Advertisement

Organic/Silica Nanocomposite Membranes Applicable to Green Chemistry

  • Mashallah RezakazemiEmail author
  • Amir Dashti
  • Nasibeh Hajilary
  • Saeed Shirazian
Chapter

Abstract

Generally, organic/inorganic nanocomposites consist of organic polymers incorporated with inorganic fillers in nanoscale. They integrate the benefits of the inorganic materials (e.g. thermal and chemical stability, stiffness) and the organic polymers (e.g., dielectric, flexibility, processability, and ductility). Recently, polymer-Si nanocomposites have received considerable attention and have been applied in many different applications. Proton-exchange membrane fuel cells (PEMFCs) have appeared as an environmentally friendly device to meet the energy demands of the recent years. Nafion® is a commonly recognized and commercialized membrane which offers exceptional electrochemical attributes below 80 °C, and under extremely humidified environments. Nevertheless, a reduction in the proton conductivity of Nafion® over 80 °C and decreased humidity, as well as expensive membrane price, has motivated the progress of novel membranes. The incorporation of fillers, particularly nano-sized Si particulates, to the polymeric matrix was employed to partially resolve the problems. Thus, this account will provide a broad summary of the methods and techniques employed for the nanocomposites preparation as well as a short explanation about their properties, characterizations, and applications. In-depth explanations of particular subjects can be found in related references.

Keywords

Silica Nanocomposite Membrane Functionalization Fuel cell 

References

  1. 1.
    Rezakazemi M, Shahidi K, Mohammadi T (2012) Hydrogen separation and purification using crosslinkable PDMS/zeolite A nanoparticles mixed matrix membranes. Int J Hydrogen Energy 37:14576–14589CrossRefGoogle Scholar
  2. 2.
    Rezakazemi M, Sadrzadeh M, Mohammadi T, Matsuura T (2017) Methods for the preparation of organic–inorganic nanocomposite polymer electrolyte membranes for fuel cells. In: Inamuddin D, Mohammad A, Asiri AM (eds) Organic-inorganic composite polymer electrolyte membranes: preparation, properties, and fuel cell applications. Springer International Publishing, Cham, pp 311–325CrossRefGoogle Scholar
  3. 3.
    Baheri B, Shahverdi M, Rezakazemi M, Motaee E, Mohammadi T (2015) Performance of PVA/NaA mixed matrix membrane for removal of water from ethylene glycol solutions by pervaporation. Chem Eng Commun 202:316–321CrossRefGoogle Scholar
  4. 4.
    Shahverdi M, Baheri B, Rezakazemi M, Motaee E, Mohammadi T (2013) Pervaporation study of ethylene glycol dehydration through synthesized (PVA–4A)/polypropylene mixed matrix composite membranes. Polym Eng Sci 53:1487–1493CrossRefGoogle Scholar
  5. 5.
    Rezakazemi M, Ebadi Amooghin A, Montazer-Rahmati MM, Ismail AF, Matsuura T (2014) State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): an overview on current status and future directions. Prog Polym Sci 39 817–861CrossRefGoogle Scholar
  6. 6.
    Rostamizadeh M, Rezakazemi M, Shahidi K, Mohammadi T (2013) Gas permeation through H2-selective mixed matrix membranes: Experimental and neural network modeling. Int J Hydrogen Energy 38:1128–1135CrossRefGoogle Scholar
  7. 7.
    Rezakazemi M, Mohammadi T (2013) Gas sorption in H2-selective mixed matrix membranes: Experimental and neural network modeling. Int J Hydrogen Energy 38:14035–14041CrossRefGoogle Scholar
  8. 8.
    Rezakazemi M, Dashti A, Asghari M, Shirazian S (2017) H2-selective mixed matrix membranes modeling using ANFIS, PSO-ANFIS, GA-ANFIS. Int J Hydrogen Energy 42:15211–15225CrossRefGoogle Scholar
  9. 9.
