Advertisement

Experimental Techniques

  • Yuri D. TsvetkovEmail author
  • Michael K. Bowman
  • Yuri A. Grishin
Chapter

Abstract

PELDOR or DEER, like most forms of spectroscopy, always involves tradeoffs between sensitivity and resolution. Some tradeoffs are made during the instrumental design of the spectrometers that measure PELDOR spectra, and other tradeoffs are made in the experimental design of the measurements. This chapter considers the instrument design first. It examines the capabilities needed to make PELDOR measurements and then examines the designs of several spectrometers operating at different mw frequencies. This is followed by a discussion of how capabilities of the spectrometer and the operating and measurement parameters affect sensitivity and resolution in PELDOR distance distribution spectra.

References

  1. 1.
    Mims WB (1965) Electron echo methods in spin resonance spectrometry. Rev Sci Instrum 36(10):1472–1479.  https://doi.org/10.1063/1.1719359Google Scholar
  2. 2.
    Blumberg WE, Mims WB, Zuckerman D (1973) Electron-spin echo envelope spectrometry. Rev Sci Instrum 44(5):546–555.  https://doi.org/10.1063/1.1686179Google Scholar
  3. 3.
    Huisjen M, Hyde JS (1974) Pulsed EPR spectrometer. Rev Sci Instrum 45(5):669–675.  https://doi.org/10.1063/1.1686710Google Scholar
  4. 4.
    Salikhov KM, Semenov AG, Tsvetkov YD (1976) Electron spin echo and its applications. Nauka, NovosibirskGoogle Scholar
  5. 5.
    Holczer K, Schmalbein D (1987) ESP 380: a high-power, general-purpose pulsed EPR spectrometer. Bruker Report 1(1987):22–25Google Scholar
  6. 6.
    The BRUKER FT EPR Spectrometer ESP 380 (1989). In: Keijzers CP, Reijerse EJ, Schmidt J (eds) Pulsed EPR: a new field of applications. Koninklijke Nederlandse Akademie van Wetenschappen, AmsterdamGoogle Scholar
  7. 7.
    Schmalbein D, Maresch GG, Kamlowski A, Hofer P (1999) The Bruker high-frequency-EPR system. Appl Magn Reson 16(2):185–205.  https://doi.org/10.1007/Bf03161933Google Scholar
  8. 8.
    The new technology X-band microwave bridge for CW- and FT-EPR (2001). Bruker report 149/2001, pp 14–15Google Scholar
  9. 9.
    Smith GM, Cruickshank PAS, Bolton DR, Robertson DA (2008) High-field pulse EPR instrumentation. In: Electron paramagnetic resonance, vol 21. The Royal Society of Chemistry, pp 216–233.  https://doi.org/10.1039/b807958g
  10. 10.
    Tkach I, Halbmair K, Hobartner C, Bennati M (2014) High-frequency 263 GHz PELDOR. Appl Magn Reson 45(10):969–979.  https://doi.org/10.1007/s00723-014-0581-zGoogle Scholar
  11. 11.
    Poole CP (1983) Electron spin resonance: a comprehensive treatise on experimental techniques/second edition. John Wiley, New YorkGoogle Scholar
  12. 12.
    Bender C, Berliner LJ (eds) (2004) EPR: instrumental methods, vol 21. Biological magnetic resonance. Springer US, New YorkGoogle Scholar
  13. 13.
    Bender C (2004) The generation and detection of electron spin echoes. In: Bender C, Berliner LJ (eds) EPR: instrumental methods, vol 21. Springer US, New York, pp 212–276.  https://doi.org/10.1007/978-1-4419-8951-2Google Scholar
  14. 14.
    Semenov AG, Shchirov MD, Zhidkov VD, Khmelinskii VE, Dvornikov EV (1980) A coherent electron spin echo spectrometer. Preprint  No. 3 of the Institute of Chem. Kinetics and Combustion, NovosibirskGoogle Scholar
  15. 15.
    Hoefer P, Carl PJ (2006) X-band pulse-EPR resonator performance. Bruker Report 157(158):52–56Google Scholar
  16. 16.
