Processing and Industrial Applications of Sustainable Nanocomposites Containing Nanofillers

  • Khadija Zadeh
  • Sadiya Waseem
  • Kishor Kumar SadasivuniEmail author
  • Kalim Deshmukh
  • Aqib Muzaffar
  • M. Basheer Ahamed
  • Mariam Al-Ali AlMaadeed


The performance properties of sustainable polymer matrix can be significantly improved by the incorporation of nanofillers (NFs) having a high aspect ratio and high active surface area. This chapter comprehensively emphasizes the processing of sustainable polymer nanocomposites (PNCs) containing NFs for potential industrial applications. Different fabrication techniques of sustainable PNCs such as intercalation method, sol-gel and direct dispersion method have been discussed briefly. The impact of these processing techniques on the properties of PNCs and their wide range of industrial applications like mechanical, electronic and biological are highlighted in this chapter. Furthermore, an overview is given on different types of NFs used for the preparation of sustainable PNCs for industrial application.


Nanofillers Sustainable polymer nanocomposites Processing techniques Industrial applications 

List of Abbreviations


Three dimensional

Ag NWs

Silver nanowires




Battery operated portable handheld electrospinning apparatus




Calcium carbonate


Carbon nanotubes


Epoxidized soybean oil


Fourier transform infrared spectroscopy


Halloysite nanotubes


Graphene oxide


Graphite nanoflakes


Graphene nanoplatelets


Guide bone regeneration


Guide tissue regeneration


Hyalumeric acid


Layer By layer


Multiwalled carbon nanotubes












Polymer nanocomposites




Polyethylene glycol




Poly (cyclooctene)


Poly (3-hexylthiophene)


Poly (lactic acid)


Poly (O-methoxyaniline)


Poly (caprolactone)


Poly (3-thiophene acetic acid)


Poly (lactic-co-glycolic acid)


