Advertisement

The Use of SPS for High-Rate Diffusion Welding of High-Strength Ultrafine-Grained α-Titanium Alloy Ti-5Al-2V

  • Aleksey NokhrinEmail author
  • Maksim Boldin
  • Aleksandr Piskunov
  • Nataliya Kozlova
  • Mikhail Chegurov
  • Vladimir Kopylov
  • Nataliya Tabachkova
  • Vladimir Chuvil’deev
  • Petr Tryaev
Chapter

Abstract

The article provides an example of applying the technology of spark plasma sintering (SPS) to ensure high-rate diffusion welding of high-strength ultrafine-grained (UFG) α-titanium alloys prepared by equal channel angular pressing. Weld seams produced from Ti-5Al-2V UFG α-titanium alloy and obtained through SPS are characterized by high density, hardness, and corrosion resistance.

Keywords

SPS Diffusion welding Ultrafine-grained metals Titanium alloys 

Notes

Acknowledgments

The authors are grateful for the support to the Russian Science Foundation (grant No. 16-13-00066).

References

  1. Andrievskii RA (2011) Radiation stability of nanomaterials. Nanotechnol Russ 6:357–369.  https://doi.org/10.1134/S1995078011030037CrossRefGoogle Scholar
  2. Balyanov A, Kutnyakova J, Amirkhanova N, Stolyarov V, Valiev R, Liao X, Zhao Y, Jiang Y, Xu H, Lowe T, Zhu Y (2004) Corrosion resistance of ultra fine-grained Ti. Scr Mater 51:225–229.  https://doi.org/10.1016/j.scriptamat.2004.04.011CrossRefGoogle Scholar
  3. Chuvil’deev VN, Nieh TG, Gryaznov MY, Sysoev AN, Kopylov VI (2004) Low-temperature superplasticity and internal friction in microcrystalline Mg alloys processed by ECAP. Scr Mater 50:861–865.  https://doi.org/10.1016/j.scriptamat.2003.12.003CrossRefGoogle Scholar
  4. Chuvil’deev VN, Kopylov VI, Gryaznov MY, Sysoev AN, Ovsyannikov BB, Flyagin AA (2008) Doubling of the strength and plasticity of a commercial aluminum-based alloy (AMg6) processed by equal channel angular pressing. Dokl Phys 53:584–587.  https://doi.org/10.1134/S1028335808110086CrossRefGoogle Scholar
  5. Chuvil’deev VN, Shavleva AV, Nokhrin AV, Pirozhnikova OE, Gryaznov MY, Lopatin YG, Sysoev AN, Melekhin NV, Sakharov NV, Kopylov VI, Myshlayev MM (2010) Influence of the grain size and structural state of grain boundaries on the parameter of low-temperature and high-rate superplasticity of nanocrystalline and microcrystalline alloys. Phys Solid State 52:1098–1106.  https://doi.org/10.1134/S1063783410050422CrossRefGoogle Scholar
  6. Chuvil’deev VN, Kopylov VI, Bakmet’ev AM, Sandler NG, Nokhrin AV, Tryaev PV, Lopatin YG, Kozlova NA, Piskunov AV, Melekhin NV (2012) Effect of simultaneous enhancement in strength and corrosion resistance of microcrystalline titanium alloys. Dokl Phys 57:10–13.  https://doi.org/10.1134/S1028335812010119CrossRefGoogle Scholar
  7. Chuvil’deev VN, Nokhrin AV, Baranov GV, Moskvicheva AV, Boldin MS, Kotkov DN, Sakharov NV, Blagoveshensky YV, Shotin SV, Melekhin NV, Belov VV (2013) Study of the structure and mechanical properties of nano- and ultradispersed mechanically activated heavy tungsten alloys. Nanotechnol Russ 8:108–121.  https://doi.org/10.1134/S1995078013010047CrossRefGoogle Scholar
  8. Chuvil’deev VN, Boldin MS, Dyatlova YG, Rumyantsev VI, Ordan’yan SS (2015a) A comparative study of the hot pressing and spark plasma sintering of Al2O3-ZrO2-Ti(C,N) powders. Inorg Mater 51:1047–1053.  https://doi.org/10.1134/S0020168515090034CrossRefGoogle Scholar
  9. Chuvil’deev VN, Panov DV, Boldin MS, Nokhrin AV, Blagoveshensky YV, Sakharov NV, Shotin SV, Kotkov DN (2015b) Structure and properties of advanced materials obtained by spark plasma sintering. Acta Astronaut 109:172–176.  https://doi.org/10.1016/j.actaastro.2014.11.008CrossRefGoogle Scholar
  10. Chuvil’deev VN, Kopylov VI, Nokhrin AV, Tryaev PV, Kozlova NA, Tabachkova NY, Lopatin YG, Ershova AV, Mikhaylov AS, Gryaznov MY, Chegurov MK (2017a) Study of mechanical properties and corrosive resistance of ultrafine-grained α-titanium alloy Ti-5Al-2V. J Alloys Compd 2017:354–367.  https://doi.org/10.1016/j.jallcom.2017.06.220CrossRefGoogle Scholar
  11. Chuvil’deev VN, Blagoveshchenskiy YV, Nokhrin AV, Boldin MS, Sakharov NV, Isaeva NV, Shotin SV, Belkin OA, Popov AA, Smirnova ES, Lantsev EA (2017b) Spark plasma sintering of tungsten carbide nanopowders obtained through DC arc plasma synthesis. J Alloys Compd 708:547–561.  https://doi.org/10.1016/j.jallcom.2017.03.035CrossRefGoogle Scholar
  12. Kim H, Kim W (2014) Annealing effects on the corrosion resistance on ultrafine-grained pure titanium. Corros Sci 89:331–337.  https://doi.org/10.1016/j.corsci.2014.08.017CrossRefGoogle Scholar
  13. Kim H, Yoo S, Ahn J, Kim D, Kim W (2011) Ultrafine grained titanium sheets with high strength and high corrosion resistance. Mater Sci Eng A 528:8479–8485.  https://doi.org/10.1016/j.msea.2011.07.074CrossRefGoogle Scholar
  14. Munir Z, Quach D (2011) Electric current activation of sintering: a review of the pulsed electric current sintering process. J Am Ceram Soc 94:1–19.  https://doi.org/10.1111/j.1551-2916.2010.04210.xCrossRefGoogle Scholar
  15. Munir Z, Anselmi-Tamburini U, Ohyanagi M (2006) The effect of electric field and pressure on the synthesis and consolidation materials: a review of the spark plasma sintering method. J Mater Sci 41:763–777.  https://doi.org/10.1007/s10853-006-6555-2CrossRefGoogle Scholar
  16. Orlova AI, Volgutov VY, Mikhailov DA, Bykov DM, Skuratov VA, Chuvil’deev VN, Nokhrin AV, Boldin MS, Sakharov NV (2014) Phosphate Ca1/4Sr1/4Zr2(PO4)3 of the NaZr2(PO4)3 structural type: synthesis of a dense ceramic material and its radiation testing. J Nucl Mater 446:232–239.  https://doi.org/10.1016/j.jnucmat.2013.11.025CrossRefGoogle Scholar
  17. Perevezentsev VN, Chuvil’deev VN, Kopylov VI, Sysoev AN, Langdon TG (2002) Developing high strain rate superplasticity in Al-Mg-Sc-Zr alloys using equal-channel angular pressing. Ann Chim Sci Mater 27:99–109CrossRefGoogle Scholar
  18. Segal VM, Beyerlein IJ, Tome CN, Chuvil’deev VN, Kopylov VI (2010) Fundamentals and engineering of severe plastic deformation. Nova Science Publishers, New YorkGoogle Scholar
  19. Tokita M (2013) Spark plasma sintering (SPS) method, systems, and applications (Chapter 11.2.3). In: Somiya S (ed) Handbook of advanced ceramics, 2nd edn. Academic Press, OxfordGoogle Scholar
  20. Valiev R, Langdon T (2006) Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog Mater Sci 51:881–981.  https://doi.org/10.1016/j.pmatsci.2006.02.003CrossRefGoogle Scholar
  21. Wang Y, Chen M, Zhou F, Ma E (2002) High tensile ductility in nanostructured metal. Nature 419:912–915.  https://doi.org/10.1038/nature01133CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Aleksey Nokhrin
    • 1
    Email author
  • Maksim Boldin
    • 1
  • Aleksandr Piskunov
    • 1
  • Nataliya Kozlova
    • 1
  • Mikhail Chegurov
    • 1
  • Vladimir Kopylov
    • 1
    • 2
  • Nataliya Tabachkova
    • 3
  • Vladimir Chuvil’deev
    • 1
  • Petr Tryaev
    • 4
  1. 1.Lobachevsky State University of Nizhny NovgorodNizhny NovgorodRussia
  2. 2.Physics and Technology InstituteNational Academy Science of BelarusMinskBelarus
  3. 3.National University of Science and Technology “MISiS”MoscowRussia
  4. 4.Afrikantov Experimental Design Bureau for Mechanical Engineering JSC (Afrikantov OKBM JSC)Nizhny NovgorodRussia

Personalised recommendations