Rubber Clay Nanocomposites

  • Mariajose Cova Sanchez
  • Alejandro Bacigalupe
  • Mariano EscobarEmail author
  • Marcela Mansilla


The use of nanofillers allows the development of nanocomposites with improved properties and novel applications. The technological goal is possible due to the new compounding method that allows a particle dispersion in the nanometer scale increasing the specific surface area.

List of Abbreviations


Atomic force microscopy


(3—aminopropyl) triethoxysilane


Carbon black


Cation exchange capacity


Chlorobutyl rubber


Concentrated Natural Rubber Latex


o-xylylenebis (triphenylphosphoniumbromide)


Dynamic mechanical analysis


Differential scanning calorimetry


Derivative thermogravimetric analysis


Electron dispersive X-ray spectroscopy


Expanded graphite


Ethylene propylene diene rubber


Fresh Natural Rubber Latex


Fourier transform infrared




Hexadecyl trimethylammonium


Isobutylene isoprene rubber


Maximum torque




Acrylonitrile butadiene rubber




Natural rubber




Octadecyl trimethylammonium


Organomodified montmorillonite


Positron annhilation lifetime spectroscopy


Polyamide 6


per hundred of rubber


Olylactide acid


Small angle neutrón scattering


Small Angle X-Ray Scattering


Styrene Butadiene Rubber


Scanning electron microscopy



tan δ

Loss tangent


Cure time


Transmission electron microscopy


Glass transition temperature


Thermogravimetric analysis


Scorch time


Wide Angle X-Ray Scattering


Water content


X-ray diffraction



Authors wish to thank the financial support from the National Agency of Scientific and Technological Promotion (ANPCyT PICT-2015-0027) of the Minister of Science and Technology and Productive Innovation (MinCyT) of Argentina.