    Piasecki W, Froncisz W, Hyde JS (1996) Bimodal loop-gap resonator. Rev Sci Instrum 67(5):1896–1904Google Scholar
  17. 17.
    Rinard GA, Eaton GR (2005) Loop-Gap resonators. In: Eaton SR, Eaton GR, Berliner LJ (eds) Biomedical EPR, Part B: methodology, instrumentation, and dynamics. Springer US, Boston, MA, pp 19–52.  https://doi.org/10.1007/0-306-48533-8_2
  18. 18.
    Raitsimring A, Astashkin A, Enemark JH, Blank A, Twig Y, Song Y, Meade TJ (2012) Dielectric resonator for Ka-band pulsed EPR measurements at cryogenic temperatures: probehead construction and applications. Appl Magn Reson 42(4):441–452.  https://doi.org/10.1007/s00723-012-0313-1PubMedPubMedCentralGoogle Scholar
  19. 19.
    Hyde JS, Chien JCW, Freed JH (1968) Electron-electron double resonance of free radicals in solution. J Chem Phys 48(9):4211–4226.  https://doi.org/10.1063/1.1669760Google Scholar
  20. 20.
    Milov AD, Salikhov KM, Shirov MD (1981) Application of the double resonance method to electron spin echo in a study of the spatial distribution of paramagnetic centers in solids. Sov Phys Solid State 23(4):565–569Google Scholar
  21. 21.
    Milov AD, Maryasov AG, Tsvetkov YD (1998) Pulsed electron double resonance (PELDOR) and its applications in free-radicals research. Appl Magn Reson 15(1):107–143.  https://doi.org/10.1007/Bf03161886Google Scholar
  22. 22.
    Tkach I, Sicoli G, Hobartner C, Bennati M (2011) A dual-mode microwave resonator for double electron-electron spin resonance spectroscopy at W-band microwave frequencies. J Magn Reson 209(2):341–346PubMedGoogle Scholar
  23. 23.
    Bowman MK (1990) Fourier Transform Electron Spin Resonance. In: Kevan L, Bowman MK (eds) Modern pulsed and continuous electron spin resonance, vol 1st. Wiley, New York, pp 1–42Google Scholar
  24. 24.
    Mizuta Y, Kohno M, Fujii K (1993) Development of microwave control in pulsed-ESR apparatus. Jpn J Appl Phys 1 32(3a):1262–1267.  https://doi.org/10.1143/jjap.32.1262Google Scholar
  25. 25.
    Hoefer P, Kamlowski A (2001) The new technology CW/FT-EPR microwave bridge. pulsed electron-electron double resonance (ELDOR) experiments. Bruker report 149/2001, pp 16–18Google Scholar
  26. 26.
    Hoefer P, Heilig R, Maier DC, Prisecaru I, Schmalbein D (2003) The superQ-FT accessory for pulsed EPR, ENDOR and ELDOR at 34 GHz. Bruker Report 152(153):37–43Google Scholar
  27. 27.
    Carl P, Heilig R, Maier DC, Hoefer P, Schmalbein D (2004) The W-band power upgrade module for pulsed EPR, ENDOR and ELDOR at 94 GHz. Bruker Report 154(155):35–40Google Scholar
  28. 28.
    Borbat PP, Crepeau RH, Freed JH (1997) Multifrequency two-dimensional Fourier transform ESR: An X/Ku-band spectrometer. J Magn Reson 127(2):155–167PubMedGoogle Scholar
  29. 29.
    Goldfarb D, Lipkin Y, Potapov A, Gorodetsky Y, Epel B, Raitsimring AM, Radoul M, Kaminker I (2008) HYSCORE and DEER with an upgraded 95 GHz pulse EPR spectrometer. J Magn Reson 194(1):8–15PubMedGoogle Scholar
  30. 30.
    Tsvetkov YD, Grishin YA (2009) Techniques for EPR spectroscopy of pulsed electron double resonance (PELDOR): a review. Instrum Exp Tech. 52(5):615–636.  https://doi.org/10.1134/s0020441209050017Google Scholar
  31. 31.
