Sustainable Nanocomposites in Food Packaging

  • H. AnuarEmail author
  • F. B. Ali
  • Y. F. Buys
  • M. A. Siti Nur E’zzati
  • A. R. Siti Munirah Salimah
  • M. S. Mahmud
  • N. Mohd Nordin
  • S. A. Adli


Plastics have been used extensively and exploited its usages in various applications such as packaging materials, automotive parts, tubes, pipes, and many more. The plastics have attracted many fields for its versatility, lightweight, and durability. Plastics are being used broadly as food packaging materials which come as bottle containers, food containers, and lightweight take-away food packets. However, as plastics are not degradable, they are causing a major environmental problem due to scarce of landfill sites. The plastics are also being washed into the sea and causing pollution in the ocean and being eaten by the fishes. Thus, there cause a need for developing biodegradable materials that have both mechanical strength and biodegradable. A lot of researchers are contributing to developing biodegradable materials that can substitute conventional polymers, however, there is still limit of mechanical strength and elongation-at-break as per need for food packaging. Therefore, the polymers/biodegradable polymers are being mixed with nano-sized fillers to form nanocomposites which have improved mechanical strength. In this chapter, preparations of nanocomposites are discussed thoroughly and the characterizations that are being used to study the properties of the nanocomposites are detailed in the sections below.


Biodegradable Biopolymer Nanocomposite Functional properties And food packaging 

List of Abbreviations


Alkyl phenols


Cellulose nanocrystals


Carbon nanotube


Cellulose nanowhisker


Carbon dioxide permeability coefficient


Carbon dioxide transmission rate


Differential scanning calorimetry


N, N-dimethylformamide


Ethylene vinyl alcohol copolymer


High-density polyethylene


Hydroxyl propyl methyl cellulose






Low-density polyethylene


Magnesium oxide




Multi-walled carbon nanotube


Oxygen permeability coefficient


Oxygen transmission rate






Polyethylene glycol


Polyethylene glycol methyl ether


Polyethylene terephthalate


Poly hydroxyalkanoate


Polyhydroxy butyrate




Polylactic acid




Polyvinyl alcohol


Ring-opening polymerization


Scanning electron microscopy


Thermogravimetric analysis


World health organization


Water-soluble chitosan


Water vapour permeability coefficient


Water vapour transmission rate



The authors wish to thank Ministry of Education Malaysia for the Fundamental Research Grant Scheme, FRGS14-105-0346, FRGS14-108-0349, FRGS16-003-0502 and RIGS16-085-0249 for the financial support and International Islamic University Malaysia for the facilities and equipment in making these studies a success.