  1. 1.
    Chao CC, Lin GG, Tsai HC, Lee YL, Chang PH, Cheng WT, Hsiue GH (2015) Isobutylene-isoprene rubber/layered silicate nanocomposites prepared using latex method: direct casting versus melt mixing after coagulation. J Reinf Plast Compos 34(21):1791–1803Google Scholar
  2. 2.
    Conzatti L, Stagnaro P, Colucci G, Bongiovanni R, Priola A, Lostritto A, Galimberti M (2012) The clay mineral modifier as the key to steer the properties of rubber nanocomposites. Appl Clay Sci 61:14–21Google Scholar
  3. 3.
    Gui Y, Zheng J, Ye X, Han D, Xi M, Zhang L (2016) Preparation and performance of silica/SBR masterbatches with high silica loading by latex compounding method. Compos Part B Eng 85:130–139Google Scholar
  4. 4.
    Maiti M, Bhattacharya M, Bhowmick AK (2008) Elastomer Nanocomposites. Rubber Chem Technol 81(3):384–469Google Scholar
  5. 5.
    Osman AF, Abdul Hamid AR, Rakibuddin, M, Khung Weng G, Ananthakrishnan R, Ghani, SA, Mustafa Z (2017) Hybrid silicate nanofillers: impact on morphology and performance of EVA copolymer upon in vitro physiological fluid exposure. J Appl Polym Sci 134(12)Google Scholar
  6. 6.
    George SC, Rajan R, Aprem AS, Thomas S, Kim SS (2016) The fabrication and properties of natural rubber-clay nanocomposites. Polym Test 51:165–173Google Scholar
  7. 7.
    Pal K, Pal SK, Das CK, Kim JK (2010) Influence of fillers on NR/SBR/XNBR blends. Morphology and wear. Tribol Int 43(8):1542–1550Google Scholar
  8. 8.
    Rezende CA, Bragança FC, Doi TR, Lee LT, Galembeck F, Boué F (2010) Natural rubber-clay nanocomposites: mechanical and structural properties. Polym (Guildf) 51(16):3644–3652Google Scholar
  9. 9.
    Zhang Y, Liu Q, Zhang S, Zhang Y, Cheng H (2015) Gas barrier properties and mechanism of kaolin/styrene-butadiene rubber nanocomposites. Appl Clay Sci 111:37–43Google Scholar
  10. 10.
    Przybyłek M, Bakar M, Mendrycka M, Kosikowska U, Malm A, Worzakowska M, Szymborski T, Kędra-Królik K (2017) Rubber elastomeric nanocomposites with antimicrobial properties. Mater Sci Eng, C 76:269–277 Google Scholar
  11. 11.
    Choi SS (2002) Difference in bound rubber formation of silica and carbon black with styrene-butadiene rubber. Polym Adv Technol 13(6):466–474Google Scholar
  12. 12.
    Alex R (2010) Nanofillers in rubber-rubber blends. In: Thomas S, Stephen R (eds) Rubber nanocomposites: preparation, properties and applications. Wiley, Chichester, UK, pp 209–234Google Scholar
  13. 13.
    Hashim AS, Azahari B, Ikeda Y, Kohjiya S (1998) The effect of bis (3-triethoxysilylpropyl) tetrasulfide on silica reinforcement of styrene—butadiene rubber. Rubber Chem Technol 71(2):289–299Google Scholar
  14. 14.
    Gatos KG, Karger-Kocsis J (2010) Rubber/clay nanocomposites: preparation, properties and applications. In: Thomas S, Stephen R (eds) Rubber nanocomposites: preparation, properties and applications. Wiley, Chichester, UK, pp 169–190Google Scholar
  15. 15.
    ten Brinke JW, Debnath SC, Reuvekamp LAEM, Noordermeer JWM (2003) Mechanistic aspects of the role of coupling agents in silica-rubber composites. Compos Sci Technol 63(8):1165–1174Google Scholar
  16. 16.
    Rattanasom N, Saowapark T, Deeprasertkul C (2007) Reinforcement of natural rubber with silica/carbon black hybrid filler. Polym Test 26(3):369–377Google Scholar
  17. 17.
    Liu Q, Zhang Y, Xu H (2008) Properties of vulcanized rubber nanocomposites filled with nanokaolin and precipitated silica. Appl Clay Sci 42(1–2):232–237Google Scholar
  18. 18.
    Galimberti M, Agnelli S, Cipolletti, V (2016) Hybrid filler systems in rubber nanocomposites. Elsevier LtdGoogle Scholar
  19. 19.
    Siririttikrai N, Thanawan S, Suchiva K, Amornsakchai T (2017) Comparative study of natural rubber/clay nanocomposites prepared from fresh or concentrated latex. Polym Test 63:244–250Google Scholar
