Advertisement

The Digital Turn: On the Quest for Holistic Approaches

  • Christian ErfurthEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11319)

Abstract

Companies, especially SMEs, are struggling with the digital turn. Technologies are ready for use. Industrial Internet of Things (IIoT) is not new anymore. Apparently, the change is not straightforward. For a better digital future, a bigger perspective and greater responsibility for decisions around digital technologies seems to be necessary. Digitization has now become a social issue. A look at the basics and principles of digitalization will lead us to some theses. With the help of some insights into companies, we embark on a search for successful practices and challenges in digital change.

Keywords

Digital transformation Industry 4.0 New work 

Notes

Acknowledgement

The author is very thankful for the support in the research especially Arlett Semm and Marcus Wolf. This work was supported in part by the German Federal Ministry of Education and Research (BMBF) under the grant number 02L14A073.

References

  1. 1.
    von der Heyde, M., Hartmann, A., Auth, G., et al.: Zur disruptiven Digitalisierung von Hochschulforschung: Faktoren der Skalierung und ein Zukunftsszenario. Informatik Spektrum 41(5), 1–10 (2018).  https://doi.org/10.1007/s00287-018-01126-1CrossRefGoogle Scholar
  2. 2.
    Stocker, A., Brandl, P., Michalczuk, R., et al.: Mensch-zentrierte IKT-Lösungen in einer Smart Factory. Elektrotech. Inftech. 131(7), 207–211 (2014).  https://doi.org/10.1007/s00502-014-0215-zCrossRefGoogle Scholar
  3. 3.
    Hinrichsen, S., Riediger, D., Unrau, A.: Development of a projection-based assistance system for maintaining injection molding tools. In: 2017 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), pp. 1571–1575. IEEE (2017)Google Scholar
  4. 4.
    Schlagowski, R., Merkel, L., Meitinger, C.: Design of an assistant system for industrial maintenance tasks and implementation of a prototype using augmented reality. In: 2017 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), pp. 294–298 (2017)Google Scholar
  5. 5.
    Spath, D. (ed.): Produktionsarbeit der Zukunft - Industrie 4.0: Studie. Fraunhofer-Verl., Stuttgart (2013)Google Scholar
  6. 6.
    Bauer, D., Maurer, T., Henkel, C., et al.: Big-Data-Analytik: Datenbasierte Optimierung Produzierender Unternehmen. Zenodo (2017)Google Scholar
  7. 7.
    Funk, M.: Augmented reality at the workplace. Dissertation, Universitätsbibliothek der Universität Stuttgart (2016)Google Scholar
  8. 8.
    Liu, Y., Li, S., Wang, J., et al.: A computer vision-based assistant system for the assembly of narrow cabin products. Int. J. Adv. Manuf. Technol. 76(1–4), 281–293 (2015).  https://doi.org/10.1007/s00170-014-6274-9CrossRefGoogle Scholar
  9. 9.
    Hold, P., Erol, S., Reisinger, G., et al.: Planning and evaluation of digital assistance systems. Procedia Manuf. 9, 143–150 (2017).  https://doi.org/10.1016/j.promfg.2017.04.024CrossRefGoogle Scholar
  10. 10.
    Huck-Fries, V., Wiegand, F., Klinker, K., et al.: Datenbrillen in der Wartung. Gesellschaft für Informatik, Bonn (2017)Google Scholar
  11. 11.
    Groggert, S., Wenking, M., Schmitt, R.H., et al.: Status quo and future potential of manufacturing data analytics—an empirical study. In: 2017 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), pp. 779–783 (2017)Google Scholar
  12. 12.
    Schröder, C.: Herausforderungen von Industrie 4.0 für den Mittelstand. Gute Gesellschaft - soziale Demokratie #2017plus. Friedrich-Ebert-Stiftung, Abteilung Wirtschafts-. und Sozialpolitik, Bonn (2016)Google Scholar
  13. 13.
