Advertisement

Spark Plasma Sintering of NiTi Shape Memory Alloy

  • V. SenthilkumarEmail author
  • C. Velmurugan
Chapter

Abstract

The NiTi shape memory alloy has a potential effect on smart fabrications such as actuators, biomedical, structural and aerospace applications. But the implementation of such SMA in these fields is very less, since an in-depth understanding of the working principle, thermomechanical behaviour and phase transformation characteristics of SMA is needed. The SMAs are functioning in two phases such as austenite and martensite which can be executed by thermal and mechanical loads applied on them. The parent structure of austenite is subjected to deformation and transformed into martensite due to thermomechanical load; when the load is removed, it is exposed to its initial austenite structure. This chapter reports the immaculate concepts of the mechanism of NiTi SMA, fabrication methods, applications and a detailed study of a rapid manufacturing tool of spark plasma sintering (SPS).

Keywords

NiTi Shape memory alloy Spark plasma sintering Superelasticity Phase transformation 

References

  1. Arunkumar S, Kumaravel P, Velmurugan C, Senthilkumar V (2018) Microstructures and mechanical properties of nanocrystalline NiTi intermetallics formed by mechanosynthesis. Int J Miner Metall Mater 25(1):80–87CrossRefGoogle Scholar
  2. Bonifacio CS, Rufner JF, Holland TB, Van Benthem K (2012) In situ transmission electron microscopy study of dielectric breakdown of surface oxides during electric field-assisted sintering of nickel nanoparticles. Appl Phys Lett 101:4583–4586CrossRefGoogle Scholar
  3. Bram M, Ahmad-Khanloua A, Heckmannb A, Fuchsa B, Buchkremera HP, Stovera D et al (2002) Powder metallurgical fabrication processes for NiTi shape memory alloy parts. Mater Sci Eng A 337:254–263CrossRefGoogle Scholar
  4. Buehler WJ, Gilfrich JV, Wiley RC (1963) Effect of low-temperature phase changes on the mechanical properties of alloys near composition TiNi. J. Appl. Phys., 34(5):1475–1477Google Scholar
  5. Chen F, Tong YX, Lu XL, Wang X, Tian B, Li L et al (2011) Effect of graphite addition on martensitic transformation and damping behavior of NiTi shape memory alloy. Mater Lett 65(7):1073–1075CrossRefGoogle Scholar
  6. Cheng Y, Cui Z, Cheng L, Gong D, Wang W (2017) Effect of particle size on densification of pure magnesium during spark plasma sintering. Adv Powder Technol 28(4):1129–1135CrossRefGoogle Scholar
  7. Chu CL, Chung PH, Lin WSD (2005) Fabrication and properties of porous NiTi shape memory alloys for heavy load-bearing medical applications. J Mater Process Technol 169(1):103–107CrossRefGoogle Scholar
  8. Cristea CD, Lungu M, Balagurov AM, Marinescu V, Culicov O, Sbarcea G, Cirstea V (2015) Shape memory NiTi and NiTiCu alloys obtained by spark plasma sintering process. In: Advanced engineering forum, vol. 13. Trans Tech Publications, pp 83–90Google Scholar
  9. De Santis S, Trochu F, Ostiguy G (2001) Stress-strain hysteresis and damping in MnCu and NiTi alloys. Metall Mater Trans A 32(10):2489–2498CrossRefGoogle Scholar
  10. Duerig TW, Pelton AR (2002) An overview of superelastic stent design. In: Materials science forum, vol 394. Trans Tech Publications, Aedermannsdorf, pp 1–8Google Scholar
  11. Elahinia M (2016) Shape memory alloy actuators: design, fabrication and experimental evaluation, 1st edn. John Wiley and Sons ltd, ChichesterGoogle Scholar
  12. Elahinia MH, Hashemi M, Tabesh M, Bhaduri SB (2012) Manufacturing and processing of NiTi implants: a review. Prog Mater Sci 57(5):911–946CrossRefGoogle Scholar
  13. Elahinia M, Moghaddam NS, Andani MT, Amerinatanzi A, Bimber BA, Hamilton RF (2016) Fabrication of NiTi through additive manufacturing: A review. Prog Mater Sci 83:630–663CrossRefGoogle Scholar
  14. Fischer-Cripps AC (2011a) Factors affecting nanoindentation test data. In: Nanoindentation. Springer, New York, pp 77–104CrossRefGoogle Scholar
  15. Fischer-Cripps AC (2011b) Contact mechanics. In: Nanoindentation. Springer, New York, p 2Google Scholar
  16. Fremond M, Miyazaki S (2014) Shape memory alloys, vol 351. Springer, New YorkGoogle Scholar
