Advertisement

A Simple Algorithmic Proof of the Symmetric Lopsided Lovász Local Lemma

  • Lefteris Kirousis
  • John LivieratosEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11353)

Abstract

We provide a simple algorithmic proof for the symmetric Lopsided Lovász Local Lemma, a variant of the classic Lovász Local Lemma, where, roughly, only the degree of the negatively correlated undesirable events counts. Our analysis refers to the algorithm by Moser (2009), however it is based on a simple application of the probabilistic method, rather than a counting argument, as are most of the analyses of algorithms for variants of the Lovász Local Lemma.

References

  1. 1.
    Erdős, P., Lovász, L.: Problems and results on 3-chromatic hypergraphs and some related questions. Infin. Finite Sets 10, 609–627 (1975)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Szegedy, M.: The Lovász local lemma – a survey. In: Bulatov, A.A., Shur, A.M. (eds.) CSR 2013. LNCS, vol. 7913, pp. 1–11. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38536-0_1CrossRefGoogle Scholar
  3. 3.
    Moser, R.A.: A constructive proof of the Lovász local lemma. In: Proceedings of the 41st annual ACM Symposium on Theory of Computing, pp. 343–350 (2009)Google Scholar
  4. 4.
    Alon, N.: A parallel algorithmic version of the local lemma. Random Struct. Algorithms 2(4), 367–378 (1991)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Beck, J.: An algorithmic approach to the Lovász local lemma I. Random Struct. Algorithms 2(4), 343–365 (1991)CrossRefGoogle Scholar
  6. 6.
    Srivinsan, A.: Improved algorithmic versions of the Lovász local lemma. In: Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 611–620. Society for Industrial and Applied Mathematics (2008)Google Scholar
  7. 7.
    Tao, T.: Moser’s entropy compression argument (2009). https://terrytao.wordpress.com/2009/08/05/mosers-entropy-compression-argument/
  8. 8.
    Spencer, J.: Robin Moser makes Lovász local lemma algorithmic! (2010). https://cs.nyu.edu/spencer/moserlovasz1.pdf
  9. 9.
    Giotis, I., Kirousis, L., Psaromiligkos, K.I., Thilikos, D.M.: On the algorithmic Lovász local lemma and acyclic edge coloring. In: Proceedings of the Twelfth Workshop on Analytic Algorithmics and Combinatorics. Society for Industrial and Applied Mathematics (2015). http://epubs.siam.org/doi/pdf/10.1137/1.9781611973761.2
  10. 10.
    Erdős, P., Spencer, J.: Lopsided Lovász local lemma and Latin transversals. Discret. Appl. Math. 30(2–3), 151–154 (1991)CrossRefGoogle Scholar
  11. 11.
    Berman, P.R., Scott, A., Karpinski, M.: Approximation hardness and satisfiability of bounded occurrence instances of SAT. ECCC 10(022) (2003)Google Scholar
  12. 12.
    Gebauer, H., Moser, R.A., Scheder, D., Welzl, E.: The Lovász local lemma and satisfiability. Efficient Algorithms, pp. 30–54. Springer, Berlin (2009).  https://doi.org/10.1007/978-3-642-03456-5_3CrossRefGoogle Scholar
  13. 13.
    Gebauer, H., Szabó, T., Tardos, G.: The local lemma is tight for SAT. In: Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 664–674. SIAM (2011)Google Scholar
  14. 14.
    Moser, R.A., Tardos, G.: A constructive proof of the general Lovász local lemma. J. ACM (JACM) 57(2), 11 (2010)zbMATHGoogle Scholar
  15. 15.
    Sarkar, K., Colbourn, C.J.: Upper bounds on the size of covering arrays. SIAM J. Discret. Math. 31(2), 1277–1293 (2017)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Kolipaka, K., Rao, B., Szegedy, M.: Moser and Tardos meet Lovász. In: Proceedings of the Forty-Third Annual ACM Symposium on Theory of Computing, pp. 235–244. ACM, New York (2011)Google Scholar
  17. 17.
    Shearer, J.B.: On a problem of Spencer. Combinatorica 5(3), 241–245 (1985)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Harvey, N.J.A., Vondrák, J.: An algorithmic proof of the Lovász local lemma via resampling oracles. In: Proceedings 56th Annual Symposium on Foundations of Computer Science (FOCS), pp. 1327–1346. IEEE (2015)Google Scholar
  19. 19.
    Harris, D.G.: Lopsidependency in the Moser-Tardos framework: beyond the lopsided Lovász local lemma. In: Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1792–1808. SIAM (2015)Google Scholar
  20. 20.
    Spencer, J.: Ten Lectures on the Probabilistic Method, vol. 64. SIAM, Philadelphia (1994)CrossRefGoogle Scholar
  21. 21.
    Achlioptas, D., Iliopoulos, F.: Random walks that find perfect objects and the Lovász local lemma. In: 2014 IEEE 55th Annual Symposium on Foundations of Computer Science (FOCS), pp. 494–503. IEEE (2014)Google Scholar
  22. 22.
    Sedgewick, R., Flajolet, P.: An Introduction to the Analysis of Algorithms. Addison-Wesley, Upper Saddle River (2013)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of MathematicsNational and Kapodistrian University of AthensAthensGreece

Personalised recommendations