Advertisement

Neuropsychiatric Quinism: Chronic Encephalopathy Caused by Poisoning by Mefloquine and Related Quinoline Drugs

  • Remington L. NevinEmail author
Chapter

Abstract

Quinolines are neurotoxic drugs that have been widely used in malaria treatment and prevention, particularly in military settings. Poisoning by quinoline drugs, including by the previously commonly used drugs quinacrine, chloroquine, and mefloquine, can cause a lasting disorder named neuropsychiatric quinism, resulting from chronic encephalopathy and associated brain and brainstem dysfunction. Neuropsychiatric quinism is characterized by chronic symptoms that may mimic several psychiatric and neurologic disorders, including posttraumatic stress disorder (PTSD) and traumatic brain injury (TBI). Neuropsychiatric quinism may have been widely unrecognized in veteran populations, and its symptoms misattributed to other causes, including cerebral malaria. Diagnosis of neuropsychiatric quinism is primarily clinical, and management of the disorder is primarily conservative. The unrecognized effects of neuropsychiatric quinism in veteran populations are likely to have confounded a significant body of military research and clinical diagnosis. These effects suggest the need to screen veterans for a past history of symptomatic exposure to quinolines, and to approach the development of new quinoline drugs for military use with caution.

Keywords

Quinacrine Chloroquine Primaquine Mefloquine Tafenoquine PTSD TBI Malaria 

Notes

Conflict of Interest Statement

Dr. Nevin serves as consultant and expert witness in legal cases involving claims of adverse effects from antimalarial drugs.