    Prisner TF, Rohrer M, Mobius K (1994) Pulsed 95-Ghz, high-field EPR heterodyne spectrometer with high spectral and time resolution. Appl Magn Reson 7(2–3):167–183.  https://doi.org/10.1007/Bf03162610Google Scholar
  32. 32.
    Dubinskii AA, Grishin YA, Savitsky AN, Mobius K (2002) Submicrosecond field-jump device for pulsed high-field ELDOR. Appl Magn Reson 22(3):369–386.  https://doi.org/10.1007/Bf03166118Google Scholar
  33. 33.
    Schnegg A, Dubinskii AA, Fuchs MR, Grishin YA, Kirilina EP, Lubitz W, Plato M, Savitsky A, Mobius K (2007) High-field EPR, ENDOR and ELDOR on bacterial photosynthetic reaction centers. Appl Magn Reson 31(1–2):59–98Google Scholar
  34. 34.
    Rohrer M, Brugmann O, Kinzer B, Prisner TF (2001) High-field/high-frequency EPR spectrometer operating in pulsed and continuous-wave mode at 180 GHz. Appl Magn Reson 21(3–4):257–274.  https://doi.org/10.1007/Bf03162406Google Scholar
  35. 35.
    Hertel MM, Denysenkov VP, Bennati M, Prisner TF (2005) Pulsed 180-GHz EPR/ENDOR/PELDOR spectroscopy. Magn Reson Chem 43:S248–S255PubMedGoogle Scholar
  36. 36.
    Denysenkov VP, Prisner TF, Stubbe J, Bennati M (2005) High-frequency 180 GHz PELDOR. Appl Magn Reson 29(2):375–384.  https://doi.org/10.1007/Bf03167024Google Scholar
  37. 37.
    Denysenkov VP, Prisner TF, Stubbe J, Bennati M (2006) High-field pulsed electron-electron double resonance spectroscopy to determine the orientation of the tyrosyl radicals in ribonucleotide reductase. P Natl Acad Sci USA 103(36):13386–13390.  https://doi.org/10.1073/pnas.0605851103Google Scholar
  38. 38.
    Denysenkov VP, Biglino D, Lubitz W, Prisner TF, Bennati M (2008) Structure of the tyrosyl biradical in mouse R2 ribonucleotide reductase from high-field PELDOR. Angew Chem Int Ed 47(7):1224–1227Google Scholar
  39. 39.
  40. 40.
    Rengan SK, Bhagat VR, Sastry VSS, Venkataraman B (1969) Magnetic field-pulsed ELDOR spectroscopy. J Magn Reson 33(2):227–240.  https://doi.org/10.1016/0022-2364(79)90242-7Google Scholar
  41. 41.
    Dzuba SA, Tsvetkov YD (1982) Slow rotations of nitroxyl radicals in viscous liquids studied by ESE. Khim Fiz 9:1197–1201Google Scholar
  42. 42.
    Dzuba SA, Maryasov AG, Salikhov KM, Tsvetkov YD (1984) Superslow rotations of nitroxide radicals studied by pulse EPR spectroscopy. J Magn Reson 58(1):95–117Google Scholar
  43. 43.
    Kispert LD (2005) Electron-Electron Double Resonance. In: Eaton SR, Eaton GR, Berliner LJ (eds) Biomedical EPR, Part B: methodology, instrumentation, and dynamics. Springer US, Boston, MA, pp 165–197.  https://doi.org/10.1007/0-306-48533-8_6
  44. 44.
    Kulik LV, Grishin YA, Dzuba SA, Grigoryev IA, Klyatskaya SV, Vasilevsky SF, Tsvetkov YD (2002) Electron dipole-dipole ESEEM in field-step ELDOR of nitroxide biradicals. J Magn Reson 157(1):61–68PubMedGoogle Scholar
  45. 45.
    Mobius K, Savitsky A, Schnegg A, Plato M, Fuchs M (2005) High-field EPR spectroscopy applied to biological systems: characterization of molecular switches for electron and ion transfer. Phys Chem Chem Phys 7(1):19–42PubMedGoogle Scholar
  46. 46.