    Rezakazemi M, Shahidi K, Mohammadi T (2012) Sorption properties of hydrogen-selective PDMS/zeolite 4A mixed matrix membrane. Int J Hydrogen Energy 37:17275–17284CrossRefGoogle Scholar
  10. 10.
    Rezakazemi M, Vatani A, Mohammadi T (2015) Synergistic interactions between POSS and fumed silica and their effect on the properties of crosslinked PDMS nanocomposite membranes. RSC Adv 5:82460–82470CrossRefGoogle Scholar
  11. 11.
    Rezakazemi M, Vatani A, Mohammadi T (2016) Synthesis and gas transport properties of crosslinked poly(dimethylsiloxane) nanocomposite membranes using octatrimethylsiloxy POSS nanoparticles. J Nat Gas Sci Eng 30:10–18CrossRefGoogle Scholar
  12. 12.
    Zou H, Wu S, Shen J (2008) Polymer/silica nanocomposites: preparation, characterization, properties, and applications. Chem Rev 108:3893–3957CrossRefGoogle Scholar
  13. 13.
    Rezakazemi M, Maghami M, Mohammadi T (2018) High loaded synthetic hazardous wastewater treatment using lab-scale submerged ceramic membrane bioreactor. Periodica Polytech, Chem Eng 62:299–304CrossRefGoogle Scholar
  14. 14.
    Schadler LS, Kumar SK, Benicewicz BC, Lewis SL, Harton SE (2007) Designed interfaces in polymer nanocomposites: a fundamental viewpoint. MRS Bull 32:335–340CrossRefGoogle Scholar
  15. 15.
    Rezakazemi M, Shahverdi M, Shirazian S, Mohammadi T, Pak A (2011) CFD simulation of water removal from water/ethylene glycol mixtures by pervaporation. Chem Eng J 168:60–67CrossRefGoogle Scholar
  16. 16.
    Rezakazemi M, Sadrzadeh M, Matsuura T (2018) Thermally stable polymers for advanced high-performance gas separation membranes. Prog Energy Combust Sci 66:1–41CrossRefGoogle Scholar
  17. 17.
    Mura F, Silva R, Pozio A (2007) Study on the conductivity of recast Nafion®/montmorillonite and Nafion®/TiO 2 composite membranes. Electrochim Acta 52:5824–5828CrossRefGoogle Scholar
  18. 18.
    Park KT, Jung UH, Choi DW, Chun K, Lee HM, Kim SH (2008) ZrO 2–SiO 2/Nafion® composite membrane for polymer electrolyte membrane fuel cells operation at high temperature and low humidity. J Power Sources 177:247–253CrossRefGoogle Scholar
  19. 19.
    Aparicio M, Mosa J, Etienne M, Durán A (2005) Proton-conducting methacrylate–silica sol–gel membranes containing tungstophosphoric acid. J Power Sources 145:231–236CrossRefGoogle Scholar
  20. 20.
    Di Vona M, Sgreccia E, Donnadio A, Casciola M, Chailan J, Auer G, Knauth P (2011) Composite polymer electrolytes of sulfonated poly-ether-ether-ketone (SPEEK) with organically functionalized TiO 2. J Membr Sci 369:536–544CrossRefGoogle Scholar
  21. 21.
    Zhengbang W, Tang H, Mu P (2011) Self-assembly of durable Nafion/TiO 2 nanowire electrolyte membranes for elevated-temperature PEM fuel cells. J Membr Sci 369:250–257CrossRefGoogle Scholar
  22. 22.
    Rezakazemi M, Zhang Z (2018) 2.29 Desulfurization Materials A2—Dincer, Ibrahim. In: Comprehensive energy systems. Elsevier, Oxford, pp 944–979CrossRefGoogle Scholar
  23. 23.
    Hashemi F, Rowshanzamir S, Rezakazemi M (2012) CFD simulation of PEM fuel cell performance: Effect of straight and serpentine flow fields. Math Comput Model 55:1540–1557CrossRefGoogle Scholar
  24. 24.