  1. 1.
    Almeida LA, Marques MDFV, Dahmouche K (2015) Synthesis of polypropylene/organoclay nanocomposites via in situ polymerization with improved thermal and dynamic-mechanical properties. J Nanosci Nanotechnol 15(3):2514–2522CrossRefGoogle Scholar
  2. 2.
    Arias A, Heuzey MC, Huneault MA et al (2015) Enhanced dispersion of cellulose nanocrystals in melt-processed polylactide-based nanocomposites. Cellulose 22(1):483–498CrossRefGoogle Scholar
  3. 3.
    Arrieta MP, Fortunati E, Dominici F et al (2014) PLA-PHB/cellulose based films: mechanical, barrier and disintegration properties. Polym Degrad Stab 107:139–149CrossRefGoogle Scholar
  4. 4.
    Arrieta MP, Lopez J, Ferrandiz S et al (2013) Characterization of PLA-limonene blends for food packaging applications. Polym Testing 32(4):760–768CrossRefGoogle Scholar
  5. 5.
    Badmus AA, Gauri S, Ali NI et al (2015) Mechanical stability of biobased food packaging materials. Food Sci Q Manag 39:41–47Google Scholar
  6. 6.
    Beltrán A, Valente AJM, Jiménez A et al (2014) Characterization of poly(ε-caprolactone)-based nanocomposites containing hydroxytyrosol for active food packaging. J Agric Food Chem 62(10):2244–2252CrossRefGoogle Scholar
  7. 7.
    Bhunia K, Sablani S, Tang J et al (2013) Migration of chemical compounds from packaging polymers during microwave, conventional heat treatment and storage. Compr Rev Food Sci Food Saf 12:523–545CrossRefGoogle Scholar
  8. 8.
    Boone Lox F, Pottie S (1993) Deficiencies of polypropylene in its use as a food-packaging material—a review. Packag Technol Sci 6(June):277–281CrossRefGoogle Scholar
  9. 9.
    Bordes P, Pollet E, Bourbigot S et al (2008) Structure and properties of PHA/clay nano-biocomposites prepared by melt intercalation. Macromol Chem Phys 209(14):1473–1484CrossRefGoogle Scholar
  10. 10.
    Butnaru E, Cheaburu CN, Yilmaz O et al (2016) Poly(vinyl alcohol)/chitosan/montmorillonite nanocomposites for food packaging applications: influence of montmorillonite content. High Perform Polym 28(10):1124–1138CrossRefGoogle Scholar
  11. 11.
    Choi RN, Cheigh CI, Lee SY et al (2011) Preparation and properties of polypropylene/clay nanocomposites for food packaging. J Food Sci 76(8):62–67CrossRefGoogle Scholar
  12. 12.
    De Silva RT, Mantilaka MMMGPG, Ratnayake SP et al (2017) Nano-MgO reinforced chitosan nanocomposites for high performance packaging applications with improved mechanical, thermal and barrier properties. Carbohydr Polym 157:739–747CrossRefGoogle Scholar
  13. 13.
    Deepa B, Abraham E, Cherian BM et al (2011) Structure, morphology and thermal characteristics of banana nanofibers obtained by steam explosion. Bioresour Technol 102(2): 1988–1997CrossRefGoogle Scholar
  14. 14.
    Dehnad D, Mirzaei H, Emam-Djomeh Z et al (2014) Thermal and antimicrobial properties of chitosan-nanocellulose films for extending shelf life of ground meat. Carbohydr Polym 109:148–154CrossRefGoogle Scholar
  15. 15.
    Diez-Pascual AM, Diez-Vicente, Angel L (2014) ZnO-reinforced poly (3-hydroxybutyrate- co -3-hydroxyvalerate) bionanocomposites with antimicrobial function for food packaging. Appl Mater Interf 9822–9834CrossRefGoogle Scholar
  16. 16.
    Feldman D (2016) Review-polymer nanocomposites in medicine. J Macromol Sci, Part A: Pure and Appl Chem 53(1):55–62CrossRefGoogle Scholar
  17. 17.
    Fonseca C, Ochoa A, Ulloa MT et al (2015) Poly (lactic acid)/TiO2 nanocomposites as alternative biocidal and antifungal materials. Mater Sci Eng 57:314–320CrossRefGoogle Scholar
  18. 18.
    Fortunati E, Puglia D, Monti M et al (2012) Cellulose nanocrystals extracted from okra fibers in PVA nanocomposites. J Appl Polym Sci 128(5):3220–3230CrossRefGoogle Scholar
  19. 19.
    Fortunati E, Rinaldi S, Peltzer M et al (2014) Nano-biocomposite films with modified cellulose nanocrystals and synthesized silver nanoparticles. Carbohydr Polym 101:1122–1133CrossRefGoogle Scholar
  20. 20.