References

  1. 1.
    Greenwood D. The quinine connection. J Antimicrob Chemother. 1992;30(4):417–27.PubMedCrossRefGoogle Scholar
  2. 2.
    Sullivan DJ. Cinchona alkaloids: quinine and quinidine. In: Staines HM, Krishna S, editors. Treatment and prevention of malaria. Basel: Springer Basel; 2012. p. 45–68.Google Scholar
  3. 3.
    Hofheinz W, Merkli B. Quinine and quinine analogues. In: Peters W, Richards W, editors. Antimalarial drugs II: current antimalarials and new drug developments. Berlin: Springer; 1984. p. 61–81.CrossRefGoogle Scholar
  4. 4.
    Bateman DN, Dyson EH. Quinine toxicity. Adverse Drug React Acute Poisoning Rev. 1986;5(4):215–33.PubMedGoogle Scholar
  5. 5.
    Balfour AJ. The bite of Jesuits’ bark. Aviation, space, and environmental medicine. Aviat Space Environ Med. 1989;60(7 Pt 2):A4–5.PubMedGoogle Scholar
  6. 6.
    Summers WK, Allen RE, Pitts FN. Does physostigmine reverse quinidine delirium? West J Med. 1981;135(5):411–4.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Nevin RL, Croft AM. Psychiatric effects of malaria and anti-malarial drugs: historical and modern perspectives. Malar J. 2016;15:332.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Russell PF. Plasmochin, plasmochin with quinine salts and atabrine in malaria therapy. Arch Intern Med. 1934;53(2):309–20.CrossRefGoogle Scholar
  9. 9.
    Nevin RL. Idiosyncratic quinoline central nervous system toxicity: historical insights into the chronic neurological sequelae of mefloquine. Int J Parasitol Drugs Drug Resist. 2014;4(2):118–25.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Loken AC, Haymaker W. Pamaquine poisoning in man, with a clinicopathologic study of one case. Am J Trop Med Hyg. 1949;29(3):341–52.PubMedCrossRefGoogle Scholar
  11. 11.
    Kono R. Introductory review of subacute myeolo-optico-neuropathy (SMON) and its studies done by the SMON Research Commission. Jpn J Med Sci Biol. 1975;28 Suppl(4):1–21.PubMedGoogle Scholar
  12. 12.
    Shiraki H. Neuropathology of subacute myelo-optico-neuropathy, “SMON”. Jpn J Med Sci Biol. 1971;24(4):217–43.PubMedCrossRefGoogle Scholar
  13. 13.
    Ricoy JR, Ortega A, Cabello A. Subacute myelo-optic neuropathy (SMON). First neuro-pathological report outside Japan. J Neurol Sci. 1982;53(2):241–51.PubMedCrossRefGoogle Scholar
  14. 14.
    Schmidt IG, Schmidt LH. Neurotoxicity of the 8-aminoquinolines. I. Lesions in the Central Nervous System of the Rhesus Monkey Induced by Administration of Plasmocid. J Neuropathol Exp Neurol. 1948;7(4):368–98.PubMedCrossRefGoogle Scholar
  15. 15.
    Schmidt IG, Schmidt LH. Neurotoxicity of the 8-aminoquinolines. II. Reactions of various experimental animals to plasmocid. J Comp Neurol. 1949;91(3):337–67.PubMedCrossRefGoogle Scholar
  16. 16.
    Schmidt IG, Schmidt LH. Neurotoxicity of the 8-aminoquinolines. III. The effects of pentaquine, isopentaquine, primaquine, and pamaquine on the central nervous system of the rhesus monkey. J Neuropathol Exp Neurol. 1951;10(3):231–56.PubMedCrossRefGoogle Scholar
  17. 17.
    Dow G, Bauman R, Caridha D, Cabezas M, Du F, Gomez-Lobo R, et al. Mefloquine induces dose-related neurological effects in a rat model. Antimicrob Agents Chemother. 2006;50(3):1045–53.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Ismail T, Mauerhofer E, Slomianka L. The hippocampal region of rats and mice after a single i.p. dose of clioquinol: loss of synaptic zinc, cell death and c-Fos induction. Neuroscience. 2008;157(3):697–707.PubMedCrossRefGoogle Scholar
  19. 19.
    Fusetti M, Eibenstein A, Corridore V, Hueck S, Chiti-Batelli S. Mefloquine and ototoxicity: a report of 3 cases. Clin Ter. 1999;150(5):379–82.PubMedGoogle Scholar
  20. 20.