Single-walled carbon nanotubes


Silicon dioxide


Shape memory polymers


Titanium dioxide


Water vapour permeability


Zinc oxide




  1. 1.
    Mrlik M, Sobolciak P, Krupa I, Kasak P (2018) Light-controllable viscoelastic properties of a photolabile carboxybetaine ester-based polymer with mucus and cellulose sulfate. Emergent Mater 1(1–2):1–1CrossRefGoogle Scholar
  2. 2.
    Meng T, Yi C, Liu L, Karim A, Gong X (2018) Enhanced thermoelectric properties of two-dimensional conjugated polymers. Emergent Mater 1(1–2):1CrossRefGoogle Scholar
  3. 3.
    Popelka A, Sobolciak P, Mrlík M, Nogellova Z, Chodák I, Ouederni M, Al-Maadeed MA, Krupa I (2018) Foamy phase change materials based on linear low-density polyethylene and paraffin wax blends. Emergent Mater 1(1–2):1–8CrossRefGoogle Scholar
  4. 4.
    Deshmukh K, Ahamed MB, Deshmukh RR, Pasha SKK, Bhagat PR, Chidambaram K (2016) Biopolymer composites with high dielectric performance: interface engineering. In: Sadasivuni KK, Ponnamma D, Kim J, Cabibihan JJ, AlMaadeed MAA (eds) Biopolymer composites in electronics. Elsevier, Amsterdam, pp 27–128Google Scholar
  5. 5.
    Deshmukh K, Sankaran S, Ahamed MB, Sadasivuni KK, Pasha SKK, Ponnamma D, Sreekanth PSR, Chidambaram K (2017) Dielectric spectroscopy. In: Thomas S, Mishra RK, Thomas R, Zachariah AK (eds) Instrumental techniques to the characterizations of nanomaterials. Elsevier, Amsterdam, pp 237–299Google Scholar
  6. 6.
    Thangamani GJ, Deshmukh K, Chidambaram K, Ahamed MB, Sadasivuni KK, Ponnamma D, Faisal M, Nambiraj NA, Pasha SKK (2018) Influence of CuO nanoparticles and graphene nanoplatelets on the sensing behavior of poly (vinylalcohol) nanocomposites for the detection of ethanol and propanol vapors. J Mater Sci Mater Electron 29(6):5186–5205CrossRefGoogle Scholar
  7. 7.
    Badgayan ND, Samanta S, Sahu SK, Venkata Siva SB, Sadasivuni KK, Sahu D, Rama Sreekanth PS (2017) Tribological behaviour of 1D and 2D nanofiller based high density polyethylene nanocomposites: a run in and steady state phase analysis. Wear 376–377:1379–1390CrossRefGoogle Scholar
  8. 8.
    Thangamani GJ, Deshmukh K, Sadasivuni KK, Chidambaram K, Ahamed MB, Ponnamma D, AlMaadeed MAA, Pasha SKK (2017) Recent advances in electrochemical biosensors and gas sensors based on graphene and carbon nanotubes (CNT): a review. Ad Mater Lett 8(3):196–205CrossRefGoogle Scholar
  9. 9.
    Sathapathy KD, Deshmukh K, Ahamed MB, Sadasivuni KK, Ponnamma D, Pasha SKK, AlMaadeed MAA, Ahmad J (2017) High quality factor poly (vinylidenefluoride) based novel nanocomposites filled with graphene nanoplatelets and vanadium pentoxide for high-Q capacitor applications. Ad Mater Lett 8(3):288–294CrossRefGoogle Scholar
  10. 10.
    Mohanapriya MK, Deshmukh K, Chidambaram K, Ahamed MB, Sadasivuni KK, Ponnamma D, AlMaadeed MAA, Deshmukh RR, Pasha SKK (2017) Polyvinyl alcohol (PVA)/Polystyrene sulfonic acid (PSSA)/carbon black nanocomposites for flexible energy storage device applications. J Mater Sci Mater Electron 28(8):6099–6111CrossRefGoogle Scholar
  11. 11.
    Abdullah N, Yusof N, Ismail AF, Othman FE, Jaafar J, Jye LW, Salleh WN, Aziz F, Misdan N (2018) Effects of manganese (VI) oxide on polyacrylonitrile-based activated carbon nanofibers (ACNFs) and its preliminary study for adsorption of lead (II) ions. Emergent Mater 1(1–2):1–6CrossRefGoogle Scholar
  12. 12.
    Mohanapriya MK, Deshmukh K, Ahamed MB, Chidambaram K, Pasha SKK (2016) Zeolite 4A filled poly (3, 4-ethylenedioxythiophene): (polystyrenesulfonate) and polyvinyl alcohol blend nanocomposites as high-k dielectric materials for embedded capacitor applications. Ad Mater Lett 7(12):996–1002CrossRefGoogle Scholar
  13. 13.
    Muzaffar A, Ahamed MB, Deshmukh K, Faisal M, Pasha SKK (2018) Enhanced electromagnetic absorption in NiO and BaTiO3 based polyvinylidene fluoride nanocomposites. Mater Lett 218:217–220CrossRefGoogle Scholar
  14. 14.
    Ponnamma D, Sadasivuni KK, Strankowski M, Moldenaers P, Thomas S, Grohens Y (2013) Interrelated shape memory and Payne effect in polyurethane/graphene oxide nanocomposites. RSC Adv 3(36):16068–16079CrossRefGoogle Scholar
  15. 15.
    Ponnamma D, Sadasivuni KK, Strankowski M, Guo Q, Thomas S (2013) Synergistic effect of multiwalled carbon nanotubes and reduced graphene oxide in natural rubber for sensing applications. Soft Matter 9(43):10343–10353CrossRefGoogle Scholar
  16. 16.
    Sadasivuni KK, Castro M, Saiter A, Delbreilh L, Feller JF, Thomas S, Grohens Y (2013) Development of poly(isobutylene-co-isoprene)/reduced graphene oxide nanocomposites for barrier, dielectric and sensing applications. Mater Lett 96:109–112CrossRefGoogle Scholar
  17. 17.
    Mohanapriya MK, Deshmukh K, Ahamed MB, Chidambaram K, Pasha SKK (2016) Influence of cerium oxide (CeO2) nanoparticles on the structural, morphological, mechanical and dielectric properties of PVA/PPy blend nanocomposites. Mater Today Proc 3(6):1864–1873CrossRefGoogle Scholar
  18. 18.
    Sadasivuni KK, Saiter A, Gautier N, Thomas S, Grohens Y (2013) Effect of molecular interaction on the performance of poly (isobutylene-co-isoprene)/graphene and clay nanocomposites. Colloids Polymer Sci 291(7):1729–1740CrossRefGoogle Scholar
  19. 19.
    Fayyad EM, Abdullah AM, Hassan MK, Mohamed AM, Jarjoura G, Farhat Z (2018) Recent advances in electroless-plated Ni-P and its composites for erosion and corrosion applications: a review. Emergent Mater 1(1–2):1–22CrossRefGoogle Scholar