    Galotto M, Ulloa P (2010) Effect of high-pressure food processing on the mass transfer properties of selected packaging materials. Packag Technol Sci 23(May):253–266Google Scholar
  21. 21.
    Ghaffari-Moghaddam M, Eslahi H (2014) Synthesis, characterization and antibacterial properties of a novel nanocomposite based on polyaniline/polyvinyl alcohol/Ag. Arab J Chem 7(5):846–855CrossRefGoogle Scholar
  22. 22.
    Herrera N, Mathew AP, Oksman K (2015) Plasticized polylactic acid/cellulose nanocomposites prepared using melt-extrusion and liquid feeding: mechanical, thermal and optical properties. Compos Sci Technol 106:149–155CrossRefGoogle Scholar
  23. 23.
    Heydari A, Alemzadeh I, Vossoughi M (2013) Functional properties of biodegradable corn starch nanocomposites for food packaging applications. Mater Des 50:954–961CrossRefGoogle Scholar
  24. 24.
    Honarvar Z, Hadian Z, Mashayekh M (2016) Nanocomposites in food packaging applications and their risk assessment for health. Electr Phys 8(6):2531–2538CrossRefGoogle Scholar
  25. 25.
    Hu W, Chen S, Yang J et al (2014) Functionalized bacterial cellulose derivatives and nanocomposites. Carbohydr Polym 101(1):1043–1060CrossRefGoogle Scholar
  26. 26.
    Icoz A, Eker B (2016) Selection of food packaging material, migration and its effects on food quality. In: 1st international conference on quality of life, Center for Quality, Faculty of Engineering, Unviersity of Kragujevac, June 2016Google Scholar
  27. 27.
    Jiang L, Morelius E, Zhang J et al (2008) Study of the Poly(3-hyroxybutyrate-co-3-hydroxyvalerate)/Cellulose Nanowhisker composites prepared by solution casting and melt processing. J Compos Mater 42(24):2629–2645CrossRefGoogle Scholar
  28. 28.
    Kim IH, Jeong YG (2010) Polylactide/exfoliated graphite nanocomposites with enhanced thermal stability, mechanical modulus, and electrical conductivity. J Polym Sci, Part B: Polym Phys 48(8):850–858CrossRefGoogle Scholar
  29. 29.
    Kim SW, Cha SH (2014) Thermal, mechanical, and gas barrier properties of ethylene–vinyl alcohol copolymer-based nanocomposites for food packaging films: Effects of nanoclay loading. J Appl Polym Sci 131(11):40289CrossRefGoogle Scholar
  30. 30.
    Kong I, Tshai KY, Hoque ME (2015) Manufacturing of natural fibre-reinforced polymer composites by solvent casting method. In: Salit MS (ed) Manufacturing of natural fibre reinforced polymer composites. Springer International Publishing, Switzerland, pp 331–349CrossRefGoogle Scholar
  31. 31.
    Lagarón JM, López-Rubio A, José Fabra M (2015) Bio-based packaging. J Appl Polym Sci 133(2):42971Google Scholar
  32. 32.
    Lai SM, Hsieh YT (2016) Preparation and properties of polylactic acid (PLA)/silica nanocomposites. J Macromol Sci, Part B 55(3):211–228CrossRefGoogle Scholar
  33. 33.
    Lai SM, Wu SH, Lin GG et al (2014) Unusual mechanical properties of melt-blended poly (lactic acid)(PLA)/clay nanocomposites. Eur Polym J 52:193–206CrossRefGoogle Scholar
  34. 34.
    Lee JW, Son SM, Hong SI (2008) Characterization of protein-coated polypropylene films as a novel composite structure for active food packaging application. J Food Eng 86(4):484–493CrossRefGoogle Scholar
  35. 35.
    Lemmouchi Y, Murariu M, Santos DAM et al (2009) Plasticization of poly(lactide) with blends of tributyl citrate and low molecular weight poly(D, L-lactide)-B-poly(ethylene glycol) copolymers. Eur Polym J 45(10):2839–2848CrossRefGoogle Scholar
  36. 36.
    Li X, Gao H, Scrivens WA et al (2005) Structural and mechanical characterization of nanoclay-reinforced agarose nanocomposites. Nanotechnology 16(10):2020–2029CrossRefGoogle Scholar
  37. 37.
    Liu G, Song Y, Wang J et al (2014) Effects of nanoclay type on the physical and antimicrobial properties of PVOH-based nanocomposite films. LWT-Food Sci Technol 57(2):562–568 CrossRefGoogle Scholar
  38. 38.
    Lunineau G, Rahaman A (2012) A review of strategies for improving the degradation properties of laminated continuous-fiber/epoxy composites with carbon-basednanoreinforcements. Carbon 50:2377–2395CrossRefGoogle Scholar