    Bernard P. Alterations of auditory evoked potentials during the course of chloroquine treatment. Acta Otolaryngol. 1985;99(3–4):387–92.PubMedCrossRefGoogle Scholar
  21. 21.
    Telgt DS, van der Ven AJ, Schimmer B, Droogleever-Fortuyn H. a, Sauerwein RW. Serious psychiatric symptoms after chloroquine treatment following experimental malaria infection. Ann Pharmacother. 2005;39(3):551–4.PubMedCrossRefGoogle Scholar
  22. 22.
    Wittes R. Adverse reactions to chloroquine and amodiaquine as used for malaria prophylaxis: a review of the literature. Can Fam Physician. 1987;33(November):2644–9.PubMedPubMedCentralGoogle Scholar
  23. 23.
    West JB, Henderson AB. Plasmochin intoxication. Bull US Army Med Dep. 1944;82(November):87–99.Google Scholar
  24. 24.
    Hardgrove M, Applebaum IL. Plasmochin toxicity; analysis of 258 cases. Ann Intern Med. 1946;25:103–12.PubMedCrossRefGoogle Scholar
  25. 25.
    Nevin RL. Limbic encephalopathy and central vestibulopathy caused by mefloquine: a case report. Travel Med Infect Dis. 2012;10(3):144–51.PubMedCrossRefGoogle Scholar
  26. 26.
    Hart CW, Naunton RF. The ototoxicity of chloroquine phosphate. Arch Otolaryngol. 1964;80:407–12.PubMedCrossRefGoogle Scholar
  27. 27.
    De Oliveira JAA. Antimalarial drug - quinine. In: Audiovestibular toxicity of drugs. Boca Raton: CRC Press; 1989. p. 147–63.Google Scholar
  28. 28.
    Livezey J, Oliver T, Cantilena L. Prolonged neuropsychiatric symptoms in a military service member exposed to mefloquine. Drug Saf Case Rep. 2016;3(1):7.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Lysack JT, Lysack CL, Kvern BL. A severe adverse reaction to mefloquine and chloroquine prophylaxis. Aust Fam Physician. 1998;27(12):1119–20.PubMedGoogle Scholar
  30. 30.
    Chansky PB, Werth VP. Accidental hydroxychloroquine overdose resulting in neurotoxic vestibulopathy. BMJ Case Rep. 2017;2017  https://doi.org/10.1136/bcr-2016-218786.
  31. 31.
    Singhi S, Singhi P, Singh M. Extrapyramidal syndrome following chloroquine therapy. Indian J Pediatr. 1979;46(373):58–60.PubMedCrossRefGoogle Scholar
  32. 32.
    Newell HW, Lidz T. The toxicity of atabrine to the central nervous system. Am J Psychiatry. 1946;102:805–18.PubMedCrossRefGoogle Scholar
  33. 33.
    Patchen LC, Campbell CC, Williams SB. Neurologic reactions after a therapeutic dose of mefloquine. N Engl J Med. 1989;321(20):1415–6.PubMedCrossRefGoogle Scholar
  34. 34.
    Martin AN, Tsekes D, White WJ, Rossouw D. Chloroquine-induced bilateral anterior shoulder dislocation: a unique aetiology for a rare clinical problem. BMJ Case Reports. 2016;2016  https://doi.org/10.1136/bcr-2015-214292.
  35. 35.
    Ferrier TM, Schwieger AC, Eadie MJ. Delayed onset of partial epilepsy of temporal lobe origin following acute clioquinol encephalopathy. J Neurol Neurosurg Psychiatry. 1987;50(1):93–5.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Craige B, Eichelberger L, Jones R, Alving A, Pullman TN, Whorton CM. The toxicity of large doses of pentaquine (SN-13,276), a new antimalarial drug. J Clin Invest. 1948;27(3 Pt 2):17–24.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Clayman CB, Arnold J, Hockwalk RS, Yount EH, Edgcomb JH, Alving AS. Toxicity of primaquine in Caucasians. J Am Med Assoc. 1952;149(17):1563–8.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Saboisky JP, Butler JE, McKenzie DK, Gorman RB, Trinder JA, White DP, et al. Neural drive to human genioglossus in obstructive sleep apnoea. J Physiol. 2007;585(Pt 1):135–46.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Fleury Curado T, Fishbein K, Pho H, Brennick M, Dergacheva O, Sennes LU, et al. Chemogenetic stimulation of the hypoglossal neurons improves upper airway patency. Sci Rep. 2017;7:44392.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Ramchandren S, Gruis KL, Chervin RD, Lisabeth LD, Concannon M, Wolfe J, et al. Hypoglossal nerve conduction findings in obstructive sleep apnea. Muscle Nerve. 2010;42(2):257–61.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Gebhart F. Some psychoactive prescription drugs associated with violence. Drug Topics. 2011;March:37.Google Scholar
