Advertisement

Tag-Reader Authentication System Guarded by Negative Identifier Filtering and Distance Bounding

  • Ruchi Kachhia
  • Prachi AgrawalEmail author
  • Manik Lal Das
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11319)

Abstract

In conventional authentication process, the legitimacy of communicating entity is directly checked with Authentication Server. This process is found efficient; however, it allows an illegitimate entity to get his/her attempts checked upon the authentication database (e.g. password table). In this paper, we present a two-layer entity authentication protocol in which the attempt by an illegitimate entity gets discarded at the first layer with the help of a negative filtering database. To filter illegitimate attempts 100% out the negative database is constructed such that no information about the positive database that stores the credentials of legitimate users can be obtained even if the negative database gets compromised. The proposed protocol is analytically simulated with a tag-reader authentication system, which provides mutual authentication and resists relay, impersonation and replay attacks.

Keywords

Authentication Security Privacy Distance bounding 

References

  1. 1.
    Bertino, E., Choo, K.R., Georgakopolous, D., Nepal, S.: Internet of Things (IoT): smart and secure service delivery. ACM Trans. Internet Technol. 16(4), 22 (2016)CrossRefGoogle Scholar
  2. 2.
    Jannati, H., Falahati, A.: An RFID search protocol secured against relay attack based on distance bounding approach. Wireless Pers. Commun. 85(3), 711–726 (2015)CrossRefGoogle Scholar
  3. 3.
    Das, M.L.: Strong security and privacy of RFID system for Internet of Things infrastructure. In: Gierlichs, B., Guilley, S., Mukhopadhyay, D. (eds.) SPACE 2013. LNCS, vol. 8204, pp. 56–69. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-41224-0_5CrossRefGoogle Scholar
  4. 4.
    Tan, C.C., Sheng, B., Li, Q.: Secure and serverless RFID authentication and search protocols. IEEE Trans. Wireless Commun. 7(4), 1400–1407 (2008)CrossRefGoogle Scholar
  5. 5.
    Hancke, G.P., Mayes, K.E., Markantonakis, K.: Confidence in smart token proximity: relay attacks revisited. Comput. Secur. 28(7), 615–627 (2009)CrossRefGoogle Scholar
  6. 6.
    Lee, Y.K., Batina, L., Verbauwhede, I.: Untraceable RFID authentication protocols: revision of EC-RAC. In: Proceedings of the IEEE International Conference on RFID, pp. 178-185 (2009)Google Scholar
  7. 7.
    Songhela, R., Das, M.L.: Yet another strong privacy-preserving RFID mutual authentication protocol. In: Chakraborty, R.S., Matyas, V., Schaumont, P. (eds.) SPACE 2014. LNCS, vol. 8804, pp. 171–182. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-12060-7_12CrossRefGoogle Scholar
  8. 8.
    Gope, P., Hwang, T.: A realistic lightweight authentication protocol preserving strong anonymity for securing RFID system. Comput. Secur. 55(C), 271–280 (2015)CrossRefGoogle Scholar
  9. 9.
    Dasgupta, D., Saha, S.: Password security through negative filtering. In: Proceedings of International Conference on Emerging Security Technologies, pp. 83–89 (2010)Google Scholar
  10. 10.
    Dasgupta, D., Azeem, R.: A negative authentication system. Technical report, The University of Memphis: CS-07-001 (2007)Google Scholar
  11. 11.
    Esponda, F.: Everything that is not important: negative databases. IEEE Comput. Intell. Mag. 3(2), 60–63 (2008)CrossRefGoogle Scholar
  12. 12.
    Esponda, F., Ackley, E.S., Helman, P., Jia, H., Forrest, S.: Protecting data privacy through hard-to-reverse negative databases. In: Katsikas, S.K., López, J., Backes, M., Gritzalis, S., Preneel, B. (eds.) ISC 2006. LNCS, vol. 4176, pp. 72–84. Springer, Heidelberg (2006).  https://doi.org/10.1007/11836810_6CrossRefGoogle Scholar
  13. 13.
    Esponda, F., Forrest, S., Helman, P.: Enhancing privacy through negative representations of data. Technical report, University of New, Mexico (2004)Google Scholar
  14. 14.
    González, F., Dasgupta, D., Niño, L.F.: A randomized real-valued negative selection algorithm. In: Timmis, J., Bentley, P.J., Hart, E. (eds.) ICARIS 2003. LNCS, vol. 2787, pp. 261–272. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-45192-1_25CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.DA-IICTGandhinagarIndia

Personalised recommendations