  20. 20.
    Illa MP, Khandelwal M, Sharma CS (2018) Bacterial cellulose-derived carbon nanofibers as anode for lithium-ion batteries. Emergent Mater 1(3–4):1–6CrossRefGoogle Scholar
  21. 21.
    Nisar U, Amin R, Shakoor A, Essehli R, Al-Qaradawi S, Kahraman R, Belharouak I (2018) Synthesis and electrochemical characterization of Cr-doped lithium-rich Li 1.2 Ni 0.16 Mn 0.56 Co 0.08-x Cr x O 2 cathodes. Emergent Mater 1(3–4):1–0Google Scholar
  22. 22.
    Reddy YG, Awasthi AM, Chary AS, Reddy SN (2018) Characterization and ion transport studies through impedance spectroscopy on (1-x) Pb (NO 3) 2: xAl 2 O 3 composite solid electrolytes. Emergent Mater 1(3–4):1–0Google Scholar
  23. 23.
    Fadiran OO, Girouard N, Meredith JC (2018) Pollen fillers for reinforcing and strengthening of epoxy composites. Emergent Mater 1(1–2):95–103CrossRefGoogle Scholar
  24. 24.
    Selmy AE, Soliman M, Allam NK (2018) Refractory plasmonics boost the performance of thin-film solar cells. Emergent Mater 1(3–4):1–7CrossRefGoogle Scholar
  25. 25.
    Ponnamma D, Erturk A, Parangusan H, Deshmukh K, Ahamed MB, Al-Maadeed MA (2018) Stretchable quaternary phasic PVDF-HFP nanocomposite films containing graphene-titania-SrTiO3 for mechanical energy harvesting. Emergent Mater 1(1–2):55–65CrossRefGoogle Scholar
  26. 26.
    Ponnamma D, Sadasivuni KK, Grohens Y, Guo Q, Thomas S (2014) Carbon nanotube based elastomer composites-an approach towards multifunctional materials. J Mater Chem C 2(40):8446–8485CrossRefGoogle Scholar
  27. 27.
    Fujiyama-Novak JH, Rufino V, Amaral RA, Habert AC, Borges CP, Mano B (2016) Oxygen permeability of nanocomposite-based polyolefin films. Macromol Symp 368(1):19–23CrossRefGoogle Scholar
  28. 28.
    Sadasivuni KK, Ponnamma D, Kumar B, Strankowski M, Cardinaels R, Moldenaers P, Thomas S, Grohens Y (2014) Dielectric properties of modified graphene oxide filled polyurethane nanocomposites and its correlation with rheology. Compos Sci Technol 104:18–25CrossRefGoogle Scholar
  29. 29.
    Deshmukh K, Ahamed MB, Sadasivuni KK, Ponnamma D, AlMaadeed MAA, Pasha SKK, Deshmukh RR, Chidambaram K (2017) Graphene oxide reinforced poly (4-styrenesulfonic acid)/polyvinyl alcohol blend composites with enhanced dielectric properties for portable and flexible electronics. Mater Chem Phys 186:188–201CrossRefGoogle Scholar
  30. 30.
    Cooke KO, Khan TI (2018) Effect of thermal processing on the tribology of nanocrystalline Ni/TiO2 coatings. Emergent Mater 1(3–4):1–9CrossRefGoogle Scholar
  31. 31.
    Rahman M, Hamdan S, Hashim DM, Islam M, Takagi H (2015) Bamboo fiber polypropylene composites: effect of fiber treatment and nano clay on mechanical and thermal properties. J Vinyl Add Tech 21(4):253–258CrossRefGoogle Scholar
  32. 32.
    Chen T, Xie Y, Wei Q, Wang XA, Hagman O, Karlsson O, Liu J, Lin M (2016) Improving the mechanical properties of ultra-low density plant fiber composite (ULD_PFC) by refining treatment. BioResources 11(4):8558–8569Google Scholar
  33. 33.
    Chen RS, Ahmad S (2017) Mechanical performance and flame retardancy of rice husk/organoclay-reinforced blend of recycled plastics. Mater Chem Phys 198:57–65CrossRefGoogle Scholar
  34. 34.
    Tasdemir M (2017) Effects of olive pit and almond shell powder on polypropylene. Key Eng Mater Trans Tech 733:65–68CrossRefGoogle Scholar
  35. 35.
    Arjmandi R, Hassan A, Majeed K, Zakaria Z (2015) Rice husk filled polymer composites. Int J Polymer Sci 32. Article ID 501471Google Scholar
  36. 36.
    Majeed K, Hassan A, Bakar AA, Jawaid M (2016) Effect of montmorillonite (MMT) content on the mechanical, oxygen barrier, and thermal properties of rice husk/MMT hybrid filler-filled low-density polyethylene nanocomposite blown films. J Thermoplast Compos Mater 29(7):1003–1019CrossRefGoogle Scholar
  37. 37.
    Ahmad J, Deshmukh K, Habib M, Hägg MB (2013) Influence of TiO2 on the chemical, mechanical and gas separation properties of polyvinylalcohol-titanium dioxide (PVA/TiO2) nanocomposite membrane. Int J Polym Anal Charact 18(4):287–296CrossRefGoogle Scholar
  38. 38.
    Mohanapriya MK, Deshmukh K, Ahamed MB, Chidambaram K, Pasha SKK (2015) Structural, morphological and dielectric properties of multiphase nanocomposites consisting of polycarbonate, barium titanate and carbon black nanoparticles. Int J Chem Tech Res 8(5):32–41Google Scholar
  39. 39.
    Feller JF, Sadasivuni KK, Castro M, Bellegou H, Pillin I, Thomas S, Grohens Y (2015) Gas barrier efficiency of clay and graphene-poly(isobutylene-co-isoprene) nanocomposite membranes evidenced by a quantum resistive vapour sensor cell. Nanocomposites 1(4):96–105CrossRefGoogle Scholar
  40. 40.
    Kafy A, Sadasivuni KK, Akther A, Min SK, Kim J (2015) Cellulose/graphene nanocomposites as multifunctional electronic and solvent sensor material. Mater Lett 159:20–23CrossRefGoogle Scholar
  41. 41.
    Akhtar MN, Sulong AB, Nazir MS, Majeed K, Radzi MK, Ismail NF, Raza MR (2017) Kenaf-biocomposites: manufacturing, characterization, and applications. In: Green biocomposites. Springer International Publication, Berlin, pp 225–254Google Scholar
  42. 42.
    Cavallaro G, Lazzara G, Milioto S (2013) Sustainable nanocomposites based on halloysite nanotubes and pectin/polyethylene glycol blend. Polym Degrad Stab 98(12):2529–2536CrossRefGoogle Scholar
  43. 43.
