Advertisement

Processing, Characterization and Application of Micro and Nanocellulose Based Environmentally Friendly Polymer Composites

  • Adriana de CamposEmail author
  • Ana Carolina Corrêa
  • Pedro Ivo Cunha Claro
  • Eliangela de Morais Teixeira
  • José Manoel Marconcini
Chapter

Abstract

Biodegradable polymers with micro and nano-cellulose present attractive properties and the highly reactive surface of cellulose resulting from the high density of hydroxyl groups are great at this scale. Therefore, this chapter has the objective to discuss cellulosic nanostructured films, types of processing involving the production of bionanocomposites and other important applications of them in non-biocomposite areas. A brief description of the definition, terminology, and methods of obtaining cellulose nanostructures as procedures used in the functionalization of the cellulose surface to improve the hydrophilic character and the compatibility with polymer matrices will be presented.

Keywords

Micro-cellulose Nanocellulose Biodegradable polymer composites Processing Characterization 

References

  1. 1.
    Abdul Khalil HPS, Saurabh CK, Adnan AS et al (2016) A review on chitosan-cellulose blends and nanocellulose reinforced chitosan biocomposites: Properties and their applications. Carbohydr Polym 150:216–226CrossRefGoogle Scholar
  2. 2.
    Abitbol T, Rivkin A, Cao Y et al (2016) Nanocellulose, a tiny fiber with huge applications. Curr Opin Biotechnol 39:76–88CrossRefGoogle Scholar
  3. 3.
    Agustin MB, Nakatsubo F, Yano H (2016) Products of low-temperature pyrolysis of nanocellulose esters and implications for the mechanism of thermal stabilization. Cellulose 23:2887–2903.  https://doi.org/10.1007/s10570-016-1004-0CrossRefGoogle Scholar
  4. 4.
    Alemdar A, Sain M (2008) Biocomposites from wheat straw nanofibers: morphology, thermal and mechanical properties. Compos Sci Technol 68:557–565.  https://doi.org/10.1016/j.compscitech.2007.05.044CrossRefGoogle Scholar
  5. 5.
    Araujo MAM, Sena Neto AR, Hage E et al (2015) Curaua leaf fiber (Ananas comosus var. erectifolius) reinforcing poly(lactic acid) biocomposites: formulation and performance. Polym Compos 36:1520–1530.  https://doi.org/10.1002/pc.23059CrossRefGoogle Scholar
  6. 6.
    Azeredo HMC, Rosa MF, Mattoso LHC (2017) Nanocellulose in bio-based food packaging applications. Ind Crops Prod 97:664–671.  https://doi.org/10.1016/j.indcrop.2016.03.013CrossRefGoogle Scholar
  7. 7.
    Babaee M, Jonoobi M, Hamzeh Y, Ashori A (2015) Biodegradability and mechanical properties of reinforced starch nanocomposites using cellulose nanofibers. Carbohydr Polym 132:1–8.  https://doi.org/10.1016/j.carbpol.2015.06.043CrossRefGoogle Scholar
  8. 8.
    Bahrin EK, Baharuddin AS, Ibrahim MF et al (2012) Physicochemical property changes and enzymatic hydrolysis enhancement of oil palm empty fruit bunches treated with superheated steam. BioResources 7:1784–1801.  https://doi.org/10.15376/biores.7.2.1784-1801CrossRefGoogle Scholar
  9. 9.
    Behrens AM, Casey BJ, Sikorski MJ et al (2014) In situ deposition of PLGA nanofibers via solution blow spinning. ACS Macro Lett 3:249–254.  https://doi.org/10.1021/mz500049xCrossRefGoogle Scholar
  10. 10.
    Belbekhouche S, Bras J, Siqueira G et al (2011) Water sorption behavior and gas barrier properties of cellulose whiskers and microfibrils films. Carbohydr Polym 83:1740–1748.  https://doi.org/10.1016/j.carbpol.2010.10.036CrossRefGoogle Scholar
  11. 11.
    van der Berg O, Capadona JR, Weder C (2007) Preparation of homogeneous dispersions of tunicate cellulose whiskers in organic solvents. Biomacromol 8:1353–1357.  https://doi.org/10.1021/bm061104qCrossRefGoogle Scholar
  12. 12.
    Bhardwaj N, Kundu SC (2010) Electrospinning: A fascinating fiber fabrication technique. Biotechnol Adv 28:325–347.  https://doi.org/10.1016/j.biotechadv.2010.01.004CrossRefGoogle Scholar
  13. 13.
    Bondancia TJ, Mattoso LHC, Marconcini JM, Farinas CS (2017) A new approach to obtain cellulose nanocrystals and ethanol from eucalyptus cellulose pulp via the biochemical pathway. Biotechnol Prog 33:1085–1095.  https://doi.org/10.1002/btpr.2486CrossRefGoogle Scholar
  14. 14.
    Bufalino L (2014) Filmes de nanocelulose a partir de resíduos madeireiros da Amazônia. UFLA 106Google Scholar
  15. 15.