  20. 20.
    Usha Devi, KS, Ponnamma, D, Causin, V, Maria HJ, Thomas S (2015) Enhanced morphology and mechanical characteristics of clay/styrene butadiene rubber nanocomposites. Appl Clay Sci 114, 568–576Google Scholar
  21. 21.
    Nawani P, Burger C, Rong L, Hsiao BS, Tsou AH (2015) Structure and permeability relationships in polymer nanocomposites containing carbon black and organoclay. Polym (United Kingdom) 64:19–28Google Scholar
  22. 22.
    Botana A, Mollo M, Eisenberg P, Torres Sanchez RM (2010) Effect of modified montmorillonite on biodegradable PHB nanocomposites. Appl Clay Sci 47(3–4):263–270Google Scholar
  23. 23.
    Pavlidou S, Papaspyrides CD (2008) A review on polymer-layered silicate nanocomposites. Prog Polym Sci 33(12):1119–1198Google Scholar
  24. 24.
    Kievani MB, Edrak M (2015) Synthesis, characterization and assessment thermal properties of clay based nanopigments. Front Chem Sci Eng 9:40–45 Google Scholar
  25. 25.
    Galimberti M, Senatore S, Lostritto A, Giannini L, Conzatti L, Costa G, Guerra G (2009) Reinforcement of diene elastomers by organically modified layered silicates. E-Polymers 57:1–16Google Scholar
  26. 26.
    Marques FADM, Angelini R, Ruocco G, Ruzicka B (2017) Isotopic effect on the gel and glass formation of a charged colloidal clay: laponite. J Phys Chem B 121(17):4576–4582Google Scholar
  27. 27.
    Ambre A, Jagtap R, Dewangan B (2009) ABS nanocomposites containing modified clay. J Reinf Plast Compos 28(3):343–352Google Scholar
  28. 28.
    Bianchi AE, Fernández M, Pantanetti M, Viña R, Torriani I, Sánchez RMT, Punte G (2013) ODTMA + and HDTMA + organo-montmorillonites characterization: new insight by WAXS, SAXS and surface charge. Appl Clay Sci 83–84:280–285Google Scholar
  29. 29.
    Daitx TS, Carli LN, Crespo JS, Mauler RS (2015) Effects of the organic modification of different clay minerals and their application in biodegradable polymer nanocomposites of PHBV. Appl Clay Sci 115:157–164Google Scholar
  30. 30.
    Zhuang G, Gao J, Chen H, Zhang, Z (2018) A new one-step method for physical purification and organic modification of sepiolite. Appl. Clay Sci 153(November 2017), 1–8Google Scholar
  31. 31.
    Zhou F, Yan C, Zhang Y, Tan J, Wang H, Zhou S, Pu S (2016) Purification and defibering of a Chinese sepiolite. Appl Clay Sci 125, 119–126Google Scholar
  32. 32.
    Milošević M, Logar M, Kaluderović L, Jelić I (2017) Characterization of clays from Slatina (Ub, Serbia) for potential uses in the ceramic industry. Energy Proc 125:650–655Google Scholar
  33. 33.
    Gamoudi S, Srasra E (2017) Characterization of Tunisian clay suitable for pharmaceutical and cosmetic applications. Appl Clay Sci 146(May):162–166Google Scholar
  34. 34.
    Peyne J, Gharzouni A, Sobrados I, Rossignol S (2018) Identifying the differences between clays used in the brick industry by various methods: iron extraction and NMR spectroscopy. Appl Clay Sci (October 2017):0–1Google Scholar
  35. 35.
    Ezquerro CS, Ric GI, Miñana CC, Bermejo JS (2015) Characterization of montmorillonites modified with organic divalent phosphonium cations. Appl Clay Sci 111:1–9Google Scholar
  36. 36.
    Alves JL de T. V. e. Rosa P, Morales, AR (2017) Evaluation of organic modification of montmorillonite with ionic and nonionic surfactants. Appl Clay Sci 150(June):23–33Google Scholar
  37. 37.
    Hojiyev R, Ulcay Y, Çelik MS (2017) Development of a clay-polymer compatibility approach for nanocomposite applications. Appl Clay Sci 146(April):548–556Google Scholar
  38. 38.
    Sookyung U, Nakason C, Venneman N, Thaijaroend W (2016) Influence concentration of modifying agent on properties of natural rubber/organoclay nanocomposites. Polym Test 54:223–232Google Scholar
