Advertisement

Current Scenario of Nanocomposite Materials for Fuel Cell Applications

  • Raveendra M. Hegde
  • Mahaveer D. KurkuriEmail author
  • Madhuprasad KiggaEmail author
Chapter

Abstract

Integration of hybrid nanocomposite materials in a fuel cell (FC) provides excellent improved properties such as proton conductivity, membrane stability. Similarly, the synergetic effect of materials used in nanocomposite membranes gives better water retention property, suppression of fuel crossover with reduced cost of operation. Currently available composite materials comprising of various metals, metal oxides, carbon materials and polymers display their superior properties in fuel cell applications. However, composite membranes have drawbacks such as CO poisoning, poor water retention capacity, and fuel crossover due to the less chemical and thermal stabilities. Recently, a tremendous advancement in various nanocomposite membranes led to superior properties in terms of high membrane stability, proton conductivity, suppression of fuel crossover, less CO poisoning. In this chapter, the recent developments in FC nanocomposite technology are systematically summarized. Furthermore, the advantages of the insertion of hybrid, clean, cheap and new variety of nanomaterials such as carbon nanotubes, graphene, chitosan and organic fillers in FC are neatly explained.

Keywords

Nanocomposites Fuel cells Oxygen reduction reactions Proton exchange Fuel crossover 

List of Abbreviations

AFC

Alkaline fuel cell

CNT

Carbon nanotubes

CV

Cyclic voltammetry

DFT

Density functional theory

DMFC

Direct methanol fuel cell

FC

Fuel cell

GDL

Gas diffusion layers

IEC

Ion exchange capacity

MCFC

Molten carbonate fuel cell

MEA

Membrane electrode assembly

MWCNT

Multi-walled carbon nanotubes

ORR

Oxygen reduction reaction

PAFC

Phosphoric acid fuel cell

PEM

Proton exchange membrane

PECVD

Plasma enhanced chemical vapor deposition

PEEK

Poly (ether ether ketone)

PEMFC

Proton exchange membrane fuel cell

RH

Relative humidity

SOFC

Solid oxide fuel cell

SPEEK

Sulfonated poly (ether ether ketone)

SWCNT

Single-walled carbon nanotubes

PBI

Polybenzimidazole

PVA

Polyvinyl alcohol

XRD

X-ray diffraction

Notes

Acknowledgements

The authors acknowledge the financial support from DST Nanomission, India (SR/NM/NS-20/2014), DST, India (DST-TM-WTI-2K14-213) and SERB-DST, India (YSS/2015/000013) for financial support. We also thank Jain University, India for providing facilities.