  42. 42.
    Moore TJ, Glenmullen J, Furberg CD. Prescription drugs associated with reports of violence towards others. PLoS One. 2010;5(12):e15337.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Mohan D, Mohandas E, Rajat R. Chloroquine psychosis: a chemical psychosis. J Natl Med Assoc. 1981;73(11):1073–6.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Good MI, Shader RI. Lethality and behavioral side effects of chloroquine. J Clin Psychopharmacol. 1982;2(1):40–7.PubMedCrossRefGoogle Scholar
  45. 45.
    Jousset N, Rougé-Maillart C, Turcant A, Guilleux M, Le Bouil A, Tracqui A. Suicide by skull stab wounds: a case of drug-induced psychosis. Am J Forensic Med Pathol. 2010;31(4):378–81.PubMedCrossRefGoogle Scholar
  46. 46.
    Nevin RL, Ritchie EC. The mefloquine intoxication syndrome: a significant potential confounder in the diagnosis and management of PTSD and other chronic deployment-related neuropsychiatric disorders. In: Posttraumatic stress disorder and related diseases in Combat Veterans. Cham: Springer International Publishing; 2015. p. 257–78.CrossRefGoogle Scholar
  47. 47.
    Ritchie EC, Block J, Nevin RL. psychiatric side effects of mefloquine: applications to forensic psychiatry. J Am Acad Psychiatry Law. 2013;41(June):224–35.PubMedGoogle Scholar
  48. 48.
    Ringqvist Å, Bech P, Glenthøj B, Petersen E. Acute and long-term psychiatric side effects of mefloquine: a follow-up on Danish adverse event reports. Travel Med Infect Dis. 2015;13(1):80–8.PubMedCrossRefGoogle Scholar
  49. 49.
    Engel GL, Romeno J, Ferris EB, Schmidt LH. Malaria Report #212: the effect of atabrine on the central nervous system. In: Malaria Rreports Volume 2. Washington, DC: Board for the Coordination of Malarial Studies; 1944.Google Scholar
  50. 50.
    Boudreau E, Schuster B, Sanchez J, Novakowski W, Johnson R, Redmond D, et al. Tolerability of prophylactic Lariam regimens. Trop Med Parasitol. 1993;44(3):257–65.PubMedGoogle Scholar
  51. 51.
    Nevin RL. A serious nightmare: psychiatric and neurologic adverse reactions to mefloquine are serious adverse reactions. Pharmacol Res Perspect. 2017;5(4):e00328.PubMedCentralCrossRefPubMedGoogle Scholar
  52. 52.
    Nevin RL, Byrd AM. Neuropsychiatric adverse reactions to mefloquine: a systematic comparison of prescribing and patient safety guidance in the US, UK, Ireland, Australia, New Zealand, and Canada. Neurology Ther. 2016;5(1):69–83.CrossRefGoogle Scholar
  53. 53.
    European Medicines Agency. Pharmacovigilance Risk Assessment Committee (PRAC). Minutes of the meeting on 23–26 October 27. EMA/PRAC/782491/2017. 2017.Google Scholar
  54. 54.
    Eick-Cost AA, Hu Z, Rohrbeck P, Clark LL. Neuropsychiatric outcomes after mefloquine exposure among U.S. Military Service Members. Am J Trop Med hyg. 2017;96(1):159–66.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Wells TS, Smith TC, Smith B, Wang LZ, Hansen CJ, Reed RJ, et al. Mefloquine use and hospitalizations among US service members, 2002-2004. Am J Trop Med Hyg. 2006;74(5):744–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Nevin RL. Misclassification and bias in military studies of Mefloquine. Am J Trop Med Hyg. 2017;97(1):305.CrossRefGoogle Scholar
  57. 57.
