermal and rheological properties. Polymer 43(14):4017–4023CrossRefGoogle Scholar
  41. 41.
    Stoeffler K et al (2013) Polyamide 12 (PA12)/clay nanocomposites fabricated by conventional extrusion and water-assisted extrusion processes. J Appl Polym Sci 130(3):1959–1974CrossRefGoogle Scholar
  42. 42.
    Gupta B, Lacrampe M-F, Krawczak P (2006) Polyamide-6/clay nanocomposites: a critical review. Polym Polym Compos 14(1):13–38Google Scholar
  43. 43.
    Morgan AB et al (2002) Flammability of polystyrene layered silicate (clay) nanocomposites: carbonaceous char formation. Fire Mater 26(6):247–253CrossRefGoogle Scholar
  44. 44.
    Song P et al (2011) Fabrication of exfoliated graphene-based polypropylene nanocomposites with enhanced mechanical and thermal properties. Polymer 52(18):4001–4010CrossRefGoogle Scholar
  45. 45.
    Wakabayashi K et al (2008) Polymer - Graphite Nanocomposites: Effective Dispersion and Major Property Enhancement via Solid-State Shear Pulverization. Macromolecules 41(6):1905–1908CrossRefGoogle Scholar
  46. 46.
    Wakabayashi K et al (2010) Polypropylene-graphite nanocomposites made by solid-state shear pulverization: effects of significantly exfoliated, unmodified graphite content on physical, mechanical and electrical properties. Polymer 51(23):5525–5531CrossRefGoogle Scholar
  47. 47.
    Miltner HE et al (2008) Isotactic polypropylene/carbon nanotube composites prepared by latex technology. Thermal analysis of carbon nanotube-induced nucleation. Macromolecules. 41(15): p. 5753–5762Google Scholar
  48. 48.
    El Achaby M et al (2012) Mechanical, thermal, and rheological properties of graphene-based polypropylene nanocomposites prepared by melt mixing. Polym Compos 33(5):733–744CrossRefGoogle Scholar
  49. 49.
    Agustin MB et al (2014) Bioplastic based on starch and cellulose nanocrystals from rice straw. J Reinf Plast Compos 33(24):2205–2213CrossRefGoogle Scholar
  50. 50.
    Wang S et al (2002) Preparation and thermal properties of ABS/montmorillonite nanocomposite. Polym Degrad Stab 77(3):423–426CrossRefGoogle Scholar
  51. 51.
    Alemdar A, Sain M (2008) Biocomposites from wheat straw nanofibers: morphology, thermal and mechanical properties. Compos Sci Technol 68(2):557–565CrossRefGoogle Scholar
  52. 52.
    Averous L, Boquillon N (2004) Biocomposites based on plasticized starch: thermal and mechanical behaviours. Carbohyd Polym 56(2):111–122CrossRefGoogle Scholar
  53. 53.
    Yuan S et al (2016) Highly enhanced thermal conductivity of thermoplastic nanocomposites with a low mass fraction of MWCNTs by a facilitated latex approach. Compos A Appl Sci Manuf 90:699–710CrossRefGoogle Scholar
  54. 54.
    Weng Z et al (2016) Mechanical and thermal properties of ABS/montmorillonite nanocomposites for fused deposition modeling 3D printing. Mater Des 102:276–283CrossRefGoogle Scholar
  55. 55.
    Bera M, Maji PK (2017) Effect of structural disparity of graphene-based materials on thermo-mechanical and surface properties of thermoplastic polyurethane nanocomposites. Polymer 119:118–133CrossRefGoogle Scholar
  56. 56.
    Thakur S, Karak N (2015) A tough, smart elastomeric bio-based hyperbranched polyurethane nanocomposite. New J Chem 39(3):2146–2154CrossRefGoogle Scholar
  57. 57.
    Zhang J, Zhang C, Madbouly, SA (2015) In situ polymerization of bio‐based thermosetting polyurethane/graphene oxide nanocomposites. J Appl Polym Sci 132(13)Google Scholar
  58. 58.
    Arrieta MP et al (2014) Multifunctional PLA–PHB/cellulose nanocrystal films: processing, structural and thermal properties. Carbohyd Polym 107:16–24CrossRefGoogle Scholar
  59. 59.
    Yu J et al (2008) Structure and mechanical properties of poly(lactic acid) filled with (starch nanocrystal)- graft -poly(ε -caprolactone). Macromol Mater Eng 293(9):763–770CrossRefGoogle Scholar
  60. 60.