    Cong H, Radosz M, Towler BF, Shen Y (2007) Polymer–inorganic nanocomposite membranes for gas separation. Sep Purif Technol 55:281–291CrossRefGoogle Scholar
  25. 25.
    Ajayan PM, Schadler LS, Braun PV (2006) Nanocomposite science and technology. WileyGoogle Scholar
  26. 26.
    Xing D, He G, Hou Z, Ming P, Song S (2011) Preparation and characterization of a modified montmorillonite/sulfonated polyphenylether sulfone/PTFE composite membrane. Int J Hydrogen Energy 36:2177–2183CrossRefGoogle Scholar
  27. 27.
    Cho Y-H, Kim S-K, Kim T-H, Cho Y-H, Lim JW, Jung N, Yoon W-S, Lee J-C, Sung Y-E (2011) Preparation of MEA with the polybenzimidazole membrane for high temperature PEM fuel cell. Electrochem Solid-State Lett 14:B38–B40CrossRefGoogle Scholar
  28. 28.
    Tago T, Kuwashiro N, Nishide H (2007) Preparation of acid-functionalized poly (phenylene oxide) s and poly (phenylene sulfone) and their proton conductivity. Bulletin of the Chem Soc Jpn 80:1429–1434CrossRefGoogle Scholar
  29. 29.
    Sodeifian G, Raji M, Asghari M, Rezakazemi M, Dashti A (2018) Polyurethane-SAPO-34 mixed matrix membrane for CO2/CH4 and CO2/N2 separation. Chin J Chem EngGoogle Scholar
  30. 30.
    Rezakazemi M, Razavi S, Mohammadi T, Nazari AG (2011) Simulation and determination of optimum conditions of pervaporative dehydration of isopropanol process using synthesized PVA–APTEOS/TEOS nanocomposite membranes by means of expert systems. J Membr Sci 379:224–232CrossRefGoogle Scholar
  31. 31.
    Gómez-Romero P, Sanchez C, Functional hybrid materials. Wiley (2006)Google Scholar
  32. 32.
    Zhang S, Xu T, Wu C (2006) Synthesis and characterizations of novel, positively charged hybrid membranes from poly (2, 6-dimethyl-1, 4-phenylene oxide). J Membr Sci 269:142–151CrossRefGoogle Scholar
  33. 33.
    Wu C, Xu T, Yang W (2005) Synthesis and characterizations of novel, positively charged poly (methyl acrylate)–SiO 2 nanocomposites. Eur Polymer J 41:1901–1908CrossRefGoogle Scholar
  34. 34.
    Saito R, Kobayashi S-I, Hayashi H, Shimo T (2007) Surface hardness and transparency of poly(methyl methacrylate)-silica coat film derived from perhydropolysilazane. J Appl Polym Sci 104:3388–3395CrossRefGoogle Scholar
  35. 35.
    Shen L, Du Q, Wang H, Zhong W, Yang Y (2004) In situ polymerization and characterization of polyamide-6/silica nanocomposites derived from water glass. Polym Int 53:1153–1160CrossRefGoogle Scholar
  36. 36.
    Ding X, Jiang Y, Yu K, Hari B, Tao N, Zhao J, Wang Z (2004) Silicon dioxide as coating on polystyrene nanoparticles in situ emulsion polymerization. Mater Lett 58:1722–1725CrossRefGoogle Scholar
  37. 37.
    Laugel N, Hemmerlé J, Porcel C, Voegel J-C, Schaaf P, Ball V (2007) Nanocomposite silica/polyamine films prepared by a reactive layer-by-layer deposition. Langmuir 23:3706–3711CrossRefGoogle Scholar
  38. 38.
    Grund S, Kempe P, Baumann G, Seifert A, Spange S (2007) Nanocomposites prepared by twin polymerization of a single-source monomer. Angew Chem Int Ed 46:628–632CrossRefGoogle Scholar
  39. 39.