    Tickell-Painter M, Maayan N, Saunders R, Pace C, Sinclair D. Mefloquine for preventing malaria during travel to endemic areas. Cochrane Database Syst Rev 2017;10(10):CD006491.Google Scholar
  58. 58.
    Forrester A. Malaria and insanity. Lancet. 1920;195(5027):16–7.CrossRefGoogle Scholar
  59. 59.
    Masters J. The Road Past Mandalay. New York: Bantam; 1979. p. 160–7.Google Scholar
  60. 60.
    Rooney D. Military Mavericks: extraordinary men of battle. London: Cassell Military Paperbacks; 1999. p. 190–1.Google Scholar
  61. 61.
    Stafford J. Unique in medical history – “Guadalcanal Neurosis” plagues invalids returning from fighting in South Pacific. Pittsburgh: The Pittsburgh Press; 1943. p. 1.Google Scholar
  62. 62.
    Greiber MF. Psychoses associated with the administration of atabrine. Am J Psychiatry. 1947;104(5):306–14.PubMedCrossRefGoogle Scholar
  63. 63.
    Towne AN. Sicily. In: Doctor danger forward: a World War II Memoir of a Combat Medical Aidman, First Infantry Division. Jefferson: McFarland & Company, Inc; 2000. p. 61–78.Google Scholar
  64. 64.
    Couch J. The Day Gen. Patton Slapped a Soldier. The Washington Post. 1979; p. D5.Google Scholar
  65. 65.
    Dekever P. Patton’s costly slap; Mishawaka soldier’s claim to fame result of battle fatigue — and a general’s temper. Sound Bend (Indiana) Tribune. 2002; p. F8.Google Scholar
  66. 66.
    The Science News-Letter. Better antimalarial drug. Sci News Lett. 1946;49(2):30–1.CrossRefGoogle Scholar
  67. 67.
    Garrison PL, Hankey DD, Coker WG, Donovan WN, Jastremski B, Coatney GR, et al. Cure of Korean vivax malaria with pamaquine and primaquine. J Am Med Assoc. 1952;149(17):1562–3.PubMedCrossRefGoogle Scholar
  68. 68.
    Archibald HC, Tuddenham RD. Persistent stress reaction after combat: a 20-year follow-up. Arch Gen Psychiatry. 1965;12:475–81.PubMedCrossRefGoogle Scholar
  69. 69.
    Hall W, MacPhee D. Do Vietnam veterans suffer from toxic neurasthenia? Aust N Z J Psychiatry. 1985;19(1):19–29.PubMedCrossRefGoogle Scholar
  70. 70.
    Baskett SJ, Henager J. Differentiating between post-Vietnam syndrome and preexisting psychiatric disorders. South Med J. 1983;76(8):988–90.PubMedCrossRefGoogle Scholar
  71. 71.
    Van Putten T, Emory WH. Traumatic neuroses in Vietnam returnees. A forgotten diagnosis? Arch Gen Psychiatry. 1973;29(5):695–8.PubMedCrossRefGoogle Scholar
  72. 72.
    Pettera RL, Johnson BM, Zimmer R. Psychiatric management of combat reactions with emphasis on a reaction unique to Vietnam. Mil Med. 1969;134(9):673–8.PubMedCrossRefGoogle Scholar
  73. 73.
    Silver SM, Iacono CU. Factor-analytic support for DSM-III’s post-traumatic stress disorder for Vietnam veterans. J Clin Psychol. 1984;40(1):5–14.PubMedCrossRefGoogle Scholar
  74. 74.
    Varney NR, Roberts RJ, Springer JA, Connell SK, Wood PS. Neuropsychiatric sequelae of cerebral malaria in Vietnam veterans. J Nerv Ment Dis. 1997;185(11):695–703.PubMedCrossRefGoogle Scholar
  75. 75.
    Gunderson CH, Daroff RB. Neurology in the Vietnam War. In: Tatu L, Bogousslavsky J, editors. Frontiers in neurology and neuroscience. Basel, Switzerland: Karger; 2016. p. 201–13.  https://doi.org/10.1159/000442657.CrossRefGoogle Scholar
  76. 76.
    UNDP-World Bank-WHO. Development of mefloquine as an antimalarial drug UNDP-World Bank-WHO update. Bull World Health Org. 1983;61(2):169–78.Google Scholar
  77. 77.
    Nevin RL. Rational risk-benefit decision-making in the setting of military mefloquine policy. J Parasitol Res. 2015;2015:260106.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    McCarthy S. Malaria prevention, mefloquine neurotoxicity, neuropsychiatric illness, and risk-benefit analysis in the Australian Defence Force. J Parasitol Res. 2015;2015:287651.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Nevin RL. Mefloquine and posttraumatic stress disorder. In: Ritchie EC, editor. Textbook of military medicine forensic and ethical issues in military behavioral health. Washington, DC: Borden Institute; 2015. p. 277–96.Google Scholar
