Advertisement

Al-Based Nanocomposites Produced via Spark Plasma Sintering: Effect of Processing Route and Reinforcing Phases

  • Pasquale CavaliereEmail author
  • B. Sadeghi
  • M. Shamanian
  • F. Ashrafizadeh
Chapter

Abstract

Spark plasma sintering (SPS) is a sintering technique utilizing uniaxial force and a pulsed direct current to perform metallic or ceramic particle consolidation in very short times. The high heating and cooling rates allow to prevent excessive grain growth favoring densification. Spark plasma sintering has been recognized, in the recent past, as a very useful method to produce metal matrix composites with enhanced mechanical and wear properties. Obviously, the materials final properties are strongly related to the reinforcement types and percentages as well as to the processing parameters employed during synthesis. First of all materials density and hardness depend on the employed heating and pressure conditions during sintering. The addition of reinforcing phases modifies the potential process parameters that can be employed during sintering and obviously the final materials properties. These are a direct function of different factors such as type, size, and percentage. All these aspects are described in the present chapter.

Keywords

Spark plasma sintering Nanocomposites Processing parameters Reinforcing phases 

References

  1. Aliyu IK, Saheb N, Fida Hassan S, Al-Aqeeli N (2015) Microstructure and properties of spark plasma sintered aluminum containing 1 wt.% SiC nanoparticles. Materials 5:70–83Google Scholar
  2. Anselmi-Tamburini U, Garay JE, Munir ZA (2005a) Fundamental investigations on the spark plasma sintering/synthesis process: III. Current effect on reactivity. Mater Sci Eng A 407:24–30CrossRefGoogle Scholar
  3. Anselmi-Tamburini U, Gennari S, Garay JE, Munir ZA (2005b) Fundamental investigations on the spark plasma sintering/synthesis process II. Modeling of current and temperature distributions. Mater Sci Eng A 394:139–148CrossRefGoogle Scholar
  4. Babu NK, Kallip K, Leparoux M, AlOgab KA, Maeder X, Rojas Dasilva YA (2016) Influence of microstructure and strengthening mechanism of AlMg5–Al2O3 nanocomposites prepared via spark plasma sintering. Mater Des 95:534–544CrossRefGoogle Scholar
  5. Bathul S, Anandani RC, Dhar A, Srivastava AK (2012) Microstructural features and mechanical properties of Al 5083/SiCp metal matrix nanocomposites produced by high energy ball milling and spark plasma sintering. Mater Sci Eng A 545:97–102CrossRefGoogle Scholar
  6. Bisht A, Srivastav M, Manoj Kumar R, Lahiri I, Lahiri D (2017) Strengthening mechanism in graphene nanoplatelets reinforced aluminum composite fabricated through spark plasma sintering. Mater Sci Eng A 695:20–28Google Scholar
  7. Boesl B, Lahiri D, Behdad S, Agarwal A (2014) Direct observation of carbon nanotube induced strengthening in aluminum composite via in situ tensile tests. Carbon 69:79–85CrossRefGoogle Scholar
  8. Cavaliere P (2004) Isothermal forging of AA2618 reinforced with 20% of alumina particles. Composites Part A 35:619–629CrossRefGoogle Scholar
  9. Cavaliere P, Sadeghi B, Shabani A (2017) Carbon nanotube reinforced aluminum matrix composites produced by spark plasma sintering. J Mater Sci 52:8618–8629CrossRefGoogle Scholar
  10. Chen W, Anselmi-Tamburini U, Garay JE, Groza JR, Munir ZA (2005) Fundamental investigations on the spark plasma sintering/synthesis process I. Effect of dc pulsing on reactivity. Mater Sci Eng A 394:132–138CrossRefGoogle Scholar
