Cloud Enabled e-Glossary System: A Smart Campus Perspective

  • Musaddiq Majid Khan Al-Nadwi
  • Nadia Refat
  • Nafees Zaman
  • Md Arafatur RahmanEmail author
  • Md Zakirul Alam Bhuiyan
  • Ramdan Bin Razali
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11342)


Smart campus is a recent idea in the development of information and communication technology, being a combination of cloud computing, Internet of Things (IoT) and other emerging technologies. This paper demonstrates the result of our research efforts using IoT technology for the development of a smart campus, which also assures the improvement of vocabulary knowledge of the students. Our proposed system is mainly based on e-learning which provides definition of words and how to use that word in a sentence. However, students can take part in it and add more vocabularies in this glossary system under supervision through cloud computing. The quantitative research method is applied to validate the proposed system that provides the positive outcome. Therefore, it is an important research finding for vocabulary learning that can contribute to the building of smart campus exploiting the e-learning technologies.


Cloud computing IoT e-Learning Vocabulary learning 



This paper is partially supported by RDU grant “RDU1703232”, funded by University Malaysia Pahang.


  1. 1.
    Masud, M.A.H., Huang, X.: An e-learning system architecture based on cloud computing. System 10(11), 255–259 (2012)Google Scholar
  2. 2.
    Ewuzie, I., Usoro, A.: Exploration of cloud computing adoption for e-learning in higher education. Paper presented at the 2012 Second Symposium on Network Cloud Computing and Applications (2012)Google Scholar
  3. 3.
    Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing and emerging IT platforms: vision, hype, and reality for delivering computing as the 5th utility. Future Gener. Comput. Syst. 25(6), 599–616 (2009)CrossRefGoogle Scholar
  4. 4.
    He, Z., Yue, J.: Integrating e-learning system based on cloud computing. Paper presented at the 2012 IEEE International Conference on Granular Computing (GrC) (2012)Google Scholar
  5. 5.
    Muhamad, W., Kurniawan, N.B., Yazid, S.: Smart campus features, technologies, and applications: a systematic literature review. Paper presented at the 2017 International Conference on Information Technology Systems and Innovation (ICITSI) (2017)Google Scholar
  6. 6.
    Fabil, N.: Aplikasi teknik graph view dalam pemvisualan maklumat Sanad domain Ilmu Hadis (application of graph view techniques for visualizing information of Sanad in domain science of Hadith). Unpublished Ph.D. dissertation, Universiti Kebangsaan Malaysia, Bangi (2009)Google Scholar
  7. 7.
    Ismail, Z.: Penilaian kemahiran bertutur bahasa Arab dalam kurikulum bahasa Arab komunikasi di Sekolah Menengah Kebangsaan Agama. Unpublished Ph.D. Universiti Kebangsaan Malaysia, Bangi (2008)Google Scholar
  8. 8.
    Sahrir, M.S., Yusri, G.: Online vocabulary games for teaching and learning Arabic. GEMA Online® J. Lang. Stud. 12(3), 249–263 (2012)Google Scholar
  9. 9.
    Suwantarathip, O., Orawiwatnakul, W.: Using mobile-assisted exercises to support students’ vocabulary skill development. Turk. Online J. Educ. Technol. TOJET 14(1), 163–171 (2015)Google Scholar
  10. 10.
    Ali, Z., Mukundan, J., Baki, R., Ayub, A.F.M.: Second language learners’ attitudes towards the methods of learning vocabulary. Engl. Lang. Teach. 5(4), 24–36 (2012)CrossRefGoogle Scholar
  11. 11.
    Ghavifekr, S., Razak, A.Z.A., Ghani, M.F.A., Ran, N.Y., Meixi, Y., Tengyue, Z.: ICT integration in education: incorporation for teaching & learning improvement. Malays. Online J. Educ. Technol. 2(2), 24–45 (2014)Google Scholar
  12. 12.
    Mays, L.: The cultural divide of discourse: Understanding how English-language learners’ primary discourse influences acquisition of literacy. Read. Teach. 61(5), 415–418 (2008)CrossRefGoogle Scholar