References

  1. 1.
    Hajilary N, Shahi A, Rezakazemi M (2018) Evaluation of socio-economic factors on CO2 emissions in Iran: factorial design and multivariable methods. J Clean Prod 189:108–115CrossRefGoogle Scholar
  2. 2.
    Hashemi F, Rowshanzamir S, Rezakazemi M (2012) CFD simulation of PEM fuel cell performance: effect of straight and serpentine flow fields. Math Comput Model 55(3–4):1540–1557CrossRefGoogle Scholar
  3. 3.
    Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors? Chem Rev 104:4245–4269CrossRefGoogle Scholar
  4. 4.
    Lemons RA (1990) Fuel cells for transportation. J Power Sources 29(1–2):251–264CrossRefGoogle Scholar
  5. 5.
    Peighambardoust S, Rowshanzamir S, Amjadi M (2010) Review of the proton exchange membranes for fuel cell applications. Int J Hydrogen Energy 35(17):9349–9384CrossRefGoogle Scholar
  6. 6.
    Giorgi L, Leccese F (2013) Fuel cells: technologies and applications. Open Fuel Cells J 6:1–20CrossRefGoogle Scholar
  7. 7.
    Agmon N (1995) The grotthuss mechanism. Chem Phys Lett 244(5):456–462CrossRefGoogle Scholar
  8. 8.
    Ueki T, Watanabe M (2008) Macromolecules in ionic liquids: progress, challenges, and opportunities. Macromolecules 41(11):3739–3749CrossRefGoogle Scholar
  9. 9.
    Rezakazemi M, Amooghin AE, Montazer Rashmati MM, Ismail AF, Matsuura T (2014) State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): an overview on current status and future directions. Prog Polym Sci 39(5):817–861CrossRefGoogle Scholar
  10. 10.
    Rezakazemi M, Razavi S, Mohammadi T, Nazari GA (2011) Simulation and determination of optimum conditions of pervaporative dehydration of isopropanol process using synthesized PVA–APTEOS/TEOS nanocomposite membranes by means of expert systems. J Membr Sci 379(1–2):224–232CrossRefGoogle Scholar
  11. 11.
    Dashti A, Harami HR, Rezakazemi M (2018) Accurate prediction of solubility of gases within H2-selective nanocomposite membranes using committee machine intelligent system. Int J Hydrogen Energy 43(13):6614–6624CrossRefGoogle Scholar
  12. 12.
    Rezakazemi M, Vatani A, Mohammadi T (2016) Synthesis and gas transport properties of crosslinked poly(dimethylsiloxane) nanocomposite membranes using octatrimethylsiloxy POSS nanoparticles. J Nat Gas Sci Eng 30:10–18CrossRefGoogle Scholar
  13. 13.
    Rezakazemi M, Vatani A, Mohammadi T (2015) Synergistic interactions between POSS and fumed silica and their effect on the properties of crosslinked PDMS nanocomposite membranes. RSC Adv 5(100):82460–82470CrossRefGoogle Scholar
  14. 14.
    Rezakazemi M, Sadrzadeh M, Mohammadi T, Matsuura T (2017) Methods for the preparation of organic–inorganic nanocomposite polymer electrolyte membranes for fuel cells. In: Inamuddin D, Mohammad A, Asiri AM (eds) Organic-inorganic composite polymer electrolyte membranes. Springer International Publishing, Cham, pp 311–325CrossRefGoogle Scholar
  15. 15.
    Sodeifian G, Mojtaba R, Asghari M, Rezakzemi M (2018) Polyurethane-SAPO-34 mixed matrix membrane for CO2/CH4 and CO2/N2 separation. Chin J Chem Eng.  https://doi.org/10.1016/j.cjche.2018.03.012
  16. 16.
    Rezakazemi M, Dashti A, Asghari M, Saeed S (2017) H2-selective mixed matrix membranes modeling using ANFIS, PSO-ANFIS GA-ANFIS. Int J Hydrogen Energy 42(22):15211–15225CrossRefGoogle Scholar
  17. 17.
    Baheri B, Mahnaz S, Razakazemi M, Elahe M, Mohammadi T (2014) Performance of PVA/NaA mixed matrix membrane for removal of water from ethylene glycol solutions by pervaporation. Chem Eng Commun 202(3):316–321CrossRefGoogle Scholar
  18. 18.
    Shahverdi M, Baheri B, Razakazemi M, Elahe M, Mohammadi T (2013) Pervaporation study of ethylene glycol dehydration through synthesized (PVA-4A)/polypropylene mixed matrix composite membranes. Polym Eng Sci 53(7):1487–1493CrossRefGoogle Scholar
  19. 19.