  39. 39.
    Maiti P, Batt CA, Giannelis EP (2007) New biodegradable polyhydroxybutyrate/layered silicate nanocomposites. Biomacromol 8(11):3393–3400CrossRefGoogle Scholar
  40. 40.
    Majeed K, Jawaid M, Hassan A et al (2013) Potential materials for food packaging from nanoclay/natural fibres filled hybrid composites. Mater Des 46:341–410CrossRefGoogle Scholar
  41. 41.
    Malhotra B, Anu K, Harsha K (2015) Review-antimicrobial food packaging: potential and pitfalls. Front Microbiol 6(611):1–9Google Scholar
  42. 42.
    Mali S, Victoria EM, Garcia M et al (2004) Barrier, mechanical and optical properties of plasticized Yam starch films. Carbohydr Polym 56:129–135CrossRefGoogle Scholar
  43. 43.
    Marina R, Alfonso J, Mercedes P et al (2014) Development of novel nano-biocomposite antioxidant films based on poly (lactic acid) and thymol for active packaging. Food Chem 1–31Google Scholar
  44. 44.
    Marra A, Silvestre C, Duraccio D et al (2016) Polylactic acid/zinc oxide biocomposite films for food packaging application. Int J Biol Macromol 88:254–262CrossRefGoogle Scholar
  45. 45.
    Mostafa HM, Sourell H, Bockisch FJ (2010) The mechanical properties of some bioplastics under different soil types for use as a biodegradable drip tubes. CIGR Ejournal 12:1–8Google Scholar
  46. 46.
    Murariu M, Dechief AL, Bonnaud L et al (2010) The production and properties of polylactide composites filled with expanded graphite. Polym Degrad Stab 95(5):889–900CrossRefGoogle Scholar
  47. 47.
    Mushi NE, Utsel S, Berglund LA (2014) Nanostructured biocomposite films of high toughness based on native chitin nanofibers and chitosan. Front Chem 2:99CrossRefGoogle Scholar
  48. 48.
    Nascimento P, Marim R, Carvalho G et al (2016) Nanocellulose produced from rice hulls and its effect on the properties of biodegradable starch films. Mater Res 19(1):167–174CrossRefGoogle Scholar
  49. 49.
    Neelamana IK, Thomas S, Parameswaranpillai J (2013) Characteristics of banana fibers and banana fiber reinforced phenol formaldehyde composites-macroscale to nanoscale. J Appl Polym Sci 130(2):1239–1246CrossRefGoogle Scholar
  50. 50.
    Ojijo V, Sinha Ray S (2013) Processing strategies in bionanocomposites. Prog Polym Sci 38(10–11):1543–1589CrossRefGoogle Scholar
  51. 51.
    Oksman K, Aitomäki Y, Mathew AP et al (2016) Review of the recent developments in cellulose nanocomposite processing. Compos Part A: Appl Sci Manuf 83:2–18CrossRefGoogle Scholar
  52. 52.
    Okubo K, Fujii T, Thostenson ET (2009) Multi-scale hybrid biocomposite: processing and mechanical characterization of bamboo fiber reinforced PLA with microfibrillated cellulose. Compos Part A: Appl Sci Manuf 40(4):469–475CrossRefGoogle Scholar
  53. 53.
    Olatunji O, Richard O (2016) Processing and characterization of natural polymers. In: Olatunji O (ed) Natural polymers. Springer International Publishing, Switzerland, pp 19–34CrossRefGoogle Scholar
  54. 54.
    Öner M, İlhan B (2016) Fabrication of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) biocomposites with reinforcement by hydroxyapatite using extrusion processing. Mater Sci Eng, C 65:19–26CrossRefGoogle Scholar
  55. 55.
    Othman SH (2014) Bio-nanocomposite materials for food packaging applications: types of biopolymer and nano-sized filler. Agric Agric Sci Proc 2:296–303Google Scholar
  56. 56.
    Pandey JK, Reddy KR, Kumar AP et al (2005) An overview on the degradability of polymer nanocomposites. Polym Degrad Stab 88:234–250CrossRefGoogle Scholar
  57. 57.
    Pazourkova L, Martynkova G, Placha D (2015) Preparation and mechanical properties of polymeric nanocomposites with hydroxyapatite and hydroxyapatite/clay mineral fillers—review. J Nanotechnol: Nanomed Nanobiotechnol 2(007):1–8Google Scholar
  58. 58.
    Petersson L, Kvien I, Oksman K (2007) Structure and thermal properties of poly (lactic acid)/cellulose Whiskers nanocomposites. Compos Sci Technol 67:2535–2544CrossRefGoogle Scholar