    Suffner J, Schechner G, Sieger H, Hahn H (2007) In-situ coating of silica nanoparticles with acrylate-based polymers. Chem Vap Deposition 13:459–464CrossRefGoogle Scholar
  40. 40.
    Senkevich JJ, Desu SB (1999) Near-room-temperature thermal chemical vapor deposition of poly(chloro-p-xylylene)/SiO2 nanocomposites. Chem Mater 11:1814–1821CrossRefGoogle Scholar
  41. 41.
    Mishra AK, Chattopadhyay S, Rajamohanan P, Nando GB (2011) Effect of tethering on the structure-property relationship of TPU-dual modified Laponite clay nanocomposites prepared by ex-situ and in-situ techniques. Polymer 52:1071–1083CrossRefGoogle Scholar
  42. 42.
    Seo W, Sung Y, Han S, Kim Y, Ryu O, Lee H, Kim WN (2006) Synthesis and properties of polyurethane/clay nanocomposite by clay modified with polymeric methane diisocyanate. J Appl Polym Sci 101:2879–2883CrossRefGoogle Scholar
  43. 43.
    Mishra AK, Rajamohanan P, Nando GB, Chattopadhyay S (2011) Structure–property of thermoplastic polyurethane–clay nanocomposite based on covalent and dual-modified Laponite. Adv Sci Lett 4:65–73CrossRefGoogle Scholar
  44. 44.
    Mishra A, Nando G, Chattopadhyay S (2008) Exploring preferential association of laponite and cloisite with soft and hard segments in TPU-clay nanocomposite prepared by solution mixing technique. J Polym Sci, Part B: Polym Phys 46:2341–2354CrossRefGoogle Scholar
  45. 45.
    Aparicio M, Durán A (2004) Hybrid organic/inorganic sol-gel materials for proton conducting membranes. J Sol-Gel Sci Technol 31:103–107CrossRefGoogle Scholar
  46. 46.
    Aparicio M, Castro Y, Duran A (2005) Synthesis and characterisation of proton conducting styrene-co-methacrylate–silica sol–gel membranes containing tungstophosphoric acid. Solid State Ionics 176:333–340CrossRefGoogle Scholar
  47. 47.
    Tillet G, Boutevin B, Ameduri B (2011) Chemical reactions of polymer crosslinking and post-crosslinking at room and medium temperature. Prog Polym Sci 36:191–217CrossRefGoogle Scholar
  48. 48.
    Lin B, Cheng S, Qiu L, Yan F, Shang S, Lu J (2010) Protic ionic liquid-based hybrid proton-conducting membranes for anhydrous proton exchange membrane application. Chem Mater 22:1807–1813CrossRefGoogle Scholar
  49. 49.
    Darbandi M, Thomann R, Nann T (2007) Hollow silica nanospheres: in situ, semi-in situ, and two-step synthesis. Chem Mater 19:1700–1703CrossRefGoogle Scholar
  50. 50.
    Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62–69CrossRefGoogle Scholar
  51. 51.
    Bronstein LM, HCD, Kim G (Ed) (2004) Dekker encyclopedia of nanoscience and nanotechnology. Taylor & Francis, New York, pp 1–10Google Scholar
  52. 52.
    Osseo-Asare K, Arriagada F (1990) Preparation of SiO2 nanoparticles in a non-ionic reverse micellar system. Colloids Surf 50:321–339CrossRefGoogle Scholar
  53. 53.
    Vassiliou AA, Papageorgiou GZ, Achilias DS, Bikiaris DN (2007) Non-Isothermal Crystallisation Kinetics of In Situ Prepared Poly (ε-caprolactone)/Surface-Treated SiO2 Nanocomposites. Macromol Chem Phys 208:364–376CrossRefGoogle Scholar
  54. 54.
    Jana SC, Jain S (2001) Dispersion of nanofillers in high performance polymers using reactive solvents as processing aids. Polymer 42:6897–6905CrossRefGoogle Scholar
  55. 55.