    Wolf, M., Semm, A., Erfurth, C.: Digital transformation in companies – challenges and success factors. In: Hodoň, M., Eichler, G., Erfurth, C., et al. (eds.) Innovations for Community Services, vol. 863, pp. 178–193. Springer International Publishing, Cham (2018).  https://doi.org/10.1007/978-3-319-93408-2_13CrossRefGoogle Scholar
  14. 14.
    Jordan, F., Bernardy, A., Stroh, M., et al.: Requirements-based matching approach to configurate cyber-physical systems for SMEs. In: 2017 Portland International Conference on Management of Engineering and Technology (PICMET), pp. 1–7 (2017)Google Scholar
  15. 15.
    Klotzer, C., WeiBenborn, J., Pflaum, A.: The evolution of cyber-physical systems as a driving force behind digital transformation. In: 2017 IEEE 19th Conference on Business Informatics (CBI), pp. 5–14 (2017)Google Scholar
  16. 16.
    Ten Hompel, M., Cirullies, J., Engelmeier, G., et al.: Kompetenzentwicklungsstudie Industrie 4.0: Erste Ergebnisse und Schlussfolgerungen (2016)Google Scholar
  17. 17.
    etventure.de: etventure-Studie Digitale Transformation 2017: Die deutschen Unternehmen sind zu langsam und zu unflexibel (2017). www.etventure.de/blog/etventure-studie-digitale-transformation-2017-die-deutschen-unternehmen-sind-zu-langsam-und-zu-unflexibel/
  18. 18.
    Forstner, L., Dümmler, M.: Integrierte Wertschöpfungsnetzwerke – Chancen und Potenziale durch Industrie 4.0. Elektrotech. Inftech. 131(7), 199–201 (2014).  https://doi.org/10.1007/s00502-014-0224-yCrossRefGoogle Scholar
  19. 19.
    Wischmann, S., Wangler, L., Botthoff, A. (eds.): Industrie 4.0: Volks- und betriebswirtschaftliche Faktoren für den Standort Deutschland : eine Studie im Rahmen der Begleitforschung zum Technologieprogramm Autonomik für Industrie 4.0. Bundesministerium für Wirtschaft und Energie (BMWi), Berlin (2015)Google Scholar
  20. 20.
    Jung, K., Kulvatunyou, B., Choi, S., Brundage, Michael P.: An overview of a smart manufacturing system readiness assessment. In: Nääs, I., Vendrametto, O., Reis, J.M., Gonçalves, R.F., Silva, M.T., von Cieminski, G., Kiritsis, D. (eds.) APMS 2016. IAICT, vol. 488, pp. 705–712. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-51133-7_83CrossRefGoogle Scholar
  21. 21.
    Bischoff, J.: Studie “Erschließen der Potenziale der Anwendung von ‘Industrie 4.0’ im Mittelstand” (2015). https://www.bmwi.de/Redaktion/DE/Publikationen/Studien/erschliessen-der-potenziale-der-anwendung-von-industrie-4-0-im-mittelstand.html
  22. 22.
    de Carolis, A., Macchi, M., Negri, E., et al.: Guiding manufacturing companies towards digitalization a methodology for supporting manufacturing companies in defining their digitalization roadmap. In: 2017 International Conference on Engineering, Technology and Innovation (ICE/ITMC), pp. 487–495 (2017)Google Scholar
  23. 23.
    Schuh, G., Fuß, C. (eds.): ProSense: Ergebnisbericht des BMBF-Verbundprojektes; hochauflösende Produktionssteuerung auf Basis kybernetischer Unterstützungssysteme und intelligenter Sensorik, 1st edn. Apprimus Verl, Aachen (2015)Google Scholar
  24. 24.
    Hübner, M., Malessa, N., Nyhuis, P., et al.: Vorgehensmodell zur Einführung von Industrie 4.0: Vorstellung eines Vorgehensmodells zur bedarfsgerechten Einführung von Industrie 4.0-Methoden. wt. Werkstattstechnik online( 4), 266–272 (2017)Google Scholar
  25. 25.
    Rosell, A., Salomonsson, L.: Towards a framework for identifying digital improvement opportunities: utilizing information flow and its stakeholder value. Master thesis, Linköping University (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Ernst Abbe University of Applied Sciences JenaJenaGermany

Personalised recommendations