  59. 59.
    Pinto AM, Cabral J, Tanaka DAP et al (2012) Effect of incorporation of graphene oxide and graphene nanoplatelets on mechanical and gas permeability properties of poly(lactic acid) films. Polym Int 62(1):33–40CrossRefGoogle Scholar
  60. 60.
    Pinto RJB, Daina S, Sadocco P et al (2013) Antibacterial activity of nanocomposites of copper and cellulose. BioMed Res Int, 1–6CrossRefGoogle Scholar
  61. 61.
    Qin Y, Yang J, Xue J (2015) Characterization of antimicrobial poly(lactic acid)/ poly(trimethylene carbonate) films with cinnamaldehyde. J Mater Sci V50(3):1150–1158CrossRefGoogle Scholar
  62. 62.
    Ramos M, Jiménez A, Peltzer M et al (2014) Development of novel nano-composite antioxidants films based on poly (lactic acid) and tymol for active packaging. Food Chem 162:149–155CrossRefGoogle Scholar
  63. 63.
    Saba N, Paridah MT, Mohammad J (2014) Potentiality of nano filler/natural fiber filled polymer hybrid composites. A review. Polymers 2014(6): 2247–2273CrossRefGoogle Scholar
  64. 64.
    Saeedeh SA, Hosseini H, Mohammadifar MA et al (2014) Characterization of k-carrageenan films incorporated plant essentialoils with improved antimicrobial activity. Carbohydr Polym 101:582–591CrossRefGoogle Scholar
  65. 65.
    Salehifar M, Mohammad Hadi BN, Reza A et al (2013) Effect of LDPE/MWCNT films on the shelf life of Iranian Lavash bread. Eur J Exp Biol 3(6):183–188Google Scholar
  66. 66.
    Salit MS, Jawaid M, Yusoff NB, Hoque ME (2015) Manufacturing of natural fibre reinforced polymer composites. Springer, SwitzerlandCrossRefGoogle Scholar
  67. 67.
    Sengupta R, Chakraborty S, Bandyopadhyay S et al (2007) A short review on rubber/ clay nanocomposites with emphasis on mechanical properties. Engineering 47:21–25Google Scholar
  68. 68.
    Shan GF, Gong X, Chen WP et al (2011) Effect of multi-walled carbon nanotubes on crystallization behavior of poly (3-hydroxybutyrate-co-3-hydroxyvalerate). Coll Polym Sci 289(9):1005–1014CrossRefGoogle Scholar
  69. 69.
    Siemann U (2005) Solvent cast technology—a versatile tool for thin film production. Prog Coll Polym Sci 130:1–14Google Scholar
  70. 70.
    Singh P, Ali AW, Sven S (2011) Active packaging of food products: recent trends. Nutr Food Sci 41(4):249–260CrossRefGoogle Scholar
  71. 71.
    Sinha RS, Bousmina M (2005) Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world. Prog Mater Sci 50:962–1079CrossRefGoogle Scholar
  72. 72.
    Sinha RS, Maiti P, Okamoto M et al (2002) New polylactide/layered silicate nanocomposites. 1. Preparation, characterization, and properties. Macromolecules 35(8):3104–3110CrossRefGoogle Scholar
  73. 73.
    Siracusa V (2012) Food packaging permeability behaviour: a report. Int J Polym Sci 2012:1–11CrossRefGoogle Scholar
  74. 74.
    SiracusaV Rocculi P, Romani S et al (2008) Biodegradable polymers for food packaging: a review. Trends Food Sci Technol 19(12):634–643CrossRefGoogle Scholar
  75. 75.
    Siti Nur E’zzati MA, Anuar H, Siti Munirah Salimah, AR (2018) Effect of coupling agent on durian skin fibre nanocomposite reinforced polypropylene. In: IOP conference series: materials science and engineering, University Islamic University Malaysia, Malaysia, 8–9 August 2017Google Scholar
  76. 76.
    Souza AC, Souza C, Dias AMA et al (2014) Impregnation of cinnamaldehyde into cassava starch biocomposite films using supercritical fluid technology for the development of food active packaging. Carbohydr Polym 102:830–837CrossRefGoogle Scholar
  77. 77.
    Sriupayoa J, Supaphola P, Blackwell J et al (2005) Preparation and characterization of alpha-Chitin Whisker-reinforced poly (vinyl alcohol) nanocomposite films with or without heat treatment. Polymer 46(15):5637–5644CrossRefGoogle Scholar
  78. 78.
    Suzuki S, Shimahashi K, Takahara J et al (2005) Effect of addition of water-soluble chitin on amylose film. Biomacromol 6:3238–3242CrossRefGoogle Scholar
  79. 79.