    Davis JL, Mims WB (1981) Use of a microwave delay-line to reduce the dead time in electron-spin echo envelope spectroscopy. Rev Sci Instrum 52(1):131–132.  https://doi.org/10.1063/1.1136423Google Scholar
  47. 47.
    Narayana PA, Massoth RJ, Kevan L (1982) Active microwave delay-line for reducing the dead time in electron-spin echo spectrometry. Rev Sci Instrum 53(5):624–626.  https://doi.org/10.1063/1.1137021Google Scholar
  48. 48.
    Cho H, Pfenninger S, Gemperle C, Schweiger A, Ernst RR (1989) Zero deadtime pulsed ESR by remote echo detection. Chem Phys Lett 160(4):391–395.  https://doi.org/10.1016/0009-2614(89)87616-XGoogle Scholar
  49. 49.
    Doan PE, Hoffman BM (1997) Making hyperfine selection in Mims ENDOR independent of deadtime. Chem Phys Lett 269(3–4):208–214Google Scholar
  50. 50.
    Pfenninger S, Forrer J, Schweiger A, Weiland T (1988) Bridged loop gap resonator—a resonant structure for pulsed electron-spin-resonance transparent to high-frequency radiation. Rev Sci Instrum 59(5):752–760.  https://doi.org/10.1063/1.1139822Google Scholar
  51. 51.
    Fauth JM, Schweiger A, Ernst RR (1989) Recovery of broad hyperfine lines in electron spin-echo envelope modulation spectroscopy of disordered-systems. J Magn Reson 81(2):262–274.  https://doi.org/10.1016/0022-2364(89)90058-9Google Scholar
  52. 52.
    Volino F, Csakvary F, Servozga P (1968) Resonant helices and their application to magnetic resonance. Rev Sci Instrum 39(11):1660–1665.  https://doi.org/10.1063/1.1683198Google Scholar
  53. 53.
    Mehring M, Freysoldt F (1980) A slotted tube resonator Str for pulsed electron-spin-resonance and odmr experiments. J Phys E: Sci Instrum 13(8):894–895.  https://doi.org/10.1088/0022-3735/13/8/022Google Scholar
  54. 54.
    Hyde JS, Froncisz W (1989) Loop gap resonators. In: Advanced EPR. Elsevier, Amsterdam, pp 277–305.  https://doi.org/10.1016/b978-0-444-88050-5.50012-4Google Scholar
  55. 55.
    Webb RH (1962) Use of traveling wave helices in ESR and double resonance spectrometers. Rev Sci Instrum 33(7):732–737.  https://doi.org/10.1063/1.1717946Google Scholar
  56. 56.
    Biehl R (1986) Sensitivity enhancement in EPR. The dielectric ring TE 011 cavity. Bruker report 1/1986, pp 45–47Google Scholar
  57. 57.
    Ivanov MY, Nadolinny VA, Bagryanskaya EG, Grishin YA, Fedin MV, Veber SL (2016) Bismuth germanate as a perspective material for dielectric resonators in EPR spectroscopy. J Magn Reson 271(Supplement C):83–89.  https://doi.org/10.1016/j.jmr.2016.08.009PubMedGoogle Scholar
  58. 58.
    Pfenninger S, Froncisz W, Forrer J, Luglio J, Hyde JS (1995) General-method for adjusting the quality factor of EPR resonators. Rev Sci Instrum 66(10):4857–4865Google Scholar
  59. 59.
    Schweiger A, Jeschke G (2001) Principles of pulse electron paramagnetic resonance. Oxford University Press, Oxford, UK, New YorkGoogle Scholar
  60. 60.
    Rinard GA, Quine RW, Eaton SS, Eaton GR (2004) Frequency dependence of EPR sensitivity. In: Berliner LJ, Bender CJ (eds) EPR: instrumental methods. Springer US, Boston, MA, pp 115–154.  https://doi.org/10.1007/978-1-4419-8951-2_3Google Scholar
  61. 61.