  11. Chen B, Li S, Imai H, Jia L, Umeda J, Takahashi M, Kondoh K (2015) Carbon nanotube induced microstructural characteristics in powder metallurgy Al matrix composites and their effects on mechanical and conductive properties. J Alloys Compd 651:608–615CrossRefGoogle Scholar
  12. Chen B, Imai H, Umeda J, Takahashi M, Kondoh K (2017) Effect of spark plasma sintering conditions on tensile properties of aluminum matrix composites reinforced with multiwalled carbon nanotubes (MWCNTs). JOM 69(4):669–675CrossRefGoogle Scholar
  13. Dash K, Chaira D, Ray BC (2013) Synthesis and characterization of aluminium–alumina micro-and nano-composites by spark plasma sintering. Mater Res Bull 48(7):2535–2542CrossRefGoogle Scholar
  14. Diouf S, Molinari A (2012) Densification mechanisms in spark plasma sintering: effect of particle size and pressure. Powder Technol 221:220–227CrossRefGoogle Scholar
  15. Dong Hoon N, Seung Il C, Kyung Moon L, Jun Ho J, Hoon Mo P, Jong Kook L, Soon Hyung H (2016) Thermal properties of carbon nanotubes reinforced aluminum-copper matrix nanocomposites. J Nanosci Nanotechnol 16(11):12013–12016CrossRefGoogle Scholar
  16. Esawi AMK, Morsi K, Sayed A, Taher M, Lanka S (2010) Effect of carbon nanotube (CNT) content on the mechanical properties of CNT-reinforced aluminium composites. Compos Sci Technol 70:2237–2241CrossRefGoogle Scholar
  17. Firestein KL, Steinman AE, Golovin IS, Cifre J, Obraztsova EA, Matveev AT, Kovalskii AM, Lebedev OI, Shtansky DV, Golberg D (2015) Fabrication, characterization, and mechanical properties of spark plasma sintered Al–BN nanoparticle composites. Mater Sci Eng A 642:104–112CrossRefGoogle Scholar
  18. Firestein KL, Corthay S, Steinman AE, Matveev AT, Kovalskii AM, Sukhorukova IV, Golberg D, Shtansky DV (2017) High-strength aluminum-based composites reinforced with BN, AlB2 and AlN particles fabricated via reactive spark plasma sintering of Al-BN powder mixtures. Mater Sci Eng A 681:1–9CrossRefGoogle Scholar
  19. Garay J (2010) Current-activated, pressure-assisted densification of materials. Annu Rev Mater Res 40:445–468. https://doi.org/10.1146/annurev-matsci-070909-104433Google Scholar
  20. Garbiec D, Jurczyk M, Levintant-Zayonts N, Mościcki T (2015) Properties of Al–Al 2 O 3 composites synthesized by spark plasma sintering method. Archiv Mater Manuf Eng 15(4):933–939Google Scholar
  21. Ghasali E, Pakseresht A, Safari-kooshali F, Agheli M, Ebadzadeh T (2015) Investigation on microstructure and mechanical behavior of Al–ZrB2 composite prepared by microwave and spark plasma sintering. Mater Sci Eng A 627:27–30CrossRefGoogle Scholar
  22. Ghasali E, Alizade M, Ebadzadeh T (2016a) Mechanical and microstructure comparison between microwave and spark plasma sintering of Al-B4C composite. J Alloys Compd 655:93–98CrossRefGoogle Scholar
  23. Ghasali E, Nouraniana H, Rahbari A, Majidian H, Alizadeh M, Ebadzadeh T (2016b) Low temperature sintering of aluminum-zircon metal matrix composite prepared by spark plasma sintering. Mater Res 19(5):1189–1192CrossRefGoogle Scholar
  24. Ghasali E, Pakseresht AH, Alizadeh M, Shirvanimoghaddam K, Ebadzadeh T (2016c) Vanadium carbide reinforced aluminum matrix composite prepared by conventional, microwave and spark plasma sintering. J Alloys Compd 688:527–533CrossRefGoogle Scholar