    Ghaffari A, Navaee K, Oskoui M, Bayati K, Rafiee-Tehrani M (2007) Preparation and characterization of free mixed-film of pectin/chitosan/Eudragit® RS intended for sigmoidal drug delivery. Eur J Pharm Biopharm 67(1):175–186CrossRefGoogle Scholar
  44. 44.
    Miyamoto H, Yamane C, Seguchi M, Okajima K (2010) Comparison between cellulose blend films prepared from aqueous sodium hydroxide solution and edible films of biopolymers with possible application for new food materials. Food Sci Technol Res 17(1):21–30CrossRefGoogle Scholar
  45. 45.
    Mishra RK, Majeed AB, Banthia AK (2011) Development and characterization of pectin/gelatin hydrogel membranes for wound dressing. Int J Plas Technol 15(1):82–95CrossRefGoogle Scholar
  46. 46.
    Deshmukh K, Ahamed MB, Sadasivuni KK, Ponnamma D, Deshmukh RR, Pasha SK, AlMaadeed MA, Chidambaram K (2016) Graphene oxide reinforced polyvinyl alcohol/polyethylene glycol blend composites as high-performance dielectric material. J Polym Res 23:159CrossRefGoogle Scholar
  47. 47.
    Gunbas ID, Aydemir SU, Gülceİz S, Deliloğlu Gürhan I, Hasirci N (2012) Semi-IPN chitosan/PEG microspheres and films for biomedical applications: characterization and sustained release optimization. Ind Eng Chem Res 51(37):11946–11954CrossRefGoogle Scholar
  48. 48.
    Altinisik A, Yurdakoc K (2011) Synthesis, characterization, and enzymatic degradation of chitosan/PEG hydrogel films. J Appl Polym Sci 122(3):1556–1563CrossRefGoogle Scholar
  49. 49.
    Ruiz-Hitzky E, Sobral MM, Gómez-Avilés A, Nunes C, Ruiz-García C, Ferreira P, Aranda P (2016) Clay-graphene nanoplatelets functional conducting composites. Adv Func Mater 26(41):7394–7405CrossRefGoogle Scholar
  50. 50.
    Liu M, Wu C, Jiao Y, Xiong S, Zhou C (2013) Chitosan–halloysite nanotubes nanocomposite scaffolds for tissue engineering. J Mater Chem B 1:2078–2089CrossRefGoogle Scholar
  51. 51.
    Abdullayev E, Lvov Y (2010) Clay nanotubes for corrosion inhibitor encapsulation: release control with end stoppers. J Mater Chem 20:6681–6687CrossRefGoogle Scholar
  52. 52.
    Lvov Y, Abdullayev E (2013) Functional polymer–clay nanotube composites with sustained release of chemical agents. Prog Polym Sci 38(10–11):1690–1719CrossRefGoogle Scholar
  53. 53.
    Deshmukh K, Ahamed MB, Sadasivuni KK, Ponnamma D, Deshmukh RR, Trimukhe AM, Pasha SK, Polu AR, AlMaadeed MA, Chidambaram K (2017) Solution-processed white graphene-reinforced ferroelectric polymer nanocomposites with improved thermal conductivity and dielectric properties for electronic encapsulation. J Polym Res 24:27CrossRefGoogle Scholar
  54. 54.
    Deshmukh K, Ahmad J, Hägg MB (2014) Fabrication and characterization of polymer blends consisting of cationic polyallylamine and anionic polyvinyl alcohol. Ionics 20: 957–967CrossRefGoogle Scholar
  55. 55.
    Deshmukh K, Ahamed MB, Deshmukh RR, Sadasivuni KK, Ponnamma D, Pasha SK, AlMaadeed MA, Polu AR, Chidambaram K (2017) Eeonomer 200F®: a high-performance nanofiller for polymer reinforcement-Investigation of the structure, morphology and dielectric properties of polyvinyl alcohol/Eeonomer-200F® nanocomposites for embedded capacitor applications. J Electron Mater 46(4):2406–2418CrossRefGoogle Scholar
  56. 56.
    Spitalsky Z, Tasis D, Papagelis K, Galiotis C (2010) Carbon nanotube–polymer composites: chemistry, processing, mechanical and electrical properties. Prog Polym Sci 35(3):357–401CrossRefGoogle Scholar
  57. 57.
    Deshmukh K, Ahamed MB, Deshmukh RR, Pasha SK, Sadasivuni KK, Ponnamma D, Chidambaram K (2016) Synergistic effect of vanadium pentoxide and graphene oxide in polyvinyl alcohol for energy storage application. Eur Polymer J 76:14–27CrossRefGoogle Scholar
  58. 58.
    Lau WJ, Gray S, Matsuura T, Emadzadeh D, Chen JP, Ismail AF (2015) A review on polyamide thin film nanocomposite (TFN) membranes: history, applications, challenges and approaches. Water Res 80:306–824CrossRefGoogle Scholar
  59. 59.
    Janson A, Minier-Matar J, Al-Shamari E, Hussain A, Sharma R, Rowley D, Adham S (2018) Evaluation of new ion exchange resins for hardness removal from boiler feedwater. Emergent Mater 1(1–2):1–1CrossRefGoogle Scholar
  60. 60.
    Nagaraj A, Govindaraj D, Rajan M (2018) Magnesium oxide entrapped Polypyrrole hybrid nanocomposite as an efficient selective scavenger for fluoride ion in drinking water. Emergent Mater 1(1–2):1–9CrossRefGoogle Scholar
  61. 61.
    Hegab HM, Zou L (2015) Graphene oxide-assisted membranes: fabrication and potential applications in desalination and water purification. J Membr Sci 484:95–106CrossRefGoogle Scholar
  62. 62.
    Deshmukh K, Ahamed MB, Sadasivuni KK, Ponnamma D, AlMaadeed MAA, Deshmukh RR, Pasha SKK, Polu AR, Chidambaram K (2017) Fumed SiO2 nanoparticle reinforced biopolymer blend nanocomposites with high dielectric constant and low dielectric loss for flexible organic electronics. J Appl Polym Sci 134(5):44427CrossRefGoogle Scholar
  63. 63.
    Basavaiah K, Kahsay MH, Rama Devi D (2018) Green synthesis of magnetite nanoparticles using aqueous pod extract of Dolichos lablab L for an efficient adsorption of crystal violet. Emergent Mater 1(3–4):1–2CrossRefGoogle Scholar
  64. 64.
    Deshmukh K, Ahamed MB, Deshmukh RR, Pasha SKK, Sadasivuni KK, Polu AR, Ponnamma D, AlMaadeed MAA, Chidambaram K (2017) Newly developed biodegradable polymer nanocomposites of cellulose acetate and Al2O3 nanoparticles with enhanced dielectric performance for embedded passive applications. J Mater Sci Mater Electron 28(1):973–986CrossRefGoogle Scholar
  65. 65.
    Parambath SV, Ponnamma D, Sadasivuni KK, Thomas S, Stephen R (2017) Effect of polyhedral oligomeric siliseuioxane on the physical properties of polyvinyl alcohol. J Appl Polym Sci 134(43):45447CrossRefGoogle Scholar
  66. 66.
    Ponnamma D, Chamakh MM, Deshmukh K, Ahamed MB, Alper E, Sharma P, AlMaadeed MAA (2017) Ceramic based polymer nanocomposites as piezoelectric materials. In: Ponnamma D, Sadasivuni KK, Cabibihan JJ, AlMaadeed MAA (eds) the Book “Smart polymer nanocomposites. Springer Publications, Berlin, pp 77–94CrossRefGoogle Scholar
  67. 67.
    Kim H, Macosko CW (2008) Morphology and properties of polyester/exfoliated graphite nanocomposites. Macromolecules 41(9):3317–3327CrossRefGoogle Scholar
  68. 68.
    Andrews R, Jacques D, Minot M, Rantell T (2002) Fabrication of carbon multiwall nanotube/polymer composites by shear mixing. Macromol Mater Eng 287(6):395–403CrossRefGoogle Scholar
  69. 69.
    Hou Y, Cheng Y, Hobson T, Liu J (2010) Design and synthesis of hierarchical MnO2 nanospheres/carbon nanotubes/conducting polymer ternary composite for high performance electrochemical electrodes. Nano Lett 10(7):2727–2733CrossRefGoogle Scholar
  70. 70.
    Ajayan PM, Tour JM (2007) Materials science: nanotube composites. Nature 447(7148):1066–1068CrossRefGoogle Scholar
  71. 71.
    Thakur VK, Kessler MR (2015) Self-healing polymer nanocomposite materials: a review. Polymer 69:369–383CrossRefGoogle Scholar
  72. 72.
    Deshmukh K, Ahamed MB, Pasha SK, Deshmukh RR, Bhagat PR (2015) Highly dispersible graphene oxide reinforced polypyrrole/polyvinyl alcohol blend nanocomposites with high dielectric constant and low dielectric loss. RSC Adv 5:61933–61945CrossRefGoogle Scholar
  73. 73.
    Potts JR, Dreyer DR, Bielawski CW, Ruoff RS (2011) Graphene-based polymer nanocomposites. Polymer 52:5–25CrossRefGoogle Scholar
  74. 74.
    El Achaby M, Arrakhiz FE, Vaudreuil S, Kacem Qaiss A, Bousmina M, Fassi-Fehri O (2012) Mechanical, thermal, and rheological properties of graphene-based polypropylene nanocomposites prepared by melt mixing. Polym Compos 33(5):733–744CrossRefGoogle Scholar
  75. 75.
    Tang QY, Chan YC, Wong NB, Cheung R (2010) Surfactant-assisted processing of polyimide/multiwall carbon nanotube nanocomposites for microelectronics applications. Polym Int 59(9):1240–1245CrossRefGoogle Scholar
  76. 76.
    Inam F, Heaton A, Brown P, Peijs T, Reece MJ (2014) Effects of dispersion surfactants on the properties of ceramic–carbon nanotube (CNT) nanocomposites. Ceram Int 40(1):511–516CrossRefGoogle Scholar
  77. 77.
    Tkalya EE, Ghislandi M, de With G, Koning CE (2012) The use of surfactants for dispersing carbon nanotubes and graphene to make conductive nanocomposites. Curr Opin Colloid Inter Sci 17(4):225–232CrossRefGoogle Scholar
  78. 78.
    Veprek S, Veprek-Heijman MJ (2008) Industrial applications of superhard nanocomposite coatings. Surf Coat Technol 202(21):5063–5073CrossRefGoogle Scholar
  79. 79.
    Fukushima K, Wu MH, Bocchini S, Rasyida A, Yang MC (2012) PBAT based nanocomposites for medical and industrial applications. Mater Sci Eng C 32:1331–1351CrossRefGoogle Scholar
  80. 80.
    Ponnamma D, Saiter A, Saiter JM, Thomas S, Grohens Y, AlMaadeed MAA, Sadasivuni KK (2016) Influence of temperature on the confinement effect of micro and nanolevel graphite filled poly(isoprene-co-isobutylene) composites. J Polym Res 23:125CrossRefGoogle Scholar
  81. 81.
    Stankovich S, Dikin DA, Dommett GH, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442:282–286CrossRefGoogle Scholar
  82. 82.
    Deshmukh K, Ahamed MB, Deshmukh RR, Pasha SKK, Chidambaram K, Sadasivuni KK, Ponnamma D, AlMaadeed MA (2016) Ecofriendly synthesis of graphene oxide reinforced hydroxypropyl methyl cellulose/polyvinylalcohol blend nanocomposites filled with zinc oxide nanoparticles for high-k capacitor applications. Polymer-Plastics Technol Eng 55(12):1240–1253CrossRefGoogle Scholar
  83. 83.
    Deshmukh K, Ahamed MB, Polu AR, Sadasivuni KK, Pasha SK, Ponnamma D, AlMaadeed MA, Deshmukh RR, Chidambaram K (2016) Impedance spectroscopy, ionic conductivity and dielectric studies of new Li + ion conducting polymer blend electrolytes based on biodegradable polymers for solid state battery applications. J Mater Sci Mater Electron 27(11):11410–11424CrossRefGoogle Scholar
  84. 84.
    Stephenson T, Li Z, Olsen B, Mitlin D (2014) Lithium ion battery applications of molybdenum disulfide (MoS 2) nanocomposites. Energy Environ Sci 7:209–231CrossRefGoogle Scholar
  85. 85.
    Pfaendner R (2010) Nanocomposites: industrial opportunity or challenge? Polym Degrad Stab 95(3):369–373CrossRefGoogle Scholar
  86. 86.
    Ahmad R, Griffete N, Lamouri A, Felidj N, Chehimi MM, Mangeney C (2015) Nanocomposites of gold nanoparticles@ molecularly imprinted polymers: chemistry, processing, and applications in sensors. Chem Mater 27(16):5464–5478CrossRefGoogle Scholar
  87. 87.
    Siqueira G, Mathew AP, Oksman K (2011) Processing of cellulose nanowhiskers/cellulose acetate butyrate nanocomposites using sol–gel process to facilitate dispersion. Compos Sci Technol 71(16):1886–1892CrossRefGoogle Scholar
  88. 88.
    Biswas M, Ray SS (2001) Recent progress in synthesis and evaluation of polymer-montmorillonite nanocomposites. Adv Polym Sci 155:167–222CrossRefGoogle Scholar
  89. 89.
    Deshmukh K, Ahamed MB, Deshmukh RR, Pasha SK, Sadasivuni KK, Ponnamma D, AlMaadeed MA (2017) Striking multiple synergies in novel three-phase fluoropolymer nanocomposites by combining titanium dioxide and graphene oxide as hybrid fillers. J Mater Sci Mater Electron 28(1):559–575CrossRefGoogle Scholar
  90. 90.
    Deshmukh K, Ahamed MB, Deshmukh RR, Bhagat PR, Pasha SK, Bhagat A, Shirbhate R, Telare F, Lakhani C (2016) Influence of K2CrO4 doping on the structural, optical and dielectric properties of polyvinyl alcohol/K2CrO4 composite films. Polymer-Plastics Technol Eng 55(3):231–241CrossRefGoogle Scholar
  91. 91.
    Parry S, Pancoast J, Mildenhall S (2015) Chemical and bonding effects of exposing uncured PBI-NBR insulation to ambient conditions. J Appl Polym Sci 132(40):42636CrossRefGoogle Scholar
  92. 92.
    Balachandran M, Devanathan S, Muraleekrishnan R, Bhagawan SS (2012) Optimizing properties of nanoclay–nitrile rubber (NBR) composites using face centred central composite design. Mater Des 35:854–862CrossRefGoogle Scholar
  93. 93.
    Unalan IU, Cerri G, Marcuzzo E, Cozzolino CA, Farris S (2014) Nanocomposite films and coatings using inorganic nanobuilding blocks (NBB): current applications and future opportunities in the food packaging sector. RSC Adv 4(56):29393–29428CrossRefGoogle Scholar
  94. 94.
    Liu L, Jia D, Luo Y, Guo B (2006) Preparation, structure and properties of nitrile–butadiene rubber–organoclay nanocomposites by reactive mixing intercalation method. J Appl Polym Sci 100(3):1905–1913CrossRefGoogle Scholar
  95. 95.
    Fuentes-Alventosa JM, Introzzi L, Santo N, Cerri G, Brundu A, Farris S (2013) Self-assembled nanostructured biohybrid coatings by an integrated sol–gel/intercalation’ approach. RSC Adv 3(47):25086–25096CrossRefGoogle Scholar
  96. 96.
    Kim H, Abdala AA, Macosko CW (2010) Graphene/polymer nanocomposites. Macromolecules 43(16):6515–6530CrossRefGoogle Scholar
  97. 97.
    Ramanathan T, Abdala AA, Stankovich S, Dikin DA, Herrera-Alonso M, Piner RD, Adamson DH, Schniepp HC, Chen XR, Ruoff RS, Nguyen ST (2008) Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol 3:327–331CrossRefGoogle Scholar
  98. 98.
    Dennis H, Hunter DL, Chang D, Kim S, White JL, Cho JW, Paul DR (2001) Effect of melt processing conditions on the extent of exfoliation in organoclay-based nanocomposites. Polymer 42(23):9513–9522CrossRefGoogle Scholar
  99. 99.
    Njuguna J, Pielichowski K, Desai S (2008) Nanofiller-reinforced polymer nanocomposites. Polym Adv Technol 19(8):947–959CrossRefGoogle Scholar
  100. 100.
    Capadona JR, Van Den Berg O, Capadona LA, Schroeter M, Rowan SJ, Tyler DJ, Weder C (2007) A versatile approach for the processing of polymer nanocomposites with self-assembled nanofibre templates. Nat Nanotechnol 2:765–769CrossRefGoogle Scholar
  101. 101.
    Moniruzzaman M, Winey KI (2006) Polymer nanocomposites containing carbon nanotubes. Macromolecules 39(16):5194–5205CrossRefGoogle Scholar
  102. 102.
    Roth SV, Herzog G, Körstgens V, Buffet A, Schwartzkopf M, Perlich J, Kashem MA, Döhrmann R, Gehrke R, Rothkirch A, Stassig K (2011) In situ observation of cluster formation during nanoparticle solution casting on a colloidal film. J Phys Condens Matter 23(25):254208CrossRefGoogle Scholar
  103. 103.
    Al-Hussein M, Schindler M, Ruderer MA, Perlich J, Schwartzkopf M, Herzog G, Heidmann B, Buffet A, Roth SV, Müller-Buschbaum P (2013) In situ X-ray study of the structural evolution of gold nano-domains by spray deposition on thin conductive P3HT films. Langmuir 29(8):2490–2497CrossRefGoogle Scholar
  104. 104.
    Klein LC (2013) Sol-gel optics: processing and applications. Springer Publications, BerlinGoogle Scholar
  105. 105.
    Zhang J, Zhang M, Lin L, Wang X (2015) Sol processing of conjugated carbon nitride powders for thin-film fabrication. Angew Chem Int Ed 54(21):6297–6301CrossRefGoogle Scholar
  106. 106.
    Neena D, Shah AH, Deshmukh K, Ahmad H, Fu DJ, Kondamareddy KK, Kumar P, Dwivedi RK, Sing V (2016) Influence of (Co-Mn)co- doping on the microstructures, optical properties of sol gel derived ZnO nanoparticles. Eur Phys J D 70:53CrossRefGoogle Scholar
  107. 107.
    Zhang J, Chen Y, Wang X (2015) Two-dimensional covalent carbon nitride nanosheets: synthesis, functionalization, and applications. Energy Environ Sci 8(11):3092–3108CrossRefGoogle Scholar
  108. 108.
    Owens Gareth J, Singh Rajendra K, Foroutan Farzad, Alqaysi Mustafa, Han Cheol-Min, Mahapatra Chinmaya, Kim Hae-Won, Knowles Jonathan C (2016) Sol–gel based materials for biomedical applications. Prog Mater Sci 77:1–79CrossRefGoogle Scholar
  109. 109.
    Williams G, Seger B, Kamat PV (2008) TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2(7):1487–1491CrossRefGoogle Scholar
  110. 110.
    Vatani M, Lu Y, Lee KS, Kim HC, Choi JW (2013) Direct-write stretchable sensors using single-walled carbon nanotube/polymer matrix. J Electron Packag 135(1):011009CrossRefGoogle Scholar
  111. 111.
    Morteza A, Aekachan P, Sangjun L, Seunghwa R, Park I (2014) Highly stretchable and sensitive strain sensor based on silver nanowire elastomer nanocomposite. ACS Nano 8(5):5154–5163CrossRefGoogle Scholar
  112. 112.
    Lu Y, Vatani M, Choi JW (2013) Direct-write/cure conductive polymer nanocomposites for 3D structural electronics. J Mech Sci Technol 27(10):2929–2934CrossRefGoogle Scholar
  113. 113.
    Vatani M, Engeberg ED, Choi JW (2014) Detection of the position, direction and speed of sliding contact with a multi-layer compliant tactile sensor fabricated using direct-print technology. Smart Mater Struct 23(9):095008CrossRefGoogle Scholar
  114. 114.
    Wang S, Hu Y, Zhongkai Q, Wang Z, Chen Z, Fan W (2003) Preparation and flammability properties of polyethylene/clay nanocomposites by melt intercalation method from Na+ montmorillonite. Mater Lett 57:2675–2678CrossRefGoogle Scholar
  115. 115.
    Yoshimoto S, Ohashi F, Ohnishi Y, Nonami T (2004) Synthesis of polyaniline–montmorillonite nanocomposites by the mechanochemical intercalation method. Synth Met 145(2–3):265–270CrossRefGoogle Scholar
  116. 116.
    Kuila BK, Nandi AK (2004) Physical, mechanical, and conductivity properties of poly (3-hexylthiophene)-montmorillonite clay nanocomposites produced by the solvent casting method. Macromolecules 37(23):8577–8584CrossRefGoogle Scholar
  117. 117.
    Mozafari M, Moztarzadeh F, Rabiee M, Azami M, Maleknia S, Tahriri M, Moztarzadeh Z, Nezafati N (2010) Development of macroporous nanocomposite scaffolds of gelatin/bioactive glass prepared through layer solvent casting combined with lamination technique for bone tissue engineering. Ceram Int 36(8):2431–2439CrossRefGoogle Scholar
  118. 118.
    Oksman K, Mathew AP, Bondeson D, Kvien I (2006) Manufacturing process of cellulose whiskers/polylactic acid nanocomposites. Compos Sci Technol 66(15):2776–2784CrossRefGoogle Scholar
  119. 119.
    Zhang HB, Zheng WG, Yan Q, Yang Y, Wang JW, Lu ZH, Ji GY, Yu ZZ (2010) Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding. Polymer 51(5):1191–1196CrossRefGoogle Scholar
  120. 120.
    Wang Y, Wang Y, Hosono E, Wang K, Zhou H (2008) The design of a LiFePO4/carbon nanocomposite with a core–shell structure and its synthesis by an in situ polymerization restriction method. Angew Chem Int Ed 47(39):7461–7465CrossRefGoogle Scholar
  121. 121.
    Bao C, Guo Y, Song L, Kan Y, Qian X, Hu Y (2011) In situ preparation of functionalized graphene oxide/epoxy nanocomposites with effective reinforcements. J Mater Chem 21(35):13290–13298CrossRefGoogle Scholar
  122. 122.
    Biswas S, Fukushima H, Drzal LT (2011) Mechanical and electrical property enhancement in exfoliated graphene nanoplatelet/liquid crystalline polymer nanocomposites. Compos A Appl Sci Manuf 42(4):371–375CrossRefGoogle Scholar
  123. 123.
    Hussain I, Tran HP, Jaksik J, Moore J, Islam N, Uddin MJ (2018) Functional materials, device architecture, and flexibility of perovskite solar cell. Emergent Mater 1(3–4):1–22CrossRefGoogle Scholar
  124. 124.
    Kalaitzidou K, Fukushima H, Drzal LT (2007) A new compounding method for exfoliated graphite–polypropylene nanocomposites with enhanced flexural properties and lower percolation threshold. Compos Sci Technol 67(10):2045–2051CrossRefGoogle Scholar
  125. 125.
    Alexandre M, Dubois P, Sun T, Garces JM, Jérôme R (2002) Polyethylene-layered silicate nanocomposites prepared by the polymerization-filling technique: synthesis and mechanical properties. Polymer 43(8):2123–2132CrossRefGoogle Scholar
  126. 126.
    Zhang H, Chen G (2009) Potent antibacterial activities of Ag/TiO2 nanocomposite powders synthesized by a one-pot sol-gel method. Environ Sci Technol 43(8):2905–2910CrossRefGoogle Scholar
  127. 127.
    Jitianu A, Cacciaguerra T, Benoit R, Delpeux S, Beguin F, Bonnamy S (2004) Synthesis and characterization of carbon nanotubes–TiO2 nanocomposites. Carbon 42(5–6):1147–1151CrossRefGoogle Scholar
  128. 128.
    Liu C, Wang K, Luo S, Tang Y, Chen L (2011) Direct electrodeposition of graphene enabling the one step synthesis of graphene–metal nanocomposite films. Small 7(9):1203–1206CrossRefGoogle Scholar
  129. 129.
    Belgacem MN, Gandini A (2008) Monomers, polymers and composites from renewable resources. Elsevier Publications, AmsterdamCrossRefGoogle Scholar
  130. 130.
    Abdul Khalil HPS, Bhat AH, Ireana Yusra AF (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohyd Polym 87(2):963–979CrossRefGoogle Scholar
  131. 131.
    Jonathan G, Zhang M (2010) Polyblend nanofibers for biomedical applications: perspectives and challenges. Trends Biotechnol 28(4):189–197CrossRefGoogle Scholar
  132. 132.
    Liu Y, Li Y, Yang G, Zheng X, Zhou S (2015) Multi-stimulus-responsive shape-memory polymer nanocomposite network cross-linked by cellulose nanocrystals. ACS Appl Mater Inter 7(7):4118–4126CrossRefGoogle Scholar
  133. 133.
    Yeom J, Oh EJ, Reddy M (2009) Guided bone regeneration by poly (lactic-co-glycolic acid) grafted hyaluronic acid bi-layer films for periodontal barrier applications. Acta Biomaterialia 5(9):3394–3403CrossRefGoogle Scholar
  134. 134.
    Reddy MM, Vivekanandhan S, Misra M, Bhatia SK, Mohanty AK (2013) Biobased plastics and bionanocomposites: current status and future opportunities. Progress Polymer Sci 38(10):1653–1689CrossRefGoogle Scholar
  135. 135.
    Salami M, Kaveian F, Rafienia M, Saber-Samandari S, Khandan A, Naeimi M (2017) Electrospun polycaprolactone/lignin-based nanocomposite as a novel tissue scaffold for biomedical applications. J Med Signals Sens 7(4):228–238Google Scholar
  136. 136.
    Sadasivuni KK, Ponnamma D, Kim J, Cabibihan JJ, AlMaadeed MAA (2017) Introduction of biopolymer composites. In: Ponnamma D (ed) Biopolymer Composites in electronics. Elsevier, AmsterdamGoogle Scholar
  137. 137.
    Mai F, Habibi Y, Jean-Marie R, Philippe D, Feller JF, Ton P, Emiliano B (2013) Poly (lactic acid)/carbon nanotube nanocomposites with integrated degradation sensing. Polymer 54(25):6818–6823CrossRefGoogle Scholar
  138. 138.
    Sadasivuni KK Ponnamma D, Cabibihan JJ, AlMaadeed MAA (2016) Electronic applications of polydimethylsiloxane and its composites. In: Ponnamma D, Sadasivuni KK, Wan C, Thomas S, AlMaadeed MAA (eds) Flexible and stretchable electronic composites. Springer Publication, Berlin, pp 199–228Google Scholar
  139. 139.
    Okonkwo PC, Collins E, Okonkwo E (2017) Application of biopolymer composites in super capacitor. In: Sadasivuni KK Cabibihan JJ, Ponnamma D, AlMaadeed MAA (eds) Biopolymer composites in electronics. Springer Publication, Berlin, pp 487–503CrossRefGoogle Scholar
  140. 140.
    Christinelli WA, Gonçalves R, Pereira EC (2016) A new generation of electrochemical supercapacitors based on layer-by-layer polymer films. J Power Sources 303:73–80CrossRefGoogle Scholar
  141. 141.
    Botta L, Scaffaro R, Sutera F, Mistretta MC (2018) Reprocessing of PLA/graphene nanoplatelets nanocomposites. Polymers 10:18CrossRefGoogle Scholar
  142. 142.
    Alam J, Alam M, Raja M, Abduljaleel Z, Dass LA (2014) MWCNTs-reinforced epoxidized linseed oil plasticized polylactic acid nanocomposite and its electroactive shape memory behaviour. Int J Mol Sci 15(11):19924–19937CrossRefGoogle Scholar
  143. 143.
    Wang ZW, Zhao J, Chen M, Yang MH, Tang LY, Dang ZM, Chen FH, Huang MM, Dong X (2014) Dually actuated triple shape memory polymers of cross-linked polycyclooctene-carbon nanotube/polyethylene nanocomposites. ACS Appl Mater Interfaces 6(22):20051–20059CrossRefGoogle Scholar
  144. 144.
    Wang K, Strandman S, Zhu XX (2017) A mini review: shape memory polymers for biomedical applications. Front Chem Sci Technol 11(2):143–153CrossRefGoogle Scholar
  145. 145.
    Ikada Y (2006) Scope of tissue engineering. Tissue engineering: fundamentals and applications. Inter Sci Technol 8:1–90Google Scholar
  146. 146.
    Wei G, Ma PX (2004) Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials 25(19):4749–4757CrossRefGoogle Scholar
  147. 147.
    Salgado AJ, Coutinho OP, Reis RL (2004) Bone tissue engineering: state of the art and future trends. Macromol Biosci 4(8):743–765CrossRefGoogle Scholar
  148. 148.
    McCullen SD, Stevens DR, Roberts WA, Clarke LI, Bernacki SH, Gorga RE, Loboa EG (2007) Characterization of electrospun nanocomposite scaffolds and biocompatibility with adipose-derived human mesenchymal stem cells. Int J Nanomed 2(2):253–263Google Scholar
  149. 149.
    Sowmya S, Bumgardener JD, Chennazhi KP, Nair SV, Jayakumara R (2013) Role of nanostructured biopolymers and bioceramics in enamel, dentin and periodontal tissue regeneration. Progress Polymer Sci 38(10–11):1748–1772CrossRefGoogle Scholar
  150. 150.
    Fujihara K, Kotaki M, Ramakrishna S (2005) Guided bone regeneration membrane made of polycaprolactone/calcium carbonate composite nano-fibers. Biomaterials 26(19):4139–4147CrossRefGoogle Scholar
  151. 151.
    Minghuan L, Xiao-Peng D, Ye-Ming L, Da-Peng Y, Yun-Ze L (2017) Electrospun nanofibers for wound healing. Mater Sci Eng C 76:1413–1423CrossRefGoogle Scholar
  152. 152.
    Park JK, Yeom J, Oh EJ, Reddy M, Kim JY, Cho DW, Lim HP, Kim NS, Park SW, Shin HI, Yang DJ, Park KB, Hahn SK (2009) Guided bone regeneration by poly(lactic-co-glycolic acid) grafted hyaluronic acid bi-layer films for periodontal barrier applications. Acta Biomaterialia 5(9):3394–3403CrossRefGoogle Scholar
  153. 153.
    Chen FM, Zhang J, Zhang M, An Y, Chen F, Wu ZF (2010) A review on endogenous regenerative technology in periodontal regenerative medicine. Biomaterials 31(31):7892–7927CrossRefGoogle Scholar
  154. 154.
    Shakeel A, Saiqa I (2016) Chitosan based scaffolds and their applications in wound healing. Achieve Life Sci 10(1):27–37CrossRefGoogle Scholar
  155. 155.
    Zadeh KM, Ponnamma D, Al-Maadeed MAA (2017) Date palm fibre filled recycled ternary polymer blend composites with enhanced flame retardancy. Polymer Test 61:341–348CrossRefGoogle Scholar
  156. 156.
    Dahy H (2017) Biocomposite materials based on annual natural fibres and biopolymers—design, fabrication and customized applications in architecture. Construct Build Mater 147:212–220CrossRefGoogle Scholar
  157. 157.
    Bulota M, Kreitsmann K, Hughes M, Paltakari J (2012) Acetylated mcrofibrillated cellulose as a toughening agent in poly (lactic acid). J Appl Polymer Sci 126(S1):E448–E457CrossRefGoogle Scholar
  158. 158.
    Miao S, Liu K, Wang P, Su Z, Zhang S (2015) Preparation and characterization of epoxidized soybean oil-based paper composite as potential water-resistant materials. J Appl Polymer Sci 132(10):41575CrossRefGoogle Scholar
  159. 159.
    Majeed K, Jawaid M, Hassan A, Abu Bakar A, Khalil HPSA, Salema AA, Inuwa I (2013) Potential materials for food packaging from nanoclay/natural fibers filled hybrid composites. Mater Des 46:391–410CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Khadija Zadeh
    • 1
  • Sadiya Waseem
    • 2
  • Kishor Kumar Sadasivuni
    • 1
    Email author
  • Kalim Deshmukh
    • 3
  • Aqib Muzaffar
    • 3
  • M. Basheer Ahamed
    • 3
  • Mariam Al-Ali AlMaadeed
    • 4
  1. 1.Center for Advanced Materials, Qatar UniversityDohaQatar
  2. 2.Advanced Carbon Products, CSIR-NPLNew DelhiIndia
  3. 3.Department of PhysicsB.S. Abdur Rahman Crescent Institute of Science and TechnologyChennaiIndia
  4. 4.Materials Science and Technology ProgramQatar UniversityDohaQatar

Personalised recommendations