  39. 39.
    Soares BG, Ferreira SC, Livi S (2017) Modification of anionic and cationic clays by zwitterionic imidazolium ionic liquid and their effect on the epoxy-based nanocomposites. Appl Clay Sci 135:347–354Google Scholar
  40. 40.
    Verdejo R, Lopez-Manchado MA, Valentini L, Kenny JM (2010) Carbon nanotube reinforced rubber composites. In: Thomas S, Stephen R (eds) Rubber nanocomposites: preparation, properties and applications. Wiley, Chichester, UK, pp 147–162Google Scholar
  41. 41.
    Carli LN, Roncato CR, Zanchet A, Mauler RS, Giovanela M, Brandalise RN, Crespo JS (2011) Characterization of natural rubber nanocomposites filled with organoclay as a substitute for silica obtained by the conventional two-roll mill method. Appl Clay Sci 52(1–2):56–61Google Scholar
  42. 42.
    Praveen S, Chattopadhyay PK, Albert P, Dalvi VG, Chakraborty BC, Chattopadhyay S (2009) Synergistic effect of carbon black and nanoclay fillers in styrene butadiene rubber matrix: development of dual structure. Compos Part A Appl Sci Manuf 40(3):309–316Google Scholar
  43. 43.
    Sadek EM, El-Nashar DE, Ahmed SM (2015) Effect of organoclay reinforcement on the curing characteristics and technological properties of styrene-butadiene rubber. Polym Compos 36(7):1293–1302Google Scholar
  44. 44.
    Youssef HA, Abdel-Monem YK, Diab WW (2017) Effect of gamma irradiation on the properties of natural rubber latex and styrene-butadiene rubber latex nanocomposites. Polym Compos 38(2):E189–E198Google Scholar
  45. 45.
    Liu J, Li X, Xu L, Zhang P (2016) Investigation of aging behavior and mechanism of nitrile-butadiene rubber (NBR) in the accelerated thermal aging environment. Polym Test 54(2016):59–66Google Scholar
  46. 46.
    Xue X, Yin Q, Jia H, Zhang X, Wen Y, Ji Q, Xu Z (2017) Enhancing mechanical and thermal properties of styrene-butadiene rubber/carboxylated acrylonitrile butadiene rubber blend by the usage of graphene oxide with diverse oxidation degrees. Appl Surf Sci 423:584–591Google Scholar
  47. 47.
    Costa FR, Pradhan S, Wagenknecht U, Bhowmick AK, Heinrich G (2010) XNBR/LDH nanocomposites: effect of vulcanization and organic modifier on nanofiller dispersion and strain-induced crystallization. J Polym Sci, Part B: Polym Phys 48(22):2302–2311Google Scholar
  48. 48.
    de Sousa F, Mantovani G, Scuracchio C (2011) Mechanical properties and morphology of NBR with different clays. Polym Testing 30:819–825Google Scholar
  49. 49.
    Yu Y, Gu Z, Song G, Li P, Li H, Liu W (2011) Structure and properties of organo-montmorillonite/nitrile butadiene rubber nanocomposites prepared from latex dispersions. Appl Clay Sci 52(4):381–385Google Scholar
  50. 50.
    Ma Y, Li Q-F, Zhang L-Q, Wu Y-P (2006) Role of stearic acid in preparing EPDM/clay nanocomposites by melt compounding. Polym J 39(1):48–54Google Scholar
  51. 51.
    Usuki A, Tukigase A, Kato M (2002) Preparation and properties of EPDM-clay hybrids. J Appl Polym Sci 43:2185–2189Google Scholar
  52. 52.
    Zheng H, Zhang Y, Peng Z, Zhang Y (2004) Influence of clay modification on the structure and mechanical properties of EPDM/montmorillonite nanocomposites. Polym Test 23(2):217–223Google Scholar
  53. 53.
    Chang YW, Yang Y, Ryu S, Nah C (2002) Preparation and properties of EPDM/organomontmorillonite hybrid nanocomposites. Polym Int 51(4):319–324Google Scholar
  54. 54.
    Zhang F, Zhao Q, Liu T, Lei Y, Chen C (2018) Preparation and relaxation dynamics of ethylene–propylene–diene rubber/clay nanocomposites with crosslinking interfacial design. J Appl Polym Sci 135(1):1–8Google Scholar
  55. 55.
    Mansilla MA, Valentín JL, López-Manchado MA, González-Jiménez A, Marzocca AJ (2016) Effect of entanglements in the microstructure of cured NR/SBR blends prepared by solution and mixing in a two-roll mill. Eur Polym J 81:365–375Google Scholar