    Carmona VB, Corrêa AC, Marconcini JM, Mattoso LHC (2015) Properties of a biodegradable ternary blend of thermoplastic starch (TPS), Poly(ε-Caprolactone) (PCL) and Poly(Lactic Acid) (PLA). J Polym Environ 23:83–89.  https://doi.org/10.1007/s10924-014-0666-7CrossRefGoogle Scholar
  16. 16.
    Chen Y, Wu Q, Huang B et al (2015) Isolation and characteristics of cellulose and nanocellulose from lotus leaf stalk agro-wastes. BioResources 10:684–696Google Scholar
  17. 17.
    Chen L, Zhu JY, Baez C et al (2016) Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids. Green Chem 18:3835–3843.  https://doi.org/10.1039/C6GC00687FCrossRefGoogle Scholar
  18. 18.
    Chin KM, Sung Ting S, Ong HL, Omar M (2018) Surface functionalized nanocellulose as a veritable inclusionary material in contemporary bioinspired applications: a review. J Appl Polym Sci 135.  https://doi.org/10.1002/app.46065CrossRefGoogle Scholar
  19. 19.
    Claro PIC, Corrêa AC, de Campos A et al (2018) Curaua and eucalyptus nanofibers films by continuous casting: mechanical and thermal properties. Carbohydr Polym 181:1093–1101.  https://doi.org/10.1016/j.carbpol.2017.11.037CrossRefGoogle Scholar
  20. 20.
    Corradini E, Teixeira EM, Paladin PD et al (2009) Thermal stability and degradation kinetic study of white and colored cotton fibers by thermogravimetric analysis. J Therm Anal Calorim 97:415–419CrossRefGoogle Scholar
  21. 21.
    Corradini E, Imam SH, Agnelli JM, Mattoso LHC (2009a) Effect of coconut, sisal and jute fibers on the properties of starch/gluten/glycerol matrix. J Polym Environ 17:1–9.  https://doi.org/10.1007/s10924-009-0115-1CrossRefGoogle Scholar
  22. 22.
    Corrêa AC, de Morais Teixeira E, Carmona VB et al (2014) Obtaining nanocomposites of polyamide 6 and cellulose whiskers via extrusion and injection molding. Cellulose 21:311–322.  https://doi.org/10.1007/s10570-013-0132-zCrossRefGoogle Scholar
  23. 23.
    Corrêa AC, de Teixeira EM, Pessan LA, Mattoso LHC (2010) Cellulose nanofibers from curaua fibers. Cellulose 17:1183–1192.  https://doi.org/10.1007/s10570-010-9453-3CrossRefGoogle Scholar
  24. 24.
    Costa SV, Pingel P, Janietz S, Nogueira AF (2016) Inverted organic solar cells using nanocellulose as substrate. J Appl Polym Sci 133.  https://doi.org/10.1002/app.43679
  25. 25.
    Czaja WK, Young DJ, Kawecki M, Brown RM (2007) The future prospects of microbial cellulose in biomedical applications. Biomacromol 8:1–12CrossRefGoogle Scholar
  26. 26.
    da Silva Parize DD, Foschini MM, de Oliveira JE et al (2016) Solution blow spinning: parameters optimization and effects on the properties of nanofibers from poly(lactic acid)/dimethyl carbonate solutions. J Mater Sci 51:4627–4638.  https://doi.org/10.1007/s10853-016-9778-xCrossRefGoogle Scholar
  27. 27.
    da Silva Parize DD, de Oliveira JE, Williams T et al (2017) Solution blow spun nanocomposites of poly(lactic acid)/cellulose nanocrystals from Eucalyptus kraft pulp. Carbohydr Polym 174:923–932.  https://doi.org/10.1016/j.carbpol.2017.07.019CrossRefGoogle Scholar
  28. 28.
    Davoodi MM, Sapuan SM, Ahmad D et al (2010) Mechanical properties of hybrid kenaf/glass reinforced epoxy composite for passenger car bumper beam. Mater Des 31:4927–4932.  https://doi.org/10.1016/j.matdes.2010.05.021CrossRefGoogle Scholar
  29. 29.
    de Campos A, Teodoro KBR, Teixeira EM et al (2013) Properties of thermoplastic starch and TPS/polycaprolactone blend reinforced with sisal whiskers using extrusion processing. Polym Eng Sci 53:800–808.  https://doi.org/10.1002/pen.23324CrossRefGoogle Scholar
  30. 30.
    de Campos A, Correa AC, Cannella D et al (2013) Obtaining nanofibers from curaua and sugarcane bagasse fibers using enzymatic hydrolysis followed by sonication. Cellulose 20:1491–1500.  https://doi.org/10.1007/s10570-013-9909-3CrossRefGoogle Scholar
  31. 31.