  25. Ghasali E, Shirvanimoghaddam K, Pakseresht AH, Alizadeh M, Ebadzadeh T (2017) Evaluation of microstructure and mechanical properties of Al-TaC composites prepared by spark plasma sintering process. J Alloys Compd 705:283–289Google Scholar
  26. Grácio JJ, Picu CR, Vincze G, Mathew N, Schubert T, Lopes A, Buchheim C (2013) Mechanical behavior of AlSiC nanocomposites produced by ball milling and spark plasma sintering. Met Trans A 44(11):5259–5269CrossRefGoogle Scholar
  27. Guillon O, Gonzalez-Julian J, Dargatz B, Kessel T, Schierning G, Räthel J, Herrmann M (2014) Field-assisted sintering technology/spark plasma sintering: mechanisms, materials, and technology developments. Adv Eng Mater 16(7):830–849CrossRefGoogle Scholar
  28. Guo B, Song M, Yi J, Ni S, Shen T, Du Y (2017) Improving the mechanical properties of carbon nanotubes reinforced pure aluminum matrix composites by achieving non-equilibrium interface. Mater Des 120:56–65CrossRefGoogle Scholar
  29. Jin-Zhi L, Ming-Jen T, Idapalapati S (2010) Spark plasma sintered multi-wall carbon nanotube reinforced aluminum matrix composites. Mater Des 31:S96–S100CrossRefGoogle Scholar
  30. Kubota M (2010) Solid-state reaction in mechanically milled and spark plasma sintered Al–B4C composite materials. J Alloys Compd 504S:S319–S322CrossRefGoogle Scholar
  31. Kubota M, Wynne PB (2007) Electron backscattering diffraction analysis of mechanically milled and spark plasma sintered pure aluminum. Scripta Mater 57:719–722CrossRefGoogle Scholar
  32. Kubota M, Kaneko J, Sugamata M (2008) Properties of mechanically milled and spark plasma sintered Al–AlB2 and Al–MgB2 nano-composite materials. Mater Sci Eng A 475:96–100CrossRefGoogle Scholar
  33. Kwon H, Park DH, Park Y, Silvain JF, Kawasaki A, Park Y (2010) Spark plasma sintering behavior of pure aluminum depending on various sintering temperatures. Met Mater Int 16(1):71–75CrossRefGoogle Scholar
  34. Kwon H, Leparoux M, Kawasaki A (2014) Functionally graded dual-nanoparticulate-reinforced aluminium matrix bulk materials fabricated by spark plasma sintering. J Mater Sci Technol 30(8):736–742CrossRefGoogle Scholar
  35. Kwon H, Park J, Joo S, Hong S, Mun J (2016) Spark plasma sintering behavior and heat dissipation characteristics of the aluminum matrix composite materials with the contents of graphite. J Korean Powder Metall Inst 23(3):195–201CrossRefGoogle Scholar
  36. Lalet G, Kurita H, Miyazaki T, Kawasaki A, Silvain JF (2014) Microstructure of a carbon fiber reinforced aluminum matrix composite fabricated by spark plasma sintering in various pulse conditions. J Mater Sci 49(8):3268–3275CrossRefGoogle Scholar
  37. Le GM, Godfrey A, Hansen N, Liu W, Winther G, Huang X (2013) Influence of grain size in the near-micrometre regime on the deformation microstructure in aluminium. Acta Mater 61:7072–7086CrossRefGoogle Scholar
  38. Leon C, Rodriguez-Ortiz G, Aguilar-Reyes E (2009) Cold compaction of metal–ceramic powders in the preparation of copper base hybrid materials. Mater Sci Eng A 526(1):106–112CrossRefGoogle Scholar
  39. Li M, Mab K, Jiang L, Yang H, Lavernia EJ, Zhang L, Schoenung JM (2016) Synthesis and mechanical behavior of nano structured Al5083/n-TiB2 metal matrix composites. Mater Sci Eng A 656:241–248CrossRefGoogle Scholar
  40. Liao J-Z, Tan M-J, Sridhar I (2010) Spark plasma sintered multi-wall carbon nanotube reinforced aluminum matrix composites. Mater Des 31:S96–S100CrossRefGoogle Scholar