    Nalwa HS (2003) Handbook of organic-inorganic hybrid materials and nanocomposites. In: Zhang MQR, MZ, Friedrich K (Ed) American Scientific Publishers, California, pp 113–150Google Scholar
  56. 56.
    Blum FD (2004) Encyclopedia of polymer science and technology, concise. In: Kroschwitz JI (Ed) Wiley, pp 38–50Google Scholar
  57. 57.
    Gomes D, Buder I, Nunes SP (2006) Sulfonated silica-based electrolyte nanocomposite membranes. J Polym Sci, Part B: Polym Phys 44:2278–2298CrossRefGoogle Scholar
  58. 58.
    Wu T-M, Chu M-S (2005) Preparation and characterization of thermoplastic vulcanizate/silica nanocomposites. J Appl Polym Sci 98:2058–2063CrossRefGoogle Scholar
  59. 59.
    Ahn SH, Kim SH, Lee SG (2004) Surface-modified silica nanoparticle–reinforced poly(ethylene 2, 6-naphthalate). J Appl Polym Sci 94:812–818CrossRefGoogle Scholar
  60. 60.
    Lai YH, Kuo MC, Huang JC, Chen M (2007) On the PEEK composites reinforced by surface-modified nano-silica. Mater Sci Eng, A 458:158–169CrossRefGoogle Scholar
  61. 61.
    Rong MZ, Zhang MQ, Zheng YX, Zeng HM, Walter R, Friedrich K (2001) Structure–property relationships of irradiation grafted nano-inorganic particle filled polypropylene composites. Poly 42:167–183CrossRefGoogle Scholar
  62. 62.
    Rong MZ, Zhang MQ, Zheng YX, Zeng HM, Friedrich K (2001) Improvement of tensile properties of nano-SiO2/PP composites in relation to percolation mechanism. Polymer 42:3301–3304CrossRefGoogle Scholar
  63. 63.
    Wu CL, Zhang MQ, Rong MZ, Friedrich K (2002) Tensile performance improvement of low nanoparticles filled-polypropylene composites. Compos. Sci. Technol. 62:1327–1340CrossRefGoogle Scholar
  64. 64.
    Zhang MQ, Rong MZ, Zhang HB, Friedrich K (2003) Mechanical properties of low nano-silica filled high density polyethylene composites. Polym Eng Sci 43:490–500CrossRefGoogle Scholar
  65. 65.
    Wu CL, Zhang MQ, Rong MZ, Friedrich K (2005) Silica nanoparticles filled polypropylene: effects of particle surface treatment, matrix ductility and particle species on mechanical performance of the composites. Compos. Sci. Technol. 65:635–645CrossRefGoogle Scholar
  66. 66.
    Ruan WH, Huang XB, Wang XH, Rong MZ, Zhang MQ (2006) Effect of drawing induced dispersion of nano-silica on performance improvement of poly(propylene)-based nanocomposites. Macromol Rapid Commun 27:581–585CrossRefGoogle Scholar
  67. 67.
    Zhu Y, Li Z, Zhang D, Tanimoto T (2006) PET/SiO2 nanocomposites prepared by cryomilling. J Polym Sci, Part B: Polym Phys 44:1161–1167CrossRefGoogle Scholar
  68. 68.
    Zhu Y-G, Li Z-Q, Zhang D, Tanimoto T (2006) Thermal behaviors of poly(ethylene terephthalate)/SiO2 nanocomposites prepared by cryomilling. J Polym Sci, Part B: Polym Phys 44:1351–1356CrossRefGoogle Scholar
  69. 69.
    Petrovicova E, Knight R, Schadler L, Twardowski T (2000) Nylon 11/silica nanocomposite coatings applied by the HVOF process. II. Mechanical and barrier properties. J. Appl. Polym. Sci. 78:2272–2289CrossRefGoogle Scholar
  70. 70.
    Petrovicova E, Knight R, Schadler L, Twardowski T (2000) Nylon 11/silica nanocomposite coatings applied by the HVOF process. I. Microstructure and morphology. J. Appl. Polym. Sci. 77:1684–1699Google Scholar
  71. 71.
