Advertisement

Massive 2-opt and 3-opt Moves with High Performance GPU Local Search to Large-Scale Traveling Salesman Problem

  • Wen-Bao Qiao
  • Jean-Charles Créput
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11353)

Abstract

2-opt, 3-opt or \(k-\)opt heuristics are classical local search algorithms for traveling salesman problems (TSP) in combinatorial optimization area. This paper introduces a judicious decision making methodology of offloading which part of the \(k-\)opt heuristic works in parallel on Graphics Processing Unit (GPU) while which part remains sequential, called “multiple \(k-\)opt evaluation, multiple \(k-\)opt moves”, in order to simultaneously execute, without interference, massive 2-/3-opt moves that are globally found on the same TSP tour or the same Euclidean space for many edges, as well as keep high performance for GPU massive \(k-\)opt evaluation. We prove the methodology is judicious and valuable because of our originally proposed sequential non-interacted 2-/3-exchange set partition algorithm taking linear time complexity and a new TSP tour representation, array of ordered coordinates-index, in order unveil how to use GPU on-chip shared memory to achieve the same goal as using doubly linked list and array of ordered coordinates for parallel \(k-\)opt implementation. We test this methodology on 22 national TSP instances with up to 71009 cities and with brute initial tour solution. Average maximum 997 non-interacted 2-opt moves are found and executed on the same tour of ch71009.tsp instance in one iteration of our proposed method. Experimental comparisons show that our proposed methodology gets huge acceleration over both classical sequential and a possible current fastest state-of-the-art GPU parallel 2-opt implementation.

Keywords

Massive 2-opt moves Parallel 2-opt Optimization High performance GPU computing 

References

  1. 1.
    Croes, G.A.: A method for solving traveling-salesman problems. Oper. Res. 6(6), 791–812 (1958)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Garey, M.R., Johnson, D.S.: A Guide to the Theory of NP-Completeness, p. 70. WH Freemann, New York (1979)Google Scholar
  3. 3.
    Gendreau, M., Hertz, A., Laporte, G.: A tabu search heuristic for the vehicle routing problem. Manag. Sci. 40(10), 1276–1290 (1994)CrossRefGoogle Scholar
  4. 4.
    Glover, F.: Tabu search–part i. ORSA J. Comput. 1(3), 190–206 (1989)CrossRefGoogle Scholar
  5. 5.
    Johnson, D.S., McGeoch, L.A.: The traveling salesman problem: a case study in local optimization. Local Search Comb. Optim. 1, 215–310 (1997)zbMATHGoogle Scholar
  6. 6.
    Karp, R.M.: Probabilistic analysis of partitioning algorithms for the traveling-salesman problem in the plane. Math. Oper. Res. 2(3), 209–224 (1977)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Laporte, G.: The traveling salesman problem: an overview of exact and approximate algorithms. Euro. J. Oper. Res. 59(2), 231–247 (1992)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Lin, S.: Computer solutions of the traveling salesman problem. Bell Syst. Tech. J. 44(10), 2245–2269 (1965)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Lourenço, H.R., Martin, O.C., Stützle, T.: Iterated local search. Handbook of Metaheuristics, pp. 320–353. Springer, Boston (2003).  https://doi.org/10.1007/0-306-48056-5_11CrossRefGoogle Scholar
  10. 10.
    Mladenović, N., Hansen, P.: Variable neighborhood search. Comput. Oper. Res. 24(11), 1097–1100 (1997)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Mulder, S.A., Wunsch, D.C.: Million city traveling salesman problem solution by divide and conquer clustering with adaptive resonance neural networks. Neural Netw. 16(5), 827–832 (2003)CrossRefGoogle Scholar
  12. 12.
    Qiao, W., Créput, J.: Massive parallel self-organizing map and 2-opt on GPU to large scale TSP. In: Rojas, I., Joya, G., Catala, A. (eds.) IWANN 2017. LNCS, vol. 10305, pp. 471–482. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-59153-7_41CrossRefGoogle Scholar
  13. 13.
    Qiao, W.B., Créput, J.C.: Parallel 2-opt local search on GPU. World Acad. Sci. Eng. Technol. Int. J. Electr. Comput. Energ. Electron. Commun. Eng. 11(3), 281–285 (2017)Google Scholar
  14. 14.
    Reinelt, G.: Tsplib–a traveling salesman problem library. ORSA J. Comput. 3(4), 376–384 (1991)CrossRefGoogle Scholar
  15. 15.
    Rios, E., Ochi, L.S., Boeres, C., Coelho, V.N., Coelho, I.M., Farias, R.: Exploring parallel multi-GPU local search strategies in a metaheuristic framework. J. Parallel Distrib. Comput. 111, 39–55 (2018)CrossRefGoogle Scholar
  16. 16.
    Rocki, K., Suda, R.: Accelerating 2-opt and 3-opt local search using GPU in the travelling salesman problem. In: High Performance Computing and Simulation, pp. 489–495. IEEE (2012)Google Scholar
  17. 17.
    Rocki, K., Suda, R.: High performance GPU accelerated local optimization in TSP. In: 2013 IEEE 27th International Parallel and Distributed Processing Symposium Workshops & Ph.D. forum (IPDPSW), pp. 1788–1796. IEEE (2013)Google Scholar
  18. 18.
    Verhoeven, M., Aarts, E.H., Swinkels, P.: A parallel 2-opt algorithm for the traveling salesman problem. Future Gener. Comput. Syst. 11(2), 175–182 (1995)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Le2i, CNRS, Arts et MétiersUniversity Bourgogne Franche-ComtéBesançonFrance

Personalised recommendations