    Romanelli M, Kurshev V, Kevan L (1994) Comparative-analysis of pulsed electron-spin-resonance spectrometers at X-band and S-band. Appl Magn Reson 7(2–3):427–441.  https://doi.org/10.1007/Bf03162623Google Scholar
  62. 62.
    Davoust CE, Doan PE, Hoffman BM (1996) Q-band pulsed electron spin-echo spectrometer and its application to ENDOR and ESEEM. J Magn Reson Ser A 119(1):38–44Google Scholar
  63. 63.
    Salikhov KM, Tsvetkov YD (1979) Electron spin echo studies of spin-spin interactions in solids. In: Kevan L, Schwartz RN (eds) Time domain electron spin resonance. John Wiley, New York, pp 231–278Google Scholar
  64. 64.
    El Mkami H, Ward R, Bowman A, Owen-Hughes T, Norman DG (2014) The spatial effect of protein deuteration on nitroxide spin-label relaxation: Implications for EPR distance measurement. J Magn Reson 248:36–41.  https://doi.org/10.1016/j.jmr.2014.09.010PubMedPubMedCentralGoogle Scholar
  65. 65.
    Ward R, Bowman A, Sozudogru E, El-Mkami H, Owen-Hughes T, Norman DG (2010) EPR distance measurements in deuterated proteins. J Magn Reson 207(1):164–167.  https://doi.org/10.1016/j.jmr.2010.08.002PubMedPubMedCentralGoogle Scholar
  66. 66.
    Jeschke G, Bender A, Paulsen H, Zimmermann H, Godt A (2004) Sensitivity enhancement in pulse EPR distance measurements. J Magn Reson 169(1):1–12PubMedGoogle Scholar
  67. 67.
    Ghimire H, McCarrick RM, Budil DE, Lorigan GA (2009) Significantly improved sensitivity of Q-band PELDOR/DEER experiments relative to X-band is observed in measuring the intercoil distance of a leucine zipper motif peptide (GCN4-LZ). Biochemistry-Us 48(25):5782–5784Google Scholar
  68. 68.
    Zou P, Mchaourab HS (2010) Increased sensitivity and extended range of distance measurements in spin-labeled membrane proteins: Q-band double electron-electron resonance and nanoscale bilayers. Biophys J 98(6):L18–L20.  https://doi.org/10.1016/j.bpj.2009.12.4193PubMedPubMedCentralGoogle Scholar
  69. 69.
    Swanson MA, Kathirvelu V, Majtan T, Frerman FE, Eaton GR, Eaton SS (2011) Electron transfer flavoprotein domain II orientation monitored using double electron-electron resonance between an enzymatically reduced, native FAD cofactor, and spin labels. Protein Sci 20(3):610–620.  https://doi.org/10.1002/pro.595PubMedPubMedCentralGoogle Scholar
  70. 70.
    Di Valentin M, Albertini M, Zurlo E, Gobbo M, Carbonera D (2014) Porphyrin triplet state as a potential spin label for nanometer distance measurements by PELDOR spectroscopy. J Am Chem Soc 136(18):6582–6585.  https://doi.org/10.1021/ja502615nPubMedGoogle Scholar
  71. 71.
    Kandrashkin YE, van der Est A (2011) Stimulated electron spin polarization in strongly coupled triplet-doublet spin pairs. Appl Magn Reson 40(2):189–204.  https://doi.org/10.1007/s00723-011-0194-8Google Scholar
  72. 72.
    Shevelev GY, Krumkacheva OA, Lomzov AA, Kuzhelev AA, Trukhin DV, Rogozhnikova OY, Tormyshev VM, Pyshnyi DV, Fedin MV, Bagryanskaya EG (2015) Triarylmethyl Labels: toward improving the accuracy of EPR nanoscale distance measurements in DNAs. J Phys Chem B 119(43):13641–13648PubMedPubMedCentralGoogle Scholar
  73. 73.
    Goldfarb D (2014) Gd3+ spin labeling for distance measurements by pulse EPR spectroscopy. Phys Chem Chem Phys 16(21):9685–9699.  https://doi.org/10.1039/c3cp53822bPubMedGoogle Scholar
  74. 74.