  41. Liu D, Xiong Y, Topping TD, Zhou Y, Haines C, Paras J, Martin D, Kapoor D, Schoenung JM, Lavernia EJ (2012) Spark plasma sintering of cryomilled nanocrystalline Al alloy – part II: influence of processing conditions on densification and properties. Metall Mater Trans A 43:340–350CrossRefGoogle Scholar
  42. Liu Z-F, Zhang Z-H, Lu J-F, Korznikov AV, Korznikova E, Wang F-C (2014) Effect of sintering temperature on microstructures and mechanical properties of spark plasma sintered nanocrystalline aluminum. Mater Des 64:625–630CrossRefGoogle Scholar
  43. Liu D, Xiong Y, Li P, Lin Y, Chen F, Zhang L, Schoenung JM, Lavernia EJ (2016) Microstructure and mechanical behavior of NS/UFG aluminum prepared by cryomilling and spark plasma sintering. J Alloys Compd 679:426–435CrossRefGoogle Scholar
  44. Milligan J, Gauvin R, Brochu M (2013) Consolidation of cryomilled Al–Si using spark plasma sintering. Philos Mag 93(19):2445–2464CrossRefGoogle Scholar
  45. Mizuuchi K, Inoue K, Agari Y, Nagaoka T, Sugioka M, Tanaka M, Takeuchi T, Tani J-I, Kawahara M, Makino Y, Ito M (2012) Processing and thermal properties of Al/AlN composites in continuous solid–liquid co-existent state by spark plasma sintering. Composites Part B 43:1557–1563CrossRefGoogle Scholar
  46. Mizuuchi K, Inoue K, Agari Y, Sugioka M, Tanaka M, Takeuchi T, Tani J, Kawahara M, Makino Y, Ito M (2014a) Bimodal and monomodal diamond particle effect on the thermal properties of diamond-particle-dispersed Al–matrix composite fabricated by SPS. Microelectron Reliab 54:2463–2470CrossRefGoogle Scholar
  47. Mizuuchi K, Inoue K, Agari Y, Sugioka M, Tanaka M, Takeuchi T, Tani J, Kawahara M, Makino Y, Ito M (2014b) Thermal properties of cBN particle dispersed Al matrix composites fabricated by SPS. J Jpn Soc Powder Metall 61(12):549–555CrossRefGoogle Scholar
  48. Mizuuchi K, Inoue K, Agari Y, Sugioka M, Tanaka M, Takeuchi T, Tani J, Kawahara M, Makino Y, Ito M (2015) Effect of bimodal cBN particle size distribution on thermal conductivity of Al/cBN composite fabricated by SPS. J Jpn Soc Powder Metall 62(5):263–270CrossRefGoogle Scholar
  49. Morsi K, Esawi AMK, Borah P, Lanka S, Sayed A (2010a) Characterization and spark plasma sintering of mechanically milled aluminum-carbon nanotube (CNT) composite powders. J Compos Mater 44:1991–2003CrossRefGoogle Scholar
  50. Morsi K, Esawi AMK, Lanka S, Sayed A, Taher M (2010b) Spark plasma extrusion (SPE) of ball-milled aluminum and carbon nanotube reinforced aluminum composite powders. Composites Part A 41:322–326CrossRefGoogle Scholar
  51. Munir ZA, Anselmi-Tamburini U, Ohtanagi M (2006) The effect of electric field and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method. J Mater Sci 41:763–777CrossRefGoogle Scholar
  52. Olevsky E, Froyen L (2006) Constitutive modeling of spark-plasma sintering of conductive materials. Scripta Mater 55:1175–1178CrossRefGoogle Scholar
  53. Olevsky EA, Froyen L (2009) Impact of thermal diffusion on densification during SPS. J Am Ceram Soc 92:S122–S132CrossRefGoogle Scholar
  54. Olevsky EA, Kandurkuri S, Froyen L (2007) Consolidation enhancement in spark-plasma sintering: impact of high heating rates. J Appl Phys 102(11):114913Google Scholar
  55. Ostovan F, Matori KA, Toozandehjani M, Oskoueian A, Yusoff HM, Yunus R, Ariff AHM, Quah HJ, Lim WF (2015) Effects of CNTs content and milling time on mechanical behavior of MWCNT-reinforced aluminum nanocomposites. Mater Chem Phys 166:160–166CrossRefGoogle Scholar