    Schadler LS, Laut KO, Smith RW, Petrovicova E (1997) Microstructure and mechanical properties of thermally sprayed silica/nylon nanocomposites. J Therm Spray Technol 6:475–485CrossRefGoogle Scholar
  72. 72.
    Jafari H, Emami S, Mahmoudi Y (2017) Numerical investigation of dual-stage high velocity oxy-fuel (HVOF) thermal spray process: a study on nozzle geometrical parameters. Appl Therm Eng 111:745–758CrossRefGoogle Scholar
  73. 73.
    Sinha Ray S, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog. Polym. Sci. 28:1539–1641CrossRefGoogle Scholar
  74. 74.
    Shang X-Y, Zhu Z-K, Yin J, Ma X-D (2002) Compatibility of soluble polyimide/silica hybrids induced by a coupling agent. Chem Mater 14:71–77CrossRefGoogle Scholar
  75. 75.
    Kashiwagi T, Morgan AB, Antonucci JM, VanLandingham MR, Harris RH, Awad WH, Shields JR (2003) Thermal and flammability properties of a silica–poly(methylmethacrylate) nanocomposite. J Appl Polym Sci 89:2072–2078CrossRefGoogle Scholar
  76. 76.
    Crosby AJ, Lee JY (2007) Polymer Nanocomposites: the “Nano” effect on mechanical properties. Polym Rev 47:217–229CrossRefGoogle Scholar
  77. 77.
    Mammeri F, Bourhis EL, Rozes L, Sanchez C (2005) Mechanical properties of hybrid organic-inorganic materials. J Mater Chem 15:3787–3811CrossRefGoogle Scholar
  78. 78.
    Lach R, Kim G-M, Michler GH, Grellmann W, Albrecht K (2006) Indentation fracture mechanics for toughness assessment of PMMA/SiO2 nanocomposites. Macromol Mater Eng 291:263–271CrossRefGoogle Scholar
  79. 79.
    Joseph J, Tseng C-Y, Hwang B-J (2011) Phosphonic acid-grafted mesostructured silica/Nafion hybrid membranes for fuel cell applications. J Power Sources 196:7363–7371CrossRefGoogle Scholar
  80. 80.
    Kumar GG, Kim A, Nahm KS, Elizabeth R (2009) Nafion membranes modified with silica sulfuric acid for the elevated temperature and lower humidity operation of PEMFC. IJHE 34:9788–9794Google Scholar
  81. 81.
    Choi Y, Kim Y, Kim HK, Lee JS (2010) Direct synthesis of sulfonated mesoporous silica as inorganic fillers of proton-conducting organic–inorganic composite membranes. J Membr Sci 357:199–205CrossRefGoogle Scholar
  82. 82.
    Choi J, Wycisk R, Zhang W, Pintauro PN, Lee KM, Mather PT (2010) High Conductivity Perfluorosulfonic Acid Nanofiber Composite Fuel-Cell Membranes. Chemsuschem 3:1245–1248CrossRefGoogle Scholar
  83. 83.
    Kim Y, Choi Y, Kim HK, Lee JS (2010) New sulfonic acid moiety grafted on montmorillonite as filler of organic–inorganic composite membrane for non-humidified proton-exchange membrane fuel cells. J Power Sources 195:4653–4659CrossRefGoogle Scholar
  84. 84.
    Bébin P, Caravanier M, Galiano H (2006) Nafion®/clay-SO 3 H membrane for proton exchange membrane fuel cell application. J Membr Sci 278:35–42CrossRefGoogle Scholar
  85. 85.
    Buquet CL, Fatyeyeva K, Poncin-Epaillard F, Schaetzel P, Dargent E, Langevin D, Nguyen QT, Marais S (2010) New hybrid membranes for fuel cells: plasma treated laponite based sulfonated polysulfone. J Membr Sci 351:1–10CrossRefGoogle Scholar
  86. 86.