  80. 80.
    Magill A, Cersovsky S, DeFraites R. Special considerations for US Military Deployments. In: Brunette GW, editor. CDC health information for international travel: the Yellow Book 2012. New York: Oxford University Press; 2012. p. 561–5.Google Scholar
  81. 81.
    Nevin RL. Screening for symptomatic mefloquine exposure among veterans with chronic psychiatric symptoms. Fed Pract. 2017;34(3):12–4.PubMedPubMedCentralGoogle Scholar
  82. 82.
    Grupp D, Rauber A, Fröscher W. Neuropsychiatric disturbances after malaria prophylaxis with mefloquine. Aktuelle Neurologie. 1994;21:134–6.CrossRefGoogle Scholar
  83. 83.
    Stürchler D, Handschin J, Kaiser D, Kerr L, Mittelholzer ML, Reber R, et al. Neuropsychiatric side effects of mefloquine. New Engl J Med. 1990;322(24):1752–3.PubMedGoogle Scholar
  84. 84.
    Jacob RG, Furman JM, Durrant JD, Turner SM. Panic, agoraphobia, and vestibular dysfunction. Am J Psychiatry. 1996;153(4):503–12.PubMedCrossRefGoogle Scholar
  85. 85.
    Yardley L, Britton J, Lear S, Bird J, Luxon LM. Relationship between balance system function and agoraphobic avoidance. Behav Res Ther. 1995;33(4):435–9.PubMedCrossRefGoogle Scholar
  86. 86.
    Maxwell NM, Nevin RL, Stahl S, Block J, Shugarts S, Wu AHB, et al. Prolonged neuropsychiatric effects following management of chloroquine intoxication with psychotropic polypharmacy. Clin Case Rep. 2015;3(6):379–87.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Summers MR, Nevin RL. Stellate Ganglion Block in the treatment of post-traumatic stress disorder: a review of historical and recent literature. Pain Pract. 2017;17(4):546–53.PubMedCrossRefGoogle Scholar
  88. 88.
    Gray SN. An overview of the use of neurofeedback biofeedback for the treatment of symptoms of traumatic brain injury in military and civilian populations. Med Acupunct. 2017;29(4):215–9.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Nevin RL, Ritchie EC. FDA Black Box, VA Red Ink? A successful service-connected disability claim for chronic neuropsychiatric adverse effects from mefloquine. Fed Pract. 2016;33(10):20–4.PubMedPubMedCentralGoogle Scholar
  90. 90.
    Australian Department of Veterans’ Affairs. Mefloquine Information. 2016. Available from: http://www.dva.gov.au/health-and-wellbeing/medical-conditions/mefloquine-information
  91. 91.
    Hookham M. MoD cash for soldier hit by malaria drug seizures MoD cash for soldier hit by Lariam drug seizures. The Sunday Times 2018 Jan 14; p. 8.Google Scholar
  92. 92.
    Tigue M. Settlement in malaria drug case. The Irish Times 2017. Available from: https://www.thetimes.co.uk/article/settlement-in-malaria-drug-case-hpknzwf0p
  93. 93.
    Nevin RL. Mefloquine exposure may confound associations and limit inference in military studies of posttraumatic stress disorder. Mil Med. 2017;182(11/12):1757.PubMedCrossRefGoogle Scholar
  94. 94.
    Nevin RL. Confounding by symptomatic mefloquine exposure in military studies of post-traumatic stress disorder. Behav Med. 2018;44(2):171–2.  https://doi.org/10.1080/08964289.2017.1330248.CrossRefPubMedGoogle Scholar
  95. 95.
    Nevin RL. Re: McGuire JM. The incidence of and risk factors for emergence delirium in U.S. military combat veterans. J Perianesthesia Nurs. American Society of PeriAnesthesia Nurses. 2013;28(6):334–5.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.The Quinism FoundationWhite River JunctionUSA

Personalised recommendations