  13. 13.
    Riasati, M.J., Allahyar, N., Tan, K.-E.: Technology in language education: benefits and barriers. J. Educ. Pract. 3(5), 25–30 (2012)Google Scholar
  14. 14.
    Bayani, M., Leiton, K., Loaiza, M.: Internet of things (IoT) advantages on e-learning in the smart cities. Int. J. Dev. Res. 7(12), 17747–17753 (2017)Google Scholar
  15. 15.
    Bululukova, D., Tabakovic, M., Wahl, H.: Smart cities education as mobility, energy & ICT hub. Paper presented at the 2016 5th International Conference on Smart Cities and Green ICT Systems (SMARTGREENS) (2016)Google Scholar
  16. 16.
    Soliman, M., Elsaadany, A.: Smart immersive education for smart cities: with support via intelligent pedagogical agents. Paper presented at the 2016 39th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO) (2016)Google Scholar
  17. 17.
    Bhuiyan, Z.A., Wang, G., Wang, T., Rahman, A., Wu, J.: Content-centric event-insensitive big data reduction in internet of things. In: 2017 IEEE Global Communications Conference GLOBECOM 2017—Proceedings, vol. 2018, pp. 1–6 (2018)Google Scholar
  18. 18.
    Rahman, M.A., Ali, J., Kabir, M.N., Azad, S.: A performance investigation on IoT enabled intra-vehicular wireless sensor networks. Int. J. Automot. Mech. Eng. 14(1), 3970–3984 (2017)CrossRefGoogle Scholar
  19. 19.
    Wang, M.Z.A., Bhuiyan, G., Wang, M.A., Rahman, J., Cao, J.: Big data reduction for a smart city’s critical infrastructural health monitoring. IEEE Commun. Mag. 56(3), 128–133 (2018)CrossRefGoogle Scholar
  20. 20.
    Bhuiyan, Md.Z.A., Zaman, M., Wang, G., Wang, T., Rahman, Md.A., Tao, H.: Protected bidding against compromised information injection in IoT-based smart grid. In: The 2nd EAI International Conference on Smart Grid and Internet of Things (SGIoT 2018), Niagara Falls, Canada, July 11–13 (2018)Google Scholar
  21. 21.
    Rahman, Md.A., Kabir, M.N., Azad, S., Ali, J.: On mitigating hop-to-hop congestion problem in IoT enabled intra-vehicular communication. In: The IEEE International Conference on Software Engineering & Computer Systems, Kuantan, August 19–21 (2015)Google Scholar
  22. 22.
    Luo, M.Z.A., Bhuiyan, G., Wang, M.A., Rahman, J., Atiquzzaman, M.: PrivacyProtector: privacy-protected patient data collection in IoT-based healthcare systems. IEEE Commun. Mag. 56(2), 163–168 (2018)CrossRefGoogle Scholar
  23. 23.
    Cacciapuoti, A.S., Caleffi, M., Paura, L., Rahman, Md.A.: Link quality estimators for multi-hop mesh network. In: Euro Med Telco Conference (EMTC), Italy (2014) Google Scholar
  24. 24.
    Rahman, Md.A., Azad, Md.S., Anwar, F.: Integrating multiple metrics to improve the performance of a routing protocol over wireless mesh network. In: Proceedings of International Conference on Signal Processing Systems (ICSPS 2009), Singapore, pp. 784–787 (2009)Google Scholar
  25. 25.
    Rahman, Md.A: Design of wireless sensor network for intra-vehicular communications. In: Mellouk, A., Fowler, S., Hoceini, S., Daachi, B. (eds.) WWIC 2014. LNCS, vol. 8458, pp. 29–40. Springer, Cham (2014). Scholar
  26. 26.
    Rahman, Md.A, Mezhuyev, V., Bhuiyan, M.Z.A., Sadat, S.M.N., Zakaria, S.A.B., Refat, N.: Reliable decision making of accepting friend request on online social networks. IEEE Access. 6, 9484–9491 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Musaddiq Majid Khan Al-Nadwi
    • 1
  • Nadia Refat
    • 1
  • Nafees Zaman
    • 3
  • Md Arafatur Rahman
    • 1
    • 2
    Email author
  • Md Zakirul Alam Bhuiyan
    • 4
  • Ramdan Bin Razali
    • 1
  1. 1.University Malaysia PahangKuantanMalaysia
  2. 2.IBM, Center of ExcellenceUMPGambangMalaysia
  3. 3.International Islamic University MalaysiaSelangorMalaysia
  4. 4.Department of Computer and Information SciencesFordham UniversityNew YorkUSA

Personalised recommendations