    Talegaonkar S, Sharma H, Pandey S et al (2017) Chapter 3: Bionanocomposites: smart biodegradable packaging material for food preservation. In: Grumezescu AM (ed) Food Packaging, Nanotechnology in the Agri-Food Industry 7. Elsevier, United Kingdom, pp 79–110Google Scholar
  80. 80.
    Tammaro L, Vittoria V, Bugatti V (2014) Dispersion of modified layered double hydroxides in poly(ethylene terephthalate) by high energy ball milling for food packaging applications. Eur Polym J 52(1):172–180CrossRefGoogle Scholar
  81. 81.
    Tang XZ, Kumar P, Alavi S et al (2012) Recent advances in biopolymers and biopolymer-based nanocomposites for food packaging materials. Cri Rev Food Sci Nut 52(5):426–442CrossRefGoogle Scholar
  82. 82.
    Valdés A, Mellinas AC, Ramos M et al (2014) Natural additives and agricultural wastes in biopolymer formulations for food packaging. Front Chem 2(6):10Google Scholar
  83. 83.
    Villmow T, Pötschke P, Pegel S et al (2008) Influence of twin-screw extrusion conditions on the dispersion of multi-walled carbon nanotubes in a poly (lactic acid) matrix. Polymer 49(16):3500–3509CrossRefGoogle Scholar
  84. 84.
    Vodnar DV, Oana LP, Francisc VD (2015) Antimicrobial efficiency of edible films in food industry. Notule Botanicae Horti Agrobotamici 3(2):302–312Google Scholar
  85. 85.
    Wagner M, Oehlmann J (2009) Endocrine disruptors in bottled mineral water: total estrogenic burden and migration from plastic bottles. Environ Sci Pollut Res 16(3):278–286CrossRefGoogle Scholar
  86. 86.
    Wen X, Lin Y, Han C et al (2009) Thermomechanical and optical properties ofbiodegradable poly(L-lactide)/silica nanocomposites by melt compounding. J Appl Polym Sci 114:3379–3388CrossRefGoogle Scholar
  87. 87.
    Wu D, Wu L, Zhang M et al (2008) Viscoelasticity and thermal stability of polylactide composites with various functionalized carbon nanotubes. Polym Degrad Stab 93(8):1577–1584CrossRefGoogle Scholar
  88. 88.
    Wu J, Yu C, Li Q (2017) Novel regenerable antimicrobial nanocomposite membranes: effect of silver loading and valence state. J Membr Sci 531:68–76CrossRefGoogle Scholar
  89. 89.
    Wu J, Zheng Y, Song W et al (2014) In situ synthesis of silver-nanoparticles/bacterial cellulose composites for slow-released antimicrobial wound dressing. Carbohydr Polym 104(1):762–771CrossRefGoogle Scholar
  90. 90.
    Yahiaoui F, Benhacine F, Ferfera-Harrar H et al (2014) Development of antimicrobial PCL/nanoclay nanocomposite films with enhanced mechanical and water vapor barrier properties for packaging applications. Polym Bull 72(2): 235–254CrossRefGoogle Scholar
  91. 91.
    Yoo S, Krochta JM (2011) Whey protein–polysaccharide blended edible film formation and barrier, tensile, thermal and transparency properties. J Sci Food Agric 91(14):2628–2636CrossRefGoogle Scholar
  92. 92.
    Yu H, Yan C, Yao J (2014) Fully biodegradable food packaging materials based on functionalized cellulose nanocrystals/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nanocomposites. RSC Adv 4(104):59792–59802CrossRefGoogle Scholar
  93. 93.
    Zehetmeyer G, Soares RMD, Brandelli A et al (2012) Evaluation of polypropylene/montmorillonite nanocomposites as food packaging material. Polym Bull 68(8):2199–2217CrossRefGoogle Scholar
  94. 94.
    Zheng Y, Yan K, Zhao Y et al (2016) Preparation and characterization of poly (L-lactic acid)/hollow silica nanospheres nanocomposites. Fibers Polym 17(12):2020–2026CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • H. Anuar
    • 1
    Email author
  • F. B. Ali
    • 2
  • Y. F. Buys
    • 1
  • M. A. Siti Nur E’zzati
    • 1
  • A. R. Siti Munirah Salimah
    • 1
  • M. S. Mahmud
    • 1
  • N. Mohd Nordin
    • 1
  • S. A. Adli
    • 2
  1. 1.Department of Manufacturing and Materials Engineering, Faculty of EngineeringInternational Islamic University MalaysiaKuala LumpurMalaysia
  2. 2.Department of Biotechnology Engineering, Faculty of EngineeringInternational Islamic University MalaysiaKuala LumpurMalaysia

Personalised recommendations