  56. 56.
    Hess WM, Herd CR, Vegvari PC (1993) Characterization of immiscible elastomer blends. 330–372Google Scholar
  57. 57.
    Groves S (1998) Crosslink density distributions in NR/BR blends: effect of cure temperature and time. Rubber Chem Technol 44:958–965Google Scholar
  58. 58.
    Maroufkhani M, Katbab AA, Zhang J (2018) Manipulation of the properties of PLA nanocomposites by controlling the distribution of nanoclay via varying the acrylonitrile content in NBR rubber. Polym Test 65:313–321Google Scholar
  59. 59.
    Rajasekar R, Pal K, Heinrich G, Das A, Das CK (2009) Development of nitrile butadiene rubber-nanoclay composites with epoxidized natural rubber as compatibilizer. Mater Des 30(9):3839–3845Google Scholar
  60. 60.
    Kanny K, Mohan TP (2017) Rubber nanocomposites with nanoclay as the filler. In: Thomas S, Maria HJ (eds) Progress in rubber nanocomposites. Woodhead Publishing, Duxford, United Kingdom, pp 153–177Google Scholar
  61. 61.
    Sinha Ray S, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28(11), 1539–1641Google Scholar
  62. 62.
    Theng BKG (2012) Polymer-clay nanocomposites, 2nd ed., vol. 4. Elsevier B.VGoogle Scholar
  63. 63.
    Wang LL, Zhang LQ, Tian M (2012) Mechanical and tribological properties of acrylonitrile-butadiene rubber filled with graphite and carbon black. Mater Des 39:450–457Google Scholar
  64. 64.
    Varghese S, Karger-Kocsis J (2003) Natural rubber-based nanocomposites by latex compounding with layered silicates. Polym (Guildf) 44(17):4921–4927Google Scholar
  65. 65.
    Brantseva TV, Antonov SV, Gorbunova IY (2018) Adhesion properties of the nanocomposites filled with aluminosilicates and factors affecting them: a review. Int J Adhes Adhes 82:263–281Google Scholar
  66. 66.
    Fawaz J, Mittal V (2015) Synthesis of polymer nanocomposites: review of various techniques. In: Mittal V (ed) Synthesis techniques for polymer nanocomposites, 1st edn. Wiley-VCH, Weinheim, pp 1–30Google Scholar
  67. 67.
    Ponnamma D Maria HJ, Chandra AK, Thomas S (2013) Rubber nanocomposites: latest trends and concepts. In: Visakh PM, Thomas S, Chandra A (ed) Advances in elastomers II. Advanced structured materials, vol. 12, April, Springer, Berlin, Heidelberg, pp 69–107Google Scholar
  68. 68.
    Distler D, Neto WS (2017) Machado F emulsion polymerization. In: Reference module in materials science and materials engineering, June, Elsevier, pp 35–56Google Scholar
  69. 69.
    Tan J, Wang X, Luo Y, Jia D (2012) Rubber clay nanocomposites by combined latex compounding. pp 825–831Google Scholar
  70. 70.
    Chaudhari CV, Dubey KA, Bhardwaj YK, Sabharwal S (2012) Radiation processed styrene-butadiene rubber/ethylene-propylene diene rubber/multiple-walled carbon nanotubes nanocomposites: effect of MWNT addition on solvent permeability behavior. J Macromol Sci Part B Phys 51(5):839–859Google Scholar
  71. 71.
    Dubey KA, Bhardwaj YK, Chaudhari CV, Bhattacharya S, Gupta SK, Sabharwal S (2006) Radiation effects on SBR–EPDM blends: a correlation with blend morphology. J Polym Sci, Part B: Polym Phys 44(12):1676–1689Google Scholar
  72. 72.
    Shoushtari Zadeh Naseri A, Jalali-Arani A (2015) A comparison between the effects of gamma radiation and sulfur cure system on the microstructure and crosslink network of (styrene butadiene rubber/ethylene propylene diene monomer) blends in presence of nanoclay. Radiat Phys Chem 115, 68–74Google Scholar
  73. 73.
    Satyanarayana MS, Bhowmick AK, Dinesh Kumar K (2016) Preferentially fixing nanoclays in the phases of incompatible carboxylated nitrile rubber (XNBR)-natural rubber (NR) blend using thermodynamic approach and its effect on physico mechanical properties. Polym (United Kingdom) 99:21–43Google Scholar