    Rostamizadeh M, Rezakazemi M, Shahidi K, Mohammadi T (2013) Gas permeation through H2-selective mixed matrix membranes: Experimental and neural network modeling. Int J Hydrogen Energy 38(2):1128–1135CrossRefGoogle Scholar
  20. 20.
    Rezakazemi M, Mohammadi T (2013) Gas sorption in H2-selective mixed matrix membranes: experimental and neural network modeling. Int J Hydrogen Energy 38(32):14035–14041CrossRefGoogle Scholar
  21. 21.
    Rezakazemi M, Shahidi K, Mohammadi T (2012) Sorption properties of hydrogen-selective PDMS/zeolite 4A mixed matrix membrane. Int J Hydrogen Energy 37(22):17275–17284CrossRefGoogle Scholar
  22. 22.
    Rezakazemi M, Shahidi K, Mohammadi T (2012) Hydrogen separation and purification using crosslinkable PDMS/zeolite a nanoparticles mixed matrix membranes. Int J Hydrogen Energy 37(19):14576–14589CrossRefGoogle Scholar
  23. 23.
    Rezakazemi M, Sadrzadeh M, Matsuura T (2018) Thermally stable polymers for advanced high-performance gas separation membranes. Prog Energy Combust Sci 66:1–41CrossRefGoogle Scholar
  24. 24.
    Boutsika LG, Enotiadis A, Nicotera I, Simari C, Charalambopoulou G, Giannelis EP, Steriotis T (2016) Nafion® nanocomposite membranes with enhanced properties at high temperature and low humidity environments. Int J Hydrogen Energy 41(47):22406–22414CrossRefGoogle Scholar
  25. 25.
    Mohammadi G, Jahanshahi M, Rahimpour A (2013) Fabrication and evaluation of Nafion nanocomposite membrane based on ZrO2–TiO2 binary nanoparticles as fuel cell MEA. Int J Hydrogen Energy 38(22):9387–9394CrossRefGoogle Scholar
  26. 26.
    Hooshyari K, Javanbhakt M, Naji L, Enhessari M (2014) Nanocomposite proton exchange membranes based on Nafion containing Fe2 TiO5 nanoparticles in water and alcohol environments for PEMFC. J Membr Sci 454:74–81CrossRefGoogle Scholar
  27. 27.
    Wang Z, Tang H, Zhang H, Lei M, Chen R, Xiao P, Pan M (2012) Synthesis of Nafion/CeO2 hybrid for chemically durable proton exchange membrane of fuel cell. J Membr Sci 421:201–210CrossRefGoogle Scholar
  28. 28.
    Cozzi D, de Bonis C, D’Epifanio A, Mecheri B, Tavares AC, Licoccia S (2014) Organically functionalized titanium oxide/Nafion composite proton exchange membranes for fuel cells applications. J Power Sources 248:1127–1132CrossRefGoogle Scholar
  29. 29.
    de Bonis C, Cozzi D, Mecheri B, D’Epifanio A, Rainer A, De Porcellenis D, Licoccia S (2014) Effect of filler surface functionalization on the performance of Nafion/Titanium oxide composite membranes. Electrochim Acta 147:418–425CrossRefGoogle Scholar
  30. 30.
    Yang Y, Cuiping H, Beibei J, James I, Chengen H, Dean S, Tao J, Zhiqun L (2016) Graphene-based materials with tailored nanostructures for energy conversion and storage. Mater Sci Eng R Rep 102:1–72CrossRefGoogle Scholar
  31. 31.
    Farooqui U, Ahmad A, Hamid N (2018) Graphene oxide: a promising membrane material for fuel cells. Renew Sust Energy Rev 82:714–733CrossRefGoogle Scholar
  32. 32.
    Tsang AC, Kwok HY, Leung DY (2017) The use of graphene based materials for fuel cell, photovoltaics, and supercapacitor electrode materials. Solid State Sci 67:A1–A14CrossRefGoogle Scholar
  33. 33.
    Das TK, Prusty S (2013) Graphene-based polymer composites and their applications. Polym Plast Technol Eng 52(4):319–331CrossRefGoogle Scholar
  34. 34.
    Zhu C, Dong S (2013) Recent progress in graphene-based nanomaterials as advanced electrocatalysts towards oxygen reduction reaction. Nanoscale 5(5):1753–1767CrossRefGoogle Scholar
  35. 35.
    Fampiou I, Ramasubramaniam A (2012) Binding of Pt nanoclusters to point defects in graphene: adsorption, morphology, and electronic structure. J Phys Chem C 116(11):6543–6555CrossRefGoogle Scholar
  36. 36.
    Liu M, Zhang R, Chen W (2014) Graphene-supported nanoelectrocatalysts for fuel cells: synthesis, properties, and applications. Chem Rev 114(10):5117–5160CrossRefGoogle Scholar