    de Campos A, Tonoli GHD, Marconcini JM et al (2013) TPS/PCL composite reinforced with treated sisal fibers: property, biodegradation and water-absorption. J Polym Environ 21:1–7.  https://doi.org/10.1007/s10924-012-0512-8CrossRefGoogle Scholar
  32. 32.
    de Campos A, de Neto ARS, Rodrigues VB et al (2017a) Production of cellulose nanowhiskers from oil palm mesocarp fibers by acid hydrolysis and microfluidization. J Nanosci Nanotechnol 17:4970–4976.  https://doi.org/10.1166/jnn.2017.13451CrossRefGoogle Scholar
  33. 33.
    de Campos A, Sena Neto AR, Rodrigues VB et al (2017b) Bionanocomposites produced from cassava starch and oil palm mesocarp cellulose nanowhiskers. Carbohydr Polym 175:330–336.  https://doi.org/10.1016/j.carbpol.2017.07.080CrossRefGoogle Scholar
  34. 34.
    de Morais Teixeira E, Pasquini D, Curvelo AAS et al (2009) Cassava bagasse cellulose nanofibrils reinforced thermoplastic cassava starch. Carbohydr Polym 78:422–431.  https://doi.org/10.1016/j.carbpol.2009.04.034CrossRefGoogle Scholar
  35. 35.
    de Morais Teixeira E, Corrêa AC, Manzoli A et al (2010) Cellulose nanofibers from white and naturally colored cotton fibers. Cellulose 17:595–606.  https://doi.org/10.1007/s10570-010-9403-0CrossRefGoogle Scholar
  36. 36.
    de Morais Teixeira E, Bondancia TJ, Teodoro KBR et al (2011) Sugarcane bagasse whiskers: Extraction and characterizations. Ind Crops Prod 33:63–66.  https://doi.org/10.1016/j.indcrop.2010.08.009CrossRefGoogle Scholar
  37. 37.
    de Morais Teixeira E, de Campos A, Marconcini JM et al (2014) Starch/fiber/poly(lactic acid) foam and compressed foam composites. RSC Adv 4:6616.  https://doi.org/10.1039/c3ra47395cCrossRefGoogle Scholar
  38. 38.
    dos Santos RM, Flauzino Neto WP, Silvério HA et al (2013) Cellulose nanocrystals from pineapple leaf, a new approach for the reuse of this agro-waste. Ind Crops Prod 50:707–714.  https://doi.org/10.1016/j.indcrop.2013.08.049CrossRefGoogle Scholar
  39. 39.
    Dufresne A (2018) Cellulose nanomaterials as green nanoreinforcements for polymer nanocomposites. Philos Trans R Soc A Math Phys Eng Sci 376:20170040.  https://doi.org/10.1098/rsta.2017.0040CrossRefGoogle Scholar
  40. 40.
    Dufresne A, Castaño J (2016) Polysaccharide nanomaterial reinforced starch nanocomposites: a review. Starch/Staerke 1–19.  https://doi.org/10.1002/star.201500307CrossRefGoogle Scholar
  41. 41.
    Eichhorn SJ, Dufresne A, Aranguren M et al (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45:1–33.  https://doi.org/10.1007/s10853-009-3874-0CrossRefGoogle Scholar
  42. 42.
    El-Wakil NA, Hassan EA, Abou-Zeid RE, Dufresne A (2015) Development of wheat gluten/nanocellulose/titanium dioxide nanocomposites for active food packaging. Carbohydr Polym 124:337–346.  https://doi.org/10.1016/j.carbpol.2015.01.076CrossRefGoogle Scholar
  43. 43.
    Fahma F, Iwamoto S, Hori N et al (2010) Isolation, preparation, and characterization of nanofibers from oil palm empty-fruit-bunch (OPEFB). Cellulose 17:977–985.  https://doi.org/10.1007/s10570-010-9436-4CrossRefGoogle Scholar
  44. 44.
    Filson PB, Dawson-Andoh BE (2009) Characterization of sugars from model and enzyme-mediated pulp hydrolyzates using high-performance liquid chromatography coupled to evaporative light scattering detection. Bioresour Technol 100:6661–6664.  https://doi.org/10.1016/j.biortech.2008.12.067CrossRefGoogle Scholar
  45. 45.
    Flauzino Neto WP, Silvério HA, Dantas NO, Pasquini D (2013) Extraction and characterization of cellulose nanocrystals from agro-industrial residue—Soy hulls. Ind Crops Prod 42:480–488.  https://doi.org/10.1016/j.indcrop.2012.06.041CrossRefGoogle Scholar
  46. 46.
    Forsman N, Lozhechnikova A, Khakalo A et al (2017) Layer-by-layer assembled hydrophobic coatings for cellulose nanofibril films and textiles, made of polylysine and natural wax particles. Carbohydr Polym 173:392–402.  https://doi.org/10.1016/j.carbpol.2017.06.007CrossRefGoogle Scholar
  47. 47.
