Indoor Interference Classification Based on WiFi Channel State Information

  • Zhuoshi Yang
  • Yanxiang Wang
  • Lejun Zhang
  • Yiran ShenEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11342)


Wireless communication channels around 2.4 GHz are shared by a number of popular wireless protocols, such as WiFi, Bluetooth, Zigbee, implemented on off-the-shelf devices. The fast increasing number of internet-of-things (IoTs) devices introduce serious challenge on reliable communication due to the problem of cross-technology interference. While, the interference problem can be mitigated if the type of the interference source is known so that the sophisticated interference avoidance method can be facilitated to improve the communication quality. In this paper, we focus on the cross-technology interference problem in indoor environment. We propose to use Channel State Information (CSI) to detect and classify the type of the interference. According to our evaluation on dataset collected from real-world experiments, our proposed CSI-based approach achieved significant performance gain compared with existing RSSI-based approach when using different classification methods including Nearest Neighborhood (NN), Supportive Vector Machine (SVM) and Sparse Representation Classification (SRC).


2.4 GHz interference IoTs interference detection Sparse Representation Classification Channel state inference Received Signal Strength Indicator 



This work is partially supported by National Natural Science Foundation of China under Grant 61702132 and 61702133, Natural Science Foundation of Heilongjiang province under grant QC2017069 and QC2017071, the Fundamental Research Funds for the Central Universities under Grant HEUCFJ160601, the China Postdoctoral Science Foundation under Grant 166875 and Heilongjiang Postdoctoral Fundation under grant LBH-Z16042.


  1. 1.
    Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., Ayyash, M.: Internet of things: a survey on enabling technologies, protocols, and applications. IEEE Commun. Surv. Tutor. 17(4), 2347–2376 (2015)CrossRefGoogle Scholar
  2. 2.
    Bloessl, B., Joerer, S., Mauroner, F., Dressler, F.: Low-cost interferer detection and classification using TelosB sensor motes, pp. 403–406 (2012)Google Scholar
  3. 3.
    Chen, X., Yuen, C.: On interference alignment with imperfect CSI: characterizations of outage probability, ergodic rate and SER. IEEE Trans. Veh. Technol. 65(1), 47–58 (2016)CrossRefGoogle Scholar
  4. 4.
    Hauer, J.-H., Willig, A., Wolisz, A.: Mitigating the effects of RF interference through RSSI-based error recovery. In: Silva, J.S., Krishnamachari, B., Boavida, F. (eds.) EWSN 2010. LNCS, vol. 5970, pp. 224–239. Springer, Heidelberg (2010). Scholar
  5. 5.
    Iyer, V., Hermans, F., Voigt, T.: Detecting and avoiding multiple sources of interference in the 2.4 GHz spectrum. In: Abdelzaher, T., Pereira, N., Tovar, E. (eds.) EWSN 2015. LNCS, vol. 8965, pp. 35–51. Springer, Cham (2015). Scholar
  6. 6.
    Iyer, V., Woehrle, M., Langendoen, K.: Chrysso–a multi-channel approach to mitigate external interference. In: 2011 8th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON), pp. 449–457. IEEE (2011)Google Scholar
  7. 7.
    Li, S., Sen, S., Koutsonikolas, D., Kim, : K.H.: WiDraw: enabling hands-free drawing in the air on commodity WiFi devices. In: International Conference on Mobile Computing and Networking, pp. 77–89 (2015)Google Scholar
  8. 8.
    Liang, C.J.M., Priyantha, N.B., Liu, J., Terzis, A.: Surviving Wi-Fi interference in low power ZigBee networks. In: Proceedings of the 8th ACM Conference on Embedded Networked Sensor Systems, pp. 309–322. ACM (2010)Google Scholar
  9. 9.
    Rayanchu, S., Patro, A., Banerjee, S.: Catching whales and minnows using WiFiNet: deconstructing non-WiFi interference using WiFi hardware. In: Usenix Conference on Networked Systems Design and Implementation, p. 5 (2012)Google Scholar
  10. 10.
    Shen, Y., Hu, W., Yang, M., Wei, B., Lucey, S., Chou, C.T.: Face recognition on smartphones via optimised sparse representation classification. In: Proceedings of the 13th International Symposium on Information Processing in Sensor Networks, pp. 237–248. IEEE Press (2014)Google Scholar
  11. 11.
    Shen, Y., Luo, C., Yin, D., Wen, H., Daniela, R., Hu, W.: Privacy-preserving sparse representation classification in cloud-enabled mobile applications. Comput. Netw. 133, 59–72 (2018)CrossRefGoogle Scholar
  12. 12.
    Shen, Y., et al.: GaitLock: protect virtual and augmented reality headsets using gait. IEEE Trans. Dependable Secure Comput. (2018)Google Scholar
  13. 13.
    Shen, Y., Yang, M., Wei, B., Chou, C.T., Hu, W.: Learn to recognise: exploring priors of sparse face recognition on smartphones. IEEE Trans. Mob. Comput. 12(6), 1705–1717 (2017)CrossRefGoogle Scholar
  14. 14.
    Wang, X., Gao, L., Mao, S., Pandey, S.: CSI-based fingerprinting for indoor localization: a deep learning approach. IEEE Trans. Veh. Technol. 66(1), 763–776 (2017)Google Scholar
  15. 15.
    Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 210–227 (2009)CrossRefGoogle Scholar
  16. 16.
    Xu, W., Shen, Y., Bergmann, N., Hu, W.: Sensor-assisted multi-view face recognition system on smart glass. IEEE Trans. Mob. Comput. 17(1), 197–210 (2018)CrossRefGoogle Scholar
  17. 17.
    Yang, Q., Shen, Y., Yang, F., Zhang, J., Xue, W., Wen, H.: HealCam: energy-efficient and privacy-preserving human vital cycles monitoring on camera-enabled smart devices. Comput. Netw. 138, 192–200 (2018)CrossRefGoogle Scholar
  18. 18.
    Zacharias, S., Newe, T., O’Keeffe, S., Lewis, E.: Identifying sources of interference in RSSI traces of a single IEEE 802.15.4 channel. In: The Eighth International Conference on Wireless and Mobile Communications, pp. 408–414 (2012)Google Scholar
  19. 19.
    Zeng, Y., Pathak, P.H., Mohapatra, P.: Analyzing shopper’s behavior through WiFi signals, pp. 13–18 (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Zhuoshi Yang
    • 1
  • Yanxiang Wang
    • 1
  • Lejun Zhang
    • 2
  • Yiran Shen
    • 1
    • 3
    Email author
  1. 1.Harbin Engineering UniversityHarbinChina
  2. 2.Yangzhou UniversityYangzhouChina
  3. 3.Data61, CSIROBrisbaneAustralia

Personalised recommendations