    Fortunati E et al (2015) Processing of PLA nanocomposites with cellulose nanocrystals extracted from Posidonia oceanica waste: innovative reuse of coastal plant. Ind Crops Prod 67:439–447CrossRefGoogle Scholar
  61. 61.
    Sadasivuni KK et al (2014) Dielectric properties of modified graphene oxide filled polyurethane nanocomposites and its correlation with rheology. Compos Sci Technol 104:18–25CrossRefGoogle Scholar
  62. 62.
    Gabr MH et al (2015) Mechanical and thermal properties of carbon fiber/polypropylene composite filled with nano-clay. Compos B Eng 69:94–100CrossRefGoogle Scholar
  63. 63.
    Mingliang G, Demin J (2009) Preparation and properties of polypropylene/clay nanocomposites using an organoclay modified through solid state method. J Reinf Plast Compos 28(1):5–16CrossRefGoogle Scholar
  64. 64.
    Robles E et al (2015) Surface-modified nano-cellulose as reinforcement in poly(lactic acid) to conform new composites. Ind Crops Prod 71:44–53CrossRefGoogle Scholar
  65. 65.
    Gulotty R et al (2013) Effects of functionalization on thermal properties of single-wall and multi-wall carbon nanotube–polymer nanocomposites. ACS Nano 7(6):5114–5121CrossRefGoogle Scholar
  66. 66.
    Kim P et al (2001) Thermal transport measurements of individual multiwalled nanotubes. Phys Rev Lett 87(21):215502CrossRefGoogle Scholar
  67. 67.
    Nan C-W, Shi Z, Lin Y (2003) A simple model for thermal conductivity of carbon nanotube-based composites. Chem Phys Lett 375(5–6):666–669CrossRefGoogle Scholar
  68. 68.
    Prasher RS et al (2009) Turning carbon nanotubes from exceptional heat conductors into insulators. Phys Rev Lett 102(10):105901CrossRefGoogle Scholar
  69. 69.
    Patton R et al (1999) Vapor grown carbon fiber composites with epoxy and poly (phenylene sulfide) matrices. Compos A Appl Sci Manuf 30(9):1081–1091CrossRefGoogle Scholar
  70. 70.
    Lafdi K, Matzek M (2003) Carbon nanofibers as a nano-reinforcement for polymeric nanocomposites. In: SAMPE Conference Preceding Materials and ProcessingGoogle Scholar
  71. 71.
    Ivan K et al (2016) Temperature dependence of thermal properties of thermoplastic polyurethane-based carbon nanocomposites. In: AIP Conference Proceedings. AIP PublishingGoogle Scholar
  72. 72.
    Raiisi‐Nia MR, Aref‐Azar A, Fasihi M (2013) Acrylonitrile–butadiene rubber functionalization for the toughening modification of recycled poly (ethylene terephthalate). J Appl Polym Sci 131(13)Google Scholar
  73. 73.
    Zhang Y, Broekhuis AA, Picchioni F (2009) Thermally self-healing polymeric materials: the next step to recycling thermoset polymers? Macromolecules 42(6):1906–1912CrossRefGoogle Scholar
  74. 74.
    Hu X, Calo J (2006) Plastic particle separation via liquid-fluidized bed classification. AIChE J 52(4):1333–1342CrossRefGoogle Scholar
  75. 75.
    Kameda T et al (2010) Chemical modification of rigid poly (vinyl chloride) by the substitution with nucleophiles. J Appl Polym Sci 116(1):36–44CrossRefGoogle Scholar
  76. 76.
    Zare Y, Garmabi H (2012) Nonisothermal crystallization and melting behavior of PP/nanoclay/CaCO3 ternary nanocomposite. J Appl Polym Sci 124(2):1225–1233CrossRefGoogle Scholar
  77. 77.
    Zare Y et al (2014) An analysis of interfacial adhesion in nanocomposites from recycled polymers. Comput Mater Sci 81:612–616CrossRefGoogle Scholar
  78. 78.
    Herrera-Sandoval G et al (2013) Novel EPS/TiO2 nanocomposite prepared from recycled polystyrene. Mater Sci Appl 4(03):179Google Scholar
  79. 79.
    Orden MU et al (2014) Clay‐induced degradation during the melt reprocessing of waste polycarbonate. J Appl Polym Sci 131(5)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Pooja Takkalkar
    • 1
  • Sabzoi Nizamuddin
    • 1
  • Gregory Griffin
    • 1
  • Nhol Kao
    • 1
    Email author
  1. 1.School of Engineering, RMIT UniversityMelbourneAustralia

Personalised recommendations