    Choi J, Lee KM, Wycisk R, Pintauro PN, Mather PT (2010) Sulfonated polysulfone/POSS nanofiber composite membranes for PEM fuel cells. JElS 157:B914–B919Google Scholar
  87. 87.
    Zhang Y, Wang S, Xiao M, Bian S, Meng Y (2009) The silica-doped sulfonated poly (fluorenyl ether ketone) s membrane using hydroxypropyl methyl cellulose as dispersant for high temperature proton exchange membrane fuel cells. IJHE 34:4379–4386Google Scholar
  88. 88.
    Liu Y-L (2009) Preparation and properties of nanocomposite membranes of polybenzimidazole/sulfonated silica nanoparticles for proton exchange membranes. J Membr Sci 332:121–128CrossRefGoogle Scholar
  89. 89.
    Quartarone E, Magistris A, Mustarelli P, Grandi S, Carollo A, Zukowska G, Garbarczyk J, Nowinski J, Gerbaldi C, Bodoardo S (2009) Pyridine-based PBI composite membranes for PEMFCs. Fuel Cells 9:349–355CrossRefGoogle Scholar
  90. 90.
    Cui X, Zhong S, Wang H (2007) Organic–inorganic hybrid proton exchange membranes based on silicon-containing polyacrylate nanoparticles with phosphotungstic acid. J Power Sources 173:28–35CrossRefGoogle Scholar
  91. 91.
    Adjemian K, Lee S, Srinivasan S, Benziger J, Bocarsly A (2002) Silicon oxide nafion composite membranes for proton-exchange membrane fuel cell operation at 80–140 C. JElS 149:A256–A261Google Scholar
  92. 92.
    Pereira F, Vallé K, Belleville P, Morin A, Lambert S, Sanchez C (2008) Advanced mesostructured hybrid silica−nafion membranes for high-performance PEM fuel cell. Chem Mater 20:1710–1718CrossRefGoogle Scholar
  93. 93.
    Mulmi S, Park CH, Kim HK, Lee CH, Park HB, Lee YM (2009) Surfactant-assisted polymer electrolyte nanocomposite membranes for fuel cells. J Membr Sci 344:288–296CrossRefGoogle Scholar
  94. 94.
    Shao Z-G, Joghee P, Hsing I-M (2004) Preparation and characterization of hybrid Nafion–silica membrane doped with phosphotungstic acid for high temperature operation of proton exchange membrane fuel cells. J Membr Sci 229:43–51CrossRefGoogle Scholar
  95. 95.
    Chang J-H, Park JH, Park G-G, Kim C-S, Park OO (2003) Proton-conducting composite membranes derived from sulfonated hydrocarbon and inorganic materials. J Power Sources 124:18–25CrossRefGoogle Scholar
  96. 96.
    Wilhelm M, Jeske M, Marschall R, Cavalcanti WL, Tölle P, Köhler C, Koch D, Frauenheim T, Grathwohl G, Caro J (2008) New proton conducting hybrid membranes for HT-PEMFC systems based on polysiloxanes and SO 3 H-functionalized mesoporous Si-MCM-41 particles. J Membr Sci 316:164–175CrossRefGoogle Scholar
  97. 97.
    Kim YM, Choi SH, Lee HC, Hong MZ, Kim K, Lee H-I (2004) Organic–inorganic composite membranes as addition of SiO2 for high temperature-operation in polymer electrolyte membrane fuel cells (PEMFCs). Electrochim Acta 49:4787–4796CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mashallah Rezakazemi
    • 1
    Email author
  • Amir Dashti
    • 2
  • Nasibeh Hajilary
    • 3
  • Saeed Shirazian
    • 4
  1. 1.Faculty of Chemical and Materials EngineeringShahrood University of TechnologyShahroodIran
  2. 2.Department of Chemical EngineeringKashan UniversityKashanIran
  3. 3.Department of Chemical EngineeringGolestan UniversityGorganIran
  4. 4.Department of Chemical SciencesBernal Institute, University of LimerickLimerickIreland

Personalised recommendations