    Garcia de Rodriguez NL, Thielemans W, Dufresne A (2006) Sisal cellulose whiskers reinforced polyvinyl acetate nanocomposites. Cellulose 13:261–270.  https://doi.org/10.1007/s10570-005-9039-7CrossRefGoogle Scholar
  48. 48.
    Gardner DJ, Oporto GS, Mills R, Samir MASA (2008) Adhesion and Surface Issues in Cellulose and Nanocellulose. J Adhesion Sci Technol 22:545–567. https://doi.org/10.1163/156856108X295509CrossRefGoogle Scholar
  49. 49.
    Gaspar D, Fernandes SN, De Oliveira AG et al (2014) Nanocrystalline cellulose applied simultaneously as the gate dielectric and the substrate in flexible field effect transistors. Nanotechnology 25.  https://doi.org/10.1088/0957-4484/25/9/094008CrossRefGoogle Scholar
  50. 50.
    Ghaderi M, Mousavi M, Yousefi H, Labbafi M (2014) All-cellulose nanocomposite film made from bagasse cellulose nanofibers for food packaging application. Carbohydr Polym 104:59–65.  https://doi.org/10.1016/j.carbpol.2014.01.013CrossRefGoogle Scholar
  51. 51.
    González K, Retegi A, González A et al (2015) Starch and cellulose nanocrystals together into thermoplastic starch bionanocomposites. Carbohydr Polym 117:83–90.  https://doi.org/10.1016/j.carbpol.2014.09.055CrossRefGoogle Scholar
  52. 52.
    Gómez HC, Serpa A, Velásquez-Cock J et al (2016) Vegetable nanocellulose in food science: a review. Food Hydrocoll. 57:178–186CrossRefGoogle Scholar
  53. 53.
    Harmaen AS, Khalina A, Azowa I et al (2015) Thermal and biodegradation properties of poly(lactic acid)/fertilizer/oil palm fibers blends biocomposites. Polym Compos 36:576–583.  https://doi.org/10.1002/pc.22974CrossRefGoogle Scholar
  54. 54.
    Hassan ML, Bras J, Hassan EA, et al (2012) Polycaprolactone/ Modified Bagasse Whisker Nanocomposites with Improved Moisture-Barrier and Biodegradability Properties. J Appl Polym Sci 1–10.  https://doi.org/10.1002/app
  55. 55.
    Henriksson M, Henriksson G, Berglund LA, Lindström T (2007) An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur Polym J 43:3434–3441.  https://doi.org/10.1016/j.eurpolymj.2007.05.038CrossRefGoogle Scholar
  56. 56.
    Henrique MA, Silvério HA, Flauzino Neto WP, Pasquini D (2013) Valorization of an agro-industrial waste, mango seed, by the extraction and characterization of its cellulose nanocrystals. J Environ Manage 121:202–209.  https://doi.org/10.1016/j.jenvman.2013.02.054CrossRefGoogle Scholar
  57. 57.
    Hindi SSZ (2017) Microcrystalline cellulose: the inexhaustible treasure for pharmaceutical industry. Nanosci Nanotechnol Res 4:17–24.  https://doi.org/10.12691/nnr-4-1-3
  58. 58.
    Hu W, Chen S, Xu Q, Wang H (2011) Solvent-free acetylation of bacterial cellulose under moderate conditions. Carbohydr Polym 83:1575–1581.  https://doi.org/10.1016/j.carbpol.2010.10.016CrossRefGoogle Scholar
  59. 59.
    Hubbe MA, Ferrer A, Tyagi P et al (2017) Nanocellulose in thin films, coatings, and plies for packaging applications: a review. BioResources 12:2143–2233Google Scholar
  60. 60.
    Hubbe M, Rojas OJ, Lucia L, Sain M (2008) Cellulosic Nanocomposites: a review. BioResources 3:929–980.  https://doi.org/10.15376/biores.3.3.929-980
  61. 61.
    Ibrahim Nor Azowa, Hadithon Kamarul Arifin, Abdan K (2010) Effect of fiber treatment on mechanical properties of kenaf fiber-Ecoflex composites. J Reinf Plast Compos 29:2192–2198.  https://doi.org/10.1177/0731684409347592CrossRefGoogle Scholar
  62. 62.
    Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85.  https://doi.org/10.1039/C0NR00583ECrossRefGoogle Scholar
  63. 63.
    Iwamoto S, Nakagaito AN, Yano H (2007) Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites. Appl Phys A Mater Sci Process 89:461–466.  https://doi.org/10.1007/s00339-007-4175-6CrossRefGoogle Scholar
  64. 64.
    Jia C, Chen L, Shao Z et al (2017) Using a fully recyclable dicarboxylic acid for producing dispersible and thermally stable cellulose nanomaterials from different cellulosic sources. Cellulose 24:2483–2498.  https://doi.org/10.1007/s10570-017-1277-yCrossRefGoogle Scholar
  65. 65.
    Johar N, Ahmad I, Dufresne A (2012) Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Ind Crops Prod 37:93–99.  https://doi.org/10.1016/j.indcrop.2011.12.016CrossRefGoogle Scholar
  66. 66.