    Shevelev GY, Lomzov AA, Pyshnyi DV, Kuzhelev AA, Krumkacheva OA, Fedin MV, Rogozhnikova OY, Trukhin DV, Troitskaya TI, Tormyshev VM, Bagryanskaya EG (2015) Spin-labeled oligonucleotides—useful tool for the structural biology. FEBS J 282:350Google Scholar
  75. 75.
    Shevelev GY, Krumkacheva OA, Lomzov AA, Kuzhelev AA, Rogozhnikova OY, Trukhin DV, Troitskaya TI, Tormyshev VM, Fedin MV, Pyshnyi DV, Bagryanskaya EG (2014) Physiological-temperature distance measurement in nucleic acid using triarylmethyl-based spin labels and pulsed dipolar EPR spectroscopy. J Am Chem Soc 136(28):9874–9877PubMedGoogle Scholar
  76. 76.
    Bagryanskaya EG, Krumkacheva OA, Fedin MV, Marque SRA (2015) Development and application of spin traps, spin probes, and spin labels. Methods Enzymol 563:365–396PubMedGoogle Scholar
  77. 77.
    Kaminker I, Tkach I, Manukovsky N, Huber T, Yagi H, Otting G, Bennati M, Goldfarb D (2013) W-band orientation selective DEER measurements on a Gd3+/nitroxide mixed-labeled protein dimer with a dual mode cavity. J Magn Reson 227:66–71PubMedGoogle Scholar
  78. 78.
    Lovett JE, Lovett BW, Harmer J (2012) DEER-stitch: combining three- and four-pulse DEER measurements for high sensitivity, deadtime free data. J Magn Reson 223:98–106PubMedGoogle Scholar
  79. 79.
    Salvadori E, Fung MW, Hoffmann M, Anderson HL, Kay CW (2015) Exploiting the symmetry of the resonator mode to enhance PELDOR sensitivity. Appl Magn Reson 46(4):359–368.  https://doi.org/10.1007/s00723-014-0621-8PubMedGoogle Scholar
  80. 80.
    Srivastava M, Anderson CL, Freed JH (2016) A new wavelet denoising method for selecting decomposition levels and noise thresholds. IEEE Access 4:3862–3877.  https://doi.org/10.1109/ACCESS.2016.2587581PubMedPubMedCentralGoogle Scholar
  81. 81.
    Srivastava M, Georgieva ER, Freed JH (2017) A new wavelet denoising method for experimental time-domain signals: pulsed dipolar electron spin resonance. J Phys Chem A 121(12):2452–2465.  https://doi.org/10.1021/acs.jpca.7b00183PubMedPubMedCentralGoogle Scholar
  82. 82.
    Daubechies I (1992) Ten lectures on wavelets. CBMS-NSF regional conference series in applied mathematics. Society for industrial and applied mathematics.  https://doi.org/10.1137/1.9781611970104
  83. 83.
    Mailer C, Haas DA, Hustedt EJ, Gladden JG, Robinson BH (1991) Low-power electron-paramagnetic resonance spin-echo spectroscopy. J Magn Reson 91(3):475–496.  https://doi.org/10.1016/0022-2364(91)90375-4Google Scholar
  84. 84.
    Blok H, Akimoto I, Milikisyants S, Gast P, Groenen EJJ, Schmidt J (2009) FID detection of EPR and ENDOR spectra at high microwave frequencies. J Magn Reson 201(1):57–60.  https://doi.org/10.1016/j.jmr.2009.08.002PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Yuri D. Tsvetkov
    • 1
  • Michael K. Bowman
    • 2
  • Yuri A. Grishin
    • 3
  1. 1.The Voevodsky Institute of Chemical Kinetics and CombustionNovosibirskRussia
  2. 2.Department of Chemistry and BiochemistryUniversity of AlabamaTuscaloosaUSA
  3. 3.The Voevodsky Institute of Chemical Kinetics and CombustionNovosibirskRussia

Personalised recommendations