  56. Pakdel A, Witecka A, Rydzek G, Awang Shri DN (2017) A comprehensive microstructural analysis of Al–WC micro- and nano-composites prepared by spark plasma sintering. Mater Des 119:225–234CrossRefGoogle Scholar
  57. Sadeghi B, Shamanian M, Ashrafizadeh F, Cavaliere P, Rizzo A (2017) Influence of Al2O3 nanoparticles on microstructure and strengthening mechanism of Al-based nanocomposites produced via spark plasma sintering. J Mater Eng Perform 26:2928–2936CrossRefGoogle Scholar
  58. Saheb N, Aliyu IK, Hassan SF, Al-Aqeeli N (2014) Matrix structure evolution and nanoreinforcement distribution in mechanically milled and spark plasma sintered Al-SiC nanocomposites. Materials 7:6748–6767CrossRefGoogle Scholar
  59. Saheb N, Khan MS, Hakeem AS (2015) Effect of processing on mechanically alloyed and spark plasma sintered Al-Al2O3 nanocomposites. J Nanomater 2015:609824CrossRefGoogle Scholar
  60. Siddiqui MU, Arif AFM, Nouari S, Shahzeb Khan M (2017) Constitutive modeling of elastoplasticity in spark-plasma sintered metal matrix nanocomposites. Mater Sci Eng A 689:176–188CrossRefGoogle Scholar
  61. Singh LK, Maiti A, Maurya RS, Laha T (2016) Al alloy nanocomposite reinforced with physically functionalized carbon nanotubes synthesized via spark plasma sintering. Mater Manuf Process 31(6):733–738CrossRefGoogle Scholar
  62. Sweet GA, Brochu M, RL HJ, Donaldson IW, Bishop DP (2015) Consolidation of aluminum-based metal matrix composites via spark plasma sintering. Mater Sci Eng A 648:123–133CrossRefGoogle Scholar
  63. Tian W, Li S, Wang B, Chen X, Liu J, Yu M (2016) Graphene reinforced aluminum matrix composites prepared by spark plasma sintering. Int J Min Met Mater 23(6):723–729CrossRefGoogle Scholar
  64. Vintila R, Charest A, Drew RAL, Brochu M (2011) Synthesis and consolidation via spark plasma sintering of nanostructured Al-5356/B4C composite. Mater Sci Eng A 528:4395–4407CrossRefGoogle Scholar
  65. Wang L, Liu Y, Wu J, Zhang X (2017) Mechanical properties and friction behaviors of CNT/AlSi Mg composites produced by spark plasma sintering. Int J Min Met Mater 24(5):584–593CrossRefGoogle Scholar
  66. Wu J, Zhang H, Zhang Y, Wang X (2012) Mechanical and thermal properties of carbon nanotube/aluminum composites consolidated by spark plasma sintering. Mater Des 41:344–348CrossRefGoogle Scholar
  67. Xie G, Ohashi O, Chiba K, Yamaguchi N, Song M, Furuya K, Noda T (2003) Frequency effect on pulse electric current sintering process of pure aluminum powder. Mater Sci Eng A 359:384–390CrossRefGoogle Scholar
  68. Yang S, Yan X, Yang K, Fu Z (2016) Effect of the addition of nano-Al2O3 on the microstructure and mechanical properties of twinned Al0.4FeCrCoNi1.2Ti0.3 alloys. Vacuum 131:69–72CrossRefGoogle Scholar
  69. Zhang Y, Li J, Zhao L, Zhang H, Wang X (2014) Effect of metalloid silicon addition on densification, microstructure and thermal–physical properties of Al/diamond composites consolidated by spark plasma sintering. Mater Des 63:838–847CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Pasquale Cavaliere
    • 1
    Email author
  • B. Sadeghi
    • 2
  • M. Shamanian
    • 2
  • F. Ashrafizadeh
    • 2
  1. 1.Department of Innovation EngineeringUniversity of SalentoLecceItaly
  2. 2.Department of Material EngineeringIsfahan University of TechnologyIsfahanIran

Personalised recommendations