    Kaisangsri N, Kerdchoechuen O, Laohakunjit N (2014) Characterization of cassava starch based foam blended with plant proteins, kraft fiber, and palm oil. Carbohydr Polym 110:70–77.  https://doi.org/10.1016/j.carbpol.2014.03.067CrossRefGoogle Scholar
  67. 67.
    Kalia S, Boufi S, Celli A, Kango S (2014) Nanofibrillated cellulose: surface modification and potential applications. Colloid Polym Sci 292:5–31.  https://doi.org/10.1007/s00396-013-3112-9CrossRefGoogle Scholar
  68. 68.
    Kalia S, Dufresne A, Cherian BM t al (2011) Cellulose-based bio- and nanocomposites: a review. Int J Polym Sci 2011Google Scholar
  69. 69.
    Kamel S (2007) Nanotechnology and its applications in lignocellulosic composites, a mini review. Express Polym Lett 1:546–575CrossRefGoogle Scholar
  70. 70.
    Kargarzadeh H, Mariano M, Huang J et al (2017) Recent developments on nanocellulose reinforced polymer nanocomposites: a review. Polym (United Kingdom) 132:368–393Google Scholar
  71. 71.
    Kaushik A, Singh M, Verma G (2010) Green nanocomposites based on thermoplastic starch and steam exploded cellulose nanofibrils from wheat straw. Carbohydr Polym 82:337–345.  https://doi.org/10.1016/j.carbpol.2010.04.063CrossRefGoogle Scholar
  72. 72.
    Khalil HPSA, Davoudpour Y, Aprilia NAS, Mustapha A, Hossain S, Islam N, Dungani R (2014) Nanocellulose-based polymer nanocomposite: isolation, characterization and applications. In: nanocellulose polymer nanocomposites. John Wiley & Sons, Inc., p 273–309. ISBN: 978-1-118-87190-4Google Scholar
  73. 73.
    Kim JH, Shim BS, Kim HS et al (2015) Review of nanocellulose for sustainable future materials. Int J Precis Eng. Manuf Green Technol 2:197–213CrossRefGoogle Scholar
  74. 74.
    Lam NT, Chollakup R, Smitthipong W et al (2017) Characterization of cellulose nanocrystals extracted from sugarcane bagasse for potential biomedical materials. Sugar Tech 19:539–552.  https://doi.org/10.1007/s12355-016-0507-1CrossRefGoogle Scholar
  75. 75.
    Lamaming J, Hashim R, Sulaiman O et al (2015) Cellulose nanocrystals isolated from oil palm trunk. Carbohydr Polym 127:202–208.  https://doi.org/10.1016/j.carbpol.2015.03.043CrossRefGoogle Scholar
  76. 76.
    Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose—its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90:735–764CrossRefGoogle Scholar
  77. 77.
    Lee KY, Quero F, Blaker JJ et al (2011) Surface only modification of bacterial cellulose nanofibres with organic acids. Cellulose 18:595–605.  https://doi.org/10.1007/s10570-011-9525-zCrossRefGoogle Scholar
  78. 78.
    Lendvai L, Karger-Kocsis J, Kmetty Á, Drakopoulos SX (2016) Production and characterization of microfibrillated cellulose-reinforced thermoplastic starch composites. J Appl Polym Sci 133.  https://doi.org/10.1002/app.42397Google Scholar
  79. 79.
    Lif A, Stenstad P, Syverud K et al (2010) Fischer-Tropsch diesel emulsions stabilised by microfibrillated cellulose and nonionic surfactants. J Colloid Interface Sci 352:585–592.  https://doi.org/10.1016/j.jcis.2010.08.052CrossRefGoogle Scholar
  80. 80.
    Lin N, Dufresne A (2014) Nanocellulose in biomedicine: current status and future prospect. Eur Polym J 59:302–325.  https://doi.org/10.1016/j.eurpolymj.2014.07.025CrossRefGoogle Scholar
  81. 81.
    Lin N, Huang J, Chang PR et al (2011) Surface acetylation of cellulose nanocrystal and its reinforcing function in poly(lactic acid). Carbohydr Polym 83:1834–1842.  https://doi.org/10.1016/j.carbpol.2010.10.047CrossRefGoogle Scholar
  82. 82.
    Liu Q, Lu Y, Aguedo M et al (2017) Isolation of high-purity cellulose nanofibers from wheat straw through the combined environmentally friendly methods of steam explosion, microwave-assisted hydrolysis, and microfluidization. ACS Sustain Chem Eng 5:6183–6191.  https://doi.org/10.1021/acssuschemeng.7b01108CrossRefGoogle Scholar
  83. 83.
    Ljungberg N, Bonini C, Bortolussi F et al (2005) New nanocomposite materials reinforced with cellulose whiskers in atactic polypropylene: effect of surface and dispersion characteristics. Biomacromol 6:2732–2739.  https://doi.org/10.1021/bm050222vCrossRefGoogle Scholar
  84. 84.