  37. 37.
    Huang H, Chen H, Sun D, Wang X (2012) Graphene nanoplate-Pt composite as a high performance electrocatalyst for direct methanol fuel cells. J Power Sources 204:46–52CrossRefGoogle Scholar
  38. 38.
    Qian W, Hao R, Zhou J, Eastman M, Manhat BA, Sun Q, Andrea MG, Jiao J (2013) Exfoliated graphene-supported Pt and Pt-based alloys as electrocatalysts for direct methanol fuel cells. Carbon 52:595–604CrossRefGoogle Scholar
  39. 39.
    Peng K-J, Lai J-Y, Liu Y-L (2016) Nanohybrids of graphene oxide chemically-bonded with Nafion: preparation and application for proton exchange membrane fuel cells. J Membr Sci 514:86–94CrossRefGoogle Scholar
  40. 40.
    Zhou X, Tang S, Yin Y, Sun S, Qiao J (2016) Hierarchical porous N-doped graphene foams with superior oxygen reduction reactivity for polymer electrolyte membrane fuel cells. Appl Energy 175:459–467CrossRefGoogle Scholar
  41. 41.
    Kirubaharan CJ, Santhakumar K, Gnanankumar G, Senthilkumar N, Jang J (2015) Nitrogen doped graphene sheets as metal free anode catalysts for the high performance microbial fuel cells. Int J Hydrogen Energy 40(38):13061–13070CrossRefGoogle Scholar
  42. 42.
    Rezakazemi M, Zhang Z (2018) Desulfurization materials A2—Dincer, Ibrahim comprehensive energy systems. Elsevier, Oxford, pp 944–979Google Scholar
  43. 43.
    Georgakilas V, Perman JA, Tucek J, Zboril R (2015) Broad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem Rev 115(11):4744–4822CrossRefGoogle Scholar
  44. 44.
    Akbari E, Buntat Z (2017) Benefits of using carbon nanotubes in fuel cells: a review. Int J Energ Res 41(1):92–102CrossRefGoogle Scholar
  45. 45.
    Ghasemi M, Ismail M, Kamarudin SK, Saeedfar K, Wan Daud WR, Hassan SHA, Heng LY, Alam J, Oh SE (2013) Carbon nanotube as an alternative cathode support and catalyst for microbial fuel cells. Appl Energy 102:1050–1056CrossRefGoogle Scholar
  46. 46.
    Mehdinia A, Ziaei E, Jabbari A (2014) Multi-walled carbon nanotube/SnO2 nanocomposite: a novel anode material for microbial fuel cells. Electrochim Acta 130:512–518CrossRefGoogle Scholar
  47. 47.
    Tohidian M, Ghaffarian SR (2017) Polyelectrolyte nanocomposite membranes with imidazole-functionalized multi-walled carbon nanotubes for use in fuel cell applications. J Macromol Sci B 56(10):725–738CrossRefGoogle Scholar
  48. 48.
    Zhang R, He S, Lu Y, Chen W (2015) Fe Co, N-functionalized carbon nanotubes in situ grown on 3D porous N-doped carbon foams as a noble metal-free catalyst for oxygen reduction. J Mater Chem A 3(7):3559–3567CrossRefGoogle Scholar
  49. 49.
    Mishra P, Jain R (2016) Electrochemical deposition of MWCNT-MnO2/PPy nano-composite application for microbial fuel cells. Int J Hydrogen Energy 41(47):22394–22405CrossRefGoogle Scholar
  50. 50.
    Mirzaei F, Parnian MJ, Rowshanzamir S (2017) Durability investigation and performance study of hydrothermal synthesized platinum-multi walled carbon nanotube nanocomposite catalyst for proton exchange membrane fuel cell. Energy 138:696–705CrossRefGoogle Scholar
  51. 51.
    Liew KB, Wan Daud WR, Ghasemi M, Loh KS, Ismail M, Lim SS, Leong JX (2015) Manganese oxide/functionalised carbon nanotubes nanocomposite as catalyst for oxygen reduction reaction in microbial fuel cell. Int J Hydrogen Energy 40(35):11625–11632CrossRefGoogle Scholar
  52. 52.
    Mourya V, Inamdar NN, Tiwari A (2010) Carboxymethyl chitosan and its applications. Adv Mater Lett 1(1):11–33CrossRefGoogle Scholar
  53. 53.
    Vakili M, Rafatullah M, Salamatinia B, Abdullah AZ, Ibrahim MH, Tan KB, Gholami Z, Amouzgar P (2014) Application of chitosan and its derivatives as adsorbents for dye removal from water and wastewater: a review. Carbohyd Polym 113:115–130CrossRefGoogle Scholar
  54. 54.
    Srinivasa P, Tharanathan R (2007) Chitin/chitosan—safe, ecofriendly packaging materials with multiple potential uses. Food Rev Int 23(1):53–72CrossRefGoogle Scholar
  55. 55.
    Lim S-H, Hudson SM (2003) Review of Chitosan and its derivatives as antimicrobial agents and their uses as textile chemicals. J Macromol Sci C Polym Rev 43(2):223–269CrossRefGoogle Scholar
  56. 56.
    Mourya V, Inamdar NN (2009) Trimethyl chitosan and its applications in drug delivery. J Mater Sci Mater Med 20(5):1057CrossRefGoogle Scholar
  57. 57.
    Ilium L (1998) Chitosan and its use as a pharmaceutical excipient. Pharm Res 15(9):1326–1331CrossRefGoogle Scholar
  58. 58.
    Ma J, Sahai Y (2013) Chitosan biopolymer for fuel cell applications. Carbohydr Polym 92(2):955–975CrossRefGoogle Scholar
  59. 59.
    Bai H, Zhang H, He Y, Liu J, Zhang B, Wang J (2014) Enhanced proton conduction of chitosan membrane enabled by halloysite nanotubes bearing sulfonate polyelectrolyte brushes. J Membr Sci 454:220–232CrossRefGoogle Scholar
  60. 60.
    Ma J, Sahai Y, Buchheit RG (2012) Evaluation of multivalent phosphate cross-linked chitosan biopolymer membrane for direct borohydride fuel cells. J Power Sources 202:18–27CrossRefGoogle Scholar
  61. 61.
    Hasani-Sadrabadi MM, Dashtimoghadam E, Mokarram N, Majedi FS, Jacob KI (2012) Triple-layer proton exchange membranes based on chitosan biopolymer with reduced methanol crossover for high-performance direct methanol fuel cells application. Polymer 53(13):2643–2651CrossRefGoogle Scholar
  62. 62.
    Zhou T, He X, Song F, Xie K (2016) Chitosan modified by polymeric reactive dyes containing quanternary ammonium groups as a novel anion exchange membrane for alkaline fuel cells. Int J Electrochem Sci 11(1):590–608Google Scholar
  63. 63.
    Li P-C, Liao G-M, Rajeshkumar S, Shih C-M, Yang C-C, Wang D-M, Lue SJ (2016) Fabrication and characterization of chitosan nanoparticle-incorporated quaternized poly (vinyl alcohol) composite membranes as solid electrolytes for direct methanol alkaline fuel cells. Electrochim Acta 187:616–628CrossRefGoogle Scholar
  64. 64.
    Santamaria M, Pecoraro CM, Di Quarto F, Bocchetta P (2015) Chitosan–phosphotungstic acid complex as membranes for low temperature H2–O2 fuel cell. J Power Sources 276:189–194CrossRefGoogle Scholar
  65. 65.
    Noroozifar M, Motlagh MK, Kakhki M-S, Roghayeh K-M (2014) Enhanced electrocatalytic properties of Pt–chitosan nanocomposite for direct methanol fuel cell by LaFeO3 and carbon nanotube. J Power Sources 248:130–139CrossRefGoogle Scholar
  66. 66.
    Linlin M, Mishra AK, Kim NH, Lee JH (2012) Poly (2,5-benzimidazole)–silica nanocomposite membranes for high temperature proton exchange membrane fuel cell. J Membr Sci 411:91–98CrossRefGoogle Scholar
  67. 67.
    Chang Y-N, Lai J-Y, Liu Y-L (2012) Polybenzimidazole (PBI)-functionalized silica nanoparticles modified PBI nanocomposite membranes for proton exchange membranes fuel cells. J Membr Sci 403:1–7Google Scholar
  68. 68.
    Hooshyari K, Javanbhakt M, Shabanikia A, Enhessari M (2015) Fabrication BaZrO3/PBI-based nanocomposite as a new proton conducting membrane for high temperature proton exchange membrane fuel cells. J Power Sources 276:62–72CrossRefGoogle Scholar
  69. 69.
    Devrim Y, Devrim H, Eroglu I (2016) Polybenzimidazole/SiO2 hybrid membranes for high temperature proton exchange membrane fuel cells. Int J Hydrogen Energy 41(23):10044–10052CrossRefGoogle Scholar
  70. 70.
    Wu J-F, Lo C-F, Li H-Y, Chang C-M, Liao K-S, Hu C-C, Liu Y-L, Lue S-J (2014) Thermally stable polybenzimidazole/carbon nano-tube composites for alkaline direct methanol fuel cell applications. J Power Sources 246:39–48CrossRefGoogle Scholar
  71. 71.
    Özdemir Y, Özkan N, Devrim Y (2017) Fabrication and characterization of cross-linked polybenzimidazole based membranes for high temperature PEM fuel cells. Electrochim Acta 245:1–13CrossRefGoogle Scholar
  72. 72.
    Hogarth WH, Da Costa JD, Lu GM (2005) Solid acid membranes for high temperature proton exchange membrane fuel cells. J Power Sources 142(1):223–237CrossRefGoogle Scholar
  73. 73.
    Tripathi BP, Shahi VK (2007) SPEEK–zirconium hydrogen phosphate composite membranes with low methanol permeability prepared by electro-migration and in situ precipitation. J Colloid Interface Sci 316(2):612–621CrossRefGoogle Scholar
  74. 74.
    Lim SS, Wan Daud WR, Jahim J, Ghasemi M, Chong PS, Ismail M (2012) Sulfonated poly (ether ether ketone)/poly (ether sulfone) composite membranes as an alternative proton exchange membrane in microbial fuel cells. Int J Hydrogen Energy 37(15):11409–11424CrossRefGoogle Scholar
  75. 75.
    Jiang Z, Zhao X, Manthiram A (2013) Sulfonated poly (ether ether ketone) membranes with sulfonated graphene oxide fillers for direct methanol fuel cells. Int J Hydrogen Energy 38(14):5875–5884CrossRefGoogle Scholar
  76. 76.
    Heo Y, Im H, Kim J (2013) The effect of sulfonated graphene oxide on sulfonated poly (ether ether ketone) membrane for direct methanol fuel cells. J Membr Sci 425:11–22CrossRefGoogle Scholar
  77. 77.
    Wang J, Bai H, Zhang H, Zhao L, Yifan Li C (2015) Anhydrous proton exchange membrane of sulfonated poly (ether ether ketone) enabled by polydopamine-modified silica nanoparticles. Electrochim Acta 152:443–455CrossRefGoogle Scholar
  78. 78.
    Gang M, He G, Li Z, Cao K, Li Z, Yin Y, Wu H, Jiang Z (2016) Graphitic carbon nitride nanosheets/sulfonated poly (ether ether ketone) nanocomposite membrane for direct methanol fuel cell application. J Membr Sci 507:1–11CrossRefGoogle Scholar
  79. 79.
    Mossayebi Z, Saririchi T, Rowshanzamir S, Parnian MJ (2016) Investigation and optimization of physicochemical properties of sulfated zirconia/sulfonated poly (ether ether ketone) nanocomposite membranes for medium temperature proton exchange membrane fuel cells. Int J Hydrogen Energy 41(28):12293–12306CrossRefGoogle Scholar
  80. 80.
    Rahnavard A, Rowshanzamir S, Parnian MJ, Amirkhanlou GR (2015) The effect of sulfonated poly (ether ether ketone) as the electrode ionomer for self-humidifying nanocomposite proton exchange membrane fuel cells. Energy 82:746–757CrossRefGoogle Scholar
  81. 81.
    Salarizadeh P, Javanbhakht M, Abdollahi M, Naji L (2013) Preparation, characterization and properties of proton exchange nanocomposite membranes based on poly (vinyl alcohol) and poly (sulfonic acid)-grafted silica nanoparticles. Int J Hydrogen Energy 38(13):5473–5479CrossRefGoogle Scholar
  82. 82.
    Liew C-W, Ramesh S, Arof A (2014) A novel approach on ionic liquid-based poly (vinyl alcohol) proton conductive polymer electrolytes for fuel cell applications. Int J Hydrogen Energy 39(6):2917–2928CrossRefGoogle Scholar
  83. 83.
    Beydaghi H, Javanbakht M, Kowsari E (2014) Synthesis and characterization of poly (vinyl alcohol)/sulfonated graphene oxide nanocomposite membranes for use in proton exchange membrane fuel cells (PEMFCs). Ind Eng Chem Res 53(43):16621–16632CrossRefGoogle Scholar
  84. 84.
    Mollá S, Compañ V (2015) Nanocomposite SPEEK-based membranes for direct methanol fuel cells at intermediate temperatures. J Membr Sci 492:123–136CrossRefGoogle Scholar
  85. 85.
    Yang J-M, Wang N-C, Chiu H-C (2014) Preparation and characterization of poly (vinyl alcohol)/sodium alginate blended membrane for alkaline solid polymer electrolytes membrane. J Membr Sci 457:139–148CrossRefGoogle Scholar
  86. 86.
    Huang C-Y, Lin J-S, Pan W-H, Shih C-M, Liu Y-L, Lue S-J (2016) Alkaline direct ethanol fuel cell performance using alkali-impregnated polyvinyl alcohol/functionalized carbon nano-tube solid electrolytes. J Power Sources 303:267–277CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Centre for Nano and Material Sciences, Jain UniversityBengaluruIndia

Personalised recommendations