  74. 74.
    Bandyopadhyay A, Thakur V, Pradhan S, Bhowmick AK (2010) Nanoclay distribution and its influence on the mechanical properties of rubber blends. J Appl Polym Sci 115:1237–1246Google Scholar
  75. 75.
    Ebrahimi Jahromi A, Ebrahimi Jahromi HR, Hemmati F, Saeb MR, Goodarzi V, Formela K (2016) Morphology and mechanical properties of polyamide/clay nanocomposites toughened with NBR/NBR-g-GMA: a comparative study. Compos Part B Eng 90, 478–484Google Scholar
  76. 76.
    Wang C, Su JX, Li J, Yang H, Zhang Q, Du RN, Fu Q (2006) Phase morphology and toughening mechanism of polyamide 6/EPDM-g-MA blends obtained via dynamic packing injection molding. Polym (Guildf) 47(9):3197–3206Google Scholar
  77. 77.
    Yang R, Song Y, Zheng Q (2017) Payne effect of silica-filled styrene-butadiene rubber. Polym (United Kingdom) 116:304–313Google Scholar
  78. 78.
    Zachariah AK, Chandra AK, Mohammed PK, Parameswaranpillai J, Thomas S (2016) Experiments and modeling of non-linear viscoelastic responses in natural rubber and chlorobutyl rubber nanocomposites. Appl Clay Sci 123:1–10Google Scholar
  79. 79.
    Zachariah AK Transport properties of polymeric membranes: gas permeability and theoretical modeling of elastomers and its nanocomposites. Chapter 21, p 441Google Scholar
  80. 80.
    Mohan TP, Kuriakose J, Kanny K (2012) Water uptake and mechanical properties of natural rubber-styrene butadine rubber (nr-sr)—nanoclay composites. J Ind Eng Chem 18(3):979–985Google Scholar
  81. 81.
    Wang ZF, Wang B, Qi N, Zhang HF, Zhang LQ (2005) Polymer, 46(3):719–724Google Scholar
  82. 82.
    Qureshi MN, Qammar H (2010) Mill processing and properties of rubber-clay nanocomposites. Mater Sci Eng, C 30(4):590–596Google Scholar
  83. 83.
    Mathew G, Rhee JM, Lee YS, Park DH, Nah C (2008) Cure kinetics of ethylene acrylate rubber/clay nanocomposites. J Ind Eng Chem 14(1):60–65Google Scholar
  84. 84.
    Zhang W, Ma Y, Xu Y, Wang C, Chu F (2013) Lignocellulosic ethanol residue-based lignin-phenol-formaldehyde resin adhesive. Int J Adhes Adhes 40(2013):11–18Google Scholar
  85. 85.
    Woo CS, Kim WD, Do Kwon J (2008) A study on the material properties and fatigue life prediction of natural rubber component 483–484(1–2) C, 376–381Google Scholar
  86. 86.
    Brantseva TV, Antonov SV, Gorbunova, IY Adhesion properties of the nanocomposites filled with aluminosilicates and factors affecting them: a review. Int J Adhes Adhes 82(December 2017):263–281, 2018Google Scholar
  87. 87.
    Ahsan T (2007) Composition of bulk filler and epoxy-clay nanocomposite; U.S. Patent 7163973Google Scholar
  88. 88.
    Long-acting waterborne nanometer attapulgite clay/epoxy anticorrosive coating material and preparing method thereof, Chinese patent CN 102676028A, 2012Google Scholar
  89. 89.
    Gazeley KF, Wake WC (1990) Natural rubber adhesives Handbook of adhesives 3rd ed. Skeist I (ed) Chapman & Hall, NY, pp 167–84Google Scholar
  90. 90.
    Unalan IU, Cerri Gi, Marcuzzo E, Cozzolino CA, Farris S (2014) Nanocomposite films and coatings using inorganic nanobuilding blocks (NBB): current applications and future opportunities in the food packaging sector. RSC Adv 4:29393Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mariajose Cova Sanchez
    • 1
    • 2
  • Alejandro Bacigalupe
    • 1
    • 2
  • Mariano Escobar
    • 2
    • 3
    Email author
  • Marcela Mansilla
    • 2
    • 3
  1. 1.Instituto de Investigación e Ingeniería Ambiental, Universidad Nacional de San Martín (UNSAM 3iA)San MartínArgentina
  2. 2.Instituto Nacional de Tecnología Industrial (INTI), Centro de CauchoSan MartínArgentina
  3. 3.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)CABAArgentina

Personalised recommendations