    Ljungberg N, Cavaillé JY, Heux L (2006) Nanocomposites of isotactic polypropylene reinforced with rod-like cellulose whiskers. Polymer (Guildf) 47:6285–6292.  https://doi.org/10.1016/j.polymer.2006.07.013CrossRefGoogle Scholar
  85. 85.
    Mandal A, Chakrabarty D (2011) Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization. Carbohydr Polym 86:1291–1299.  https://doi.org/10.1016/j.carbpol.2011.06.030CrossRefGoogle Scholar
  86. 86.
    Martínez-Sanz M, Lopez-Rubio A, Lagaron JM (2012) Optimization of the dispersion of unmodified bacterial cellulose nanowhiskers into polylactide via melt compounding to significantly enhance barrier and mechanical properties. Biomacromol 13:3887–3899.  https://doi.org/10.1021/bm301430jCrossRefGoogle Scholar
  87. 87.
    Miao X, Lin J, Tian F et al (2016) Cellulose nanofibrils extracted from the byproduct of cotton plant. Carbohydr Polym 136:841–850.  https://doi.org/10.1016/j.carbpol.2015.09.056CrossRefGoogle Scholar
  88. 88.
    El Miri N, Abdelouahdi K, Barakat A et al (2015) Bio-nanocomposite films reinforced with cellulose nanocrystals: rheology of film-forming solutions, transparency, water vapor barrier and tensile properties of films. Carbohydr Polym 129:156–167.  https://doi.org/10.1016/j.carbpol.2015.04.051CrossRefGoogle Scholar
  89. 89.
    Mishra RK, Sabu A, Tiwari SK (2018) Materials chemistry and the futurist eco-friendly applications of nanocellulose: status and prospect. J Saudi Chem Soc 22:949. https://doi.org/10.1016/j.jscs.2018.02.005CrossRefGoogle Scholar
  90. 90.
    Moon RJ, Martini A, Nairn J et al (2011) Cellulose nanomaterials review: structure, properties and nanocompositesGoogle Scholar
  91. 91.
    Nakagaito AN, Iwamoto S, Yano H (2005) Bacterial cellulose: the ultimate nano-scalar cellulose morphology for the production of high-strength composites. Appl Phys A Mater Sci Process 80:93–97.  https://doi.org/10.1007/s00339-004-2932-3CrossRefGoogle Scholar
  92. 92.
    Nechyporchuk O, Belgacem MN, Bras J (2016) Production of cellulose nanofibrils: a review of recent advances. Ind Crops Prod 93:2–25CrossRefGoogle Scholar
  93. 93.
    Nikmatin S, Syafiuddin A, Irwanto DAY (2017) Properties of oil palm empty fruit bunch-filled recycled acrylonitrile butadiene styrene composites: effect of shapes and filler loadings with random orientation. BioResources 12:1090–1101.  https://doi.org/10.15376/biores.12.1.1090-1101CrossRefGoogle Scholar
  94. 94.
    Oliveira JE, Moraes EA, Costa RGF et al (2011) Nano and submicrometric fibers of poly(D, L -lactide) obtained by solution blow spinning: process and solution variables. J Appl Polym Sci 122:3396–3405.  https://doi.org/10.1002/app.34410CrossRefGoogle Scholar
  95. 95.
    Pasquini D, de Teixeira EM, da Curvelo AA et al (2008) Surface esterification of cellulose fibres: processing and characterisation of low-density polyethylene/cellulose fibres composites. Compos Sci Technol 68:193–201.  https://doi.org/10.1016/j.compscitech.2007.05.009CrossRefGoogle Scholar
  96. 96.
    Pasquini D, de Teixeira EM, da Curvelo AA S et al (2010) Extraction of cellulose whiskers from cassava bagasse and their applications as reinforcing agent in natural rubber. Ind Crops Prod 32:486–490.  https://doi.org/10.1016/j.indcrop.2010.06.022CrossRefGoogle Scholar
  97. 97.
    Pelissari FM, Sobral PJDA, Menegalli FC (2014) Isolation and characterization of cellulose nanofibers from banana peels. Cellulose 21:417–432.  https://doi.org/10.1007/s10570-013-0138-6CrossRefGoogle Scholar
  98. 98.
    Peng Y, Gardner DJ, Han Y et al (2013) Influence of drying method on the material properties of nanocellulose I: thermostability and crystallinity. Cellulose 20:2379–2392.  https://doi.org/10.1007/s10570-013-0019-zCrossRefGoogle Scholar
  99. 99.
    Petersson L, Oksman K (2006) Preparation and properties of biopolymer-based nanocomposite films using microcrystalline cellulose. In: ACS Symposium Series. pp 132–150Google Scholar
  100. 100.
    Pommet M, Juntaro J, Heng JYY et al (2008) Surface modification of natural fibers using bacteria: depositing bacterial cellulose onto natural fibers to create hierarchical fiber reinforced nanocomposites. Biomacromol 9:1643–1651.  https://doi.org/10.1021/bm800169gCrossRefGoogle Scholar
  101. 101.
    Pääkko M, Ankerfors M, Kosonen H et al (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromol 8:1934–1941.  https://doi.org/10.1021/bm061215pCrossRefGoogle Scholar
  102. 102.
    Qu P, Zhou Y, Zhang X et al (2012) Surface modification of cellulose nanofibrils for poly(lactic acid) composite application. J Appl Polym Sci 125:3084–3091.  https://doi.org/10.1002/app.36360CrossRefGoogle Scholar
  103. 103.
    Ran F, Tan Y (2018) Polyaniline-based composites and nanocomposites. Elsevier, AmsterdamCrossRefGoogle Scholar
  104. 104.
    Rodrigues APH, de Souza SD, Gil CSB et al (2017) Biobased nanocomposites based on collagen, cellulose nanocrystals, and plasticizers. J Appl Polym Sci 134:.  https://doi.org/10.1002/app.44954
  105. 105.
    Rojas J, Bedoya M, Ciro Y (2015) World’ s largest science, technology & medicine open access book publisher current trends in the production of cellulose nanoparticles and nanocomposites for biomedical applications. Cellul Asp Curr Trends 193–228.  https://doi.org/10.5772/61334Google Scholar
  106. 106.
    Roman M, Winter WT (2004) Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromol 5:1671. https://doi.org/10.1021/bm034519+
  107. 107.
    Rosa MF, Medeiros ES, Malmonge J a., et al (2010) Cellulose nanowhiskers from coconut husk fibers: effect of preparation conditions on their thermal and morphological behavior. Carbohydr Polym 81:83–92.  https://doi.org/10.1016/j.carbpol.2010.01.059CrossRefGoogle Scholar
  108. 108.
    Roy D, Semsarilar M, Guthrie JT, Perrier S (2009) Cellulose modification by polymer grafting: a review. Chem Soc Rev 38:2046.  https://doi.org/10.1039/b808639gCrossRefGoogle Scholar
  109. 109.
    Salehudin MH, Salleh E, Muhamad II, Mamat SNH (2014) Starch-based biofilm reinforced with empty fruit bunch cellulose nanofibre. Mater Res Innov 18:S6-322–S6-325.  https://doi.org/10.1179/1432891714z.000000000977CrossRefGoogle Scholar
  110. 110.
    Santana JS, do Rosário JM, Pola CC et al (2017) Cassava starch-based nanocomposites reinforced with cellulose nanofibers extracted from sisal. J Appl Polym Sci 134:1–9.  https://doi.org/10.1002/app.44637
  111. 111.
    Scatolino MV, Bufalino L, Mendes LM et al (2017) Impact of nanofibrillation degree of eucalyptus and Amazonian hardwood sawdust on physical properties of cellulose nanofibril films. Wood Sci Technol 51:1095–1115.  https://doi.org/10.1007/s00226-017-0927-4CrossRefGoogle Scholar
  112. 112.
    Shankar S, Rhim JW (2016) Preparation of nanocellulose from micro-crystalline cellulose: the effect on the performance and properties of agar-based composite films. Carbohydr Polym 135:18–26.  https://doi.org/10.1016/j.carbpol.2015.08.082CrossRefGoogle Scholar
  113. 113.
    Silvério HA, Flauzino Neto WP, Dantas NO, Pasquini D (2013) Extraction and characterization of cellulose nanocrystals from corncob for application as reinforcing agent in nanocomposites. Ind Crops Prod 44:427–436.  https://doi.org/10.1016/j.indcrop.2012.10.014CrossRefGoogle Scholar
  114. 114.
    Siqueira G, Bras J, Dufresne A (2009) Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromol 10:425–432.  https://doi.org/10.1021/bm801193dCrossRefGoogle Scholar
  115. 115.
    Siqueira G, Bras J, Dufresne A (2010) Luffa cylindrica as a lignocellulosic source of fiber, microfibrillated cellulose, and cellulose nanocrystals. BioResources 5:727–740.  https://doi.org/10.15376/biores.5.2.727-740CrossRefGoogle Scholar
  116. 116.
    Siqueira G, Fraschini C, Bras J et al (2011) Impact of the nature and shape of cellulosic nanoparticles on the isothermal crystallization kinetics of poly(ε-caprolactone). Eur Polym J 47:2216–2227.  https://doi.org/10.1016/j.eurpolymj.2011.09.014CrossRefGoogle Scholar
  117. 117.
    Siqueira G, Tapin-Lingua S, Bras J et al (2010) Morphological investigation of nanoparticles obtained from combined mechanical shearing, and enzymatic and acid hydrolysis of sisal fibers. Cellulose 17:1147–1158.  https://doi.org/10.1007/s10570-010-9449-zCrossRefGoogle Scholar
  118. 118.
    Souza SF, Lopez A, Cai JHUI, Wu C (2010) Nanocellulose from curava fibers and their nanocomposites. Mol Crust Liq Cryst 522:342–352.  https://doi.org/10.1080/15421401003722955CrossRefGoogle Scholar
  119. 119.
    Spinella S, Maiorana A, Qian Q et al (2016) Concurrent cellulose hydrolysis and esterification to prepare a surface-modified cellulose nanocrystal decorated with carboxylic acid moieties. ACS Sustain Chem Eng 4:1538–1550.  https://doi.org/10.1021/acssuschemeng.5b01489CrossRefGoogle Scholar
  120. 120.
    Stenstad P, Andresen M, Tanem BS, Stenius P (2008) Chemical surface modifications of microfibrillated cellulose. Cellulose 15:35–45.  https://doi.org/10.1007/s10570-007-9143-yCrossRefGoogle Scholar
  121. 121.
    Tan L, Mandley SJ, Peijnenburg W et al (2018) Combining ex-ante LCA and EHS screening to assist green design: a case study of cellulose nanocrystal foam. J Clean Prod 178:494–506.  https://doi.org/10.1016/j.jclepro.2017.12.243CrossRefGoogle Scholar
  122. 122.
    Thomas MG, Abraham E, Jyotishkumar P et al (2015) Nanocelluloses from jute fibers and their nanocomposites with natural rubber: preparation and characterization. Int J Biol Macromol 81:768–777.  https://doi.org/10.1016/j.ijbiomac.2015.08.053CrossRefGoogle Scholar
  123. 123.
    Tonoli GHD, de Morais Teixeira E, Corrêa C et al (2012a) Cellulose micro/nanofibres from Eucalyptus kraft pulp: preparation and properties. Carbohydr Polym.  https://doi.org/10.1016/j.carbpol.2012.02.052CrossRefGoogle Scholar
  124. 124.
    Tonoli GHD, de Morais Teixeira E, Corrêa CC et al (2012b) Cellulose micro/nanofibres from Eucalyptus kraft pulp: Preparation and properties. Carbohydr Polym 89:80–88.  https://doi.org/10.1016/j.carbpol.2012.02.052CrossRefGoogle Scholar
  125. 125.
    Trache D, Hussin MH, Hui Chuin CT et al (2016) Microcrystalline cellulose: Isolation, characterization and bio-composites application—a review. Int J Biol Macromol 93:789–804CrossRefGoogle Scholar
  126. 126.
    Tutak W, Sarkar S, Lin-Gibson S et al (2013) The support of bone marrow stromal cell differentiation by airbrushed nanofiber scaffolds. Biomaterials 34:2389–2398.  https://doi.org/10.1016/j.biomaterials.2012.12.020CrossRefGoogle Scholar
  127. 127.
    Ummartyotin S, Manuspiya H (2015) A critical review on cellulose: from fundamental to an approach on sensor technology. Renew Sustain Energy Rev 41:402–412.  https://doi.org/10.1016/j.rser.2014.08.050CrossRefGoogle Scholar
  128. 128.
    Uschanov P, Johansson LS, Maunu SL, Laine J (2011) Heterogeneous modification of various celluloses with fatty acids. Cellulose 18:393–404.  https://doi.org/10.1007/s10570-010-9478-7CrossRefGoogle Scholar
  129. 129.
    Xu X, Liu F, Jiang L et al (2013) Cellulose nanocrystals vs. cellulose nano fi brils: a comparative study on their microstructures and e ff ects as polymer reinforcing agents. ACS Appl Mater Interfaces 5:2999–3009.  https://doi.org/10.1021/am302624tCrossRefGoogle Scholar
  130. 130.
    Yarbrough JM, Zhang R, Mittal A et al (2017) Multifunctional cellulolytic enzymes outperform processive fungal cellulases for coproduction of nanocellulose and biofuels. ACS Nano 11:3101–3109.  https://doi.org/10.1021/acsnano.7b00086CrossRefGoogle Scholar
  131. 131.
    Zhou C, Chu R, Wu R, Wu Q (2011) Electrospun polyethylene oxide/cellulose nanocrystal composite nanofibrous mats with homogeneous and heterogeneous microstructures. Biomacromol 12:2617–2625.  https://doi.org/10.1021/bm200401pCrossRefGoogle Scholar
  132. 132.
    Zimmermann T, Bordeanu N, Strub E (2010) Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential. Carbohydr Polym 79:1086–1093.  https://doi.org/10.1016/j.carbpol.2009.10.045CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Adriana de Campos
    • 1
    Email author
  • Ana Carolina Corrêa
    • 1
  • Pedro Ivo Cunha Claro
    • 1
    • 2
  • Eliangela de Morais Teixeira
    • 3
  • José Manoel Marconcini
    • 1
  1. 1.Embrapa InstrumentationSão CarlosBrazil
  2. 2.Federal University of São CarlosSão CarlosBrazil
  3. 3.Barra do Garças UnitFederal University of São CarlosSão CarlosBrazil

Personalised recommendations