  17. Frenzel J, George EP, Dlouhy A, Somsen C, Wagner MX, Eggeler G (2010) Influence of Ni on martensitic phase transformations in NiTi shape memory alloys. Acta Mater 58(9):3444–3458CrossRefGoogle Scholar
  18. Fu Y, Moochhala S, Shearwood C (2004) Spark plasma sintering of TiNi nanopowders. In: BioMEMS and nanotechnology, vol. 5275. International Society for Optics and Photonics, pp 9–18Google Scholar
  19. Gou L, Liu Y, Ng TY (2015) Effect of Cu Content on Atomic Positions of Ti50Ni50-xCux Shape Memory Alloys Based on Density Functional Theory Calculations. Metals 5(4):2222–2235CrossRefGoogle Scholar
  20. Groza JR (2007) Nanocrystalline powder consolidation methods. In: Koch CC (ed) Nanostructured materials, 2nd edn. William Andrew Publishing, Norwich, pp 173–233CrossRefGoogle Scholar
  21. GurtSantanach J, Weibel A, Estourne’s C, Yang Q, Laurent C, Peigney A (2011) Spark plasma sintering of alumina: study of parameters, formal sintering analysis and hypotheses on the mechanism(s) involved in densification and grain growth. Acta Mater 59:1400–1408CrossRefGoogle Scholar
  22. Jani JM, Leary M, Subic A, Gibson MA (2014) A review of shape memory alloy research, applications and opportunities. Mater Des 56:1078–1113CrossRefGoogle Scholar
  23. Jiang SY, Zhao YN, Zhang YQ, Li HU, Liang YL (2013) Effect of solution treatment and aging on microstructural evolution and mechanical behavior of NiTi shape memory alloy. Trans Nonferrous Met Soc China 23(12):3658–3667CrossRefGoogle Scholar
  24. Johnson KL (1974) Contact mechanics 1985. Cambridge University Press, Cambridge, pp 57–63Google Scholar
  25. Karimzadeh M, Aboutalebi MR, Salehi MT, Abbasi SM, Morakabati M (2016) Adjustment of aging temperature for reaching superelasticity in highly Ni-rich Ti-51.5 Ni NiTi shape memory alloy. Mater Manuf Process 31(8):1014–1021CrossRefGoogle Scholar
  26. Khalil-Allafi J, Dlouhy A, Eggeler G (2002) Ni4Ti3-precipitation during aging of NiTi shape memory alloys and its influence on martensitic phase transformations. Acta Mater 50(17):4255–4274CrossRefGoogle Scholar
  27. Kumar PK, Lagoudas DC (2008) Introduction to shape memory alloys. In: Shape memory alloys. Springer, New York, pp 1–51Google Scholar
  28. Laptev AV (2007) Theory and technology of sintering, thermal and chemicothermal treatment. Powder Metall Met Ceram 46(7–8):317–324CrossRefGoogle Scholar
  29. Lee J, Hwang J, Lee D, Ryu HJ, Hong SH (2014) Enhanced mechanical properties of spark plasma sintered NiTi composites reinforced with carbon nanotubes. J Alloys Compd 617:505–510CrossRefGoogle Scholar
  30. Li BY, Rong LJ, Li YY (2000) Stress–strain behavior of porous Ni–Ti shape memory intermetallics synthesized from powder sintering. Intermetallics 8(5–6):643–646CrossRefGoogle Scholar
  31. Li YH, Rong LJ, Li YY (2002) Compressive property of porous NiTi alloy synthesized by combustion synthesis. J Alloys Compd 345(1–2):271–274CrossRefGoogle Scholar
  32. Li P, Karaca HE, Cheng YT (2015) Spherical indentation of NiTi-based shape memory alloys. J Alloys Compd 651:724–730CrossRefGoogle Scholar
  33. Ma J, Karaman I, Noebe RD (2010) High temperature shape memory alloys. Int Mater Rev 55(5):257–315CrossRefGoogle Scholar
  34. Manosa L, Jurado M, Planes A, Zarestky J, Lograsso T, Stassis C (1994) Elastic constants of bcc. Cu-Al-Ni alloys. Phys Rev B 48:9969CrossRefGoogle Scholar
  35. Mitchell MR, Jerina KL (2007) Fatigue and fracture of medical metallic materials and devices (No. 1481). ASTM International, p 18Google Scholar
  36. Nakata Y, Tadaki T, Shimizu K (1998) In: Inoue K, Mukherjee K, Otsuka K, Chen H (eds) Displacive phase transformations and their applications in materials engineering. TMS, Warrendale, p 187Google Scholar
  37. Ni W, Cheng YT, Grummon DS (2002) Recovery of microindents in a nickel–titanium shape-memory alloy: a self-healing effect. Appl Phys Lett 80(18):3310–3312CrossRefGoogle Scholar
  38. Orru R, Licheri R, Locci AM, Cincotti A, Cao G (2009) Consolidation/synthesis of materials by electric current activated/assisted sintering. Mater Sci Eng R 63(4–6):127–287CrossRefGoogle Scholar
  39. Otsuka K, Ren X (2005) Physical metallurgy of Ti–Ni-based shape memory alloys. Prog Mater Sci 50(5):511–678CrossRefGoogle Scholar
  40. Patoor E, Lagoudas DC, Entchev PB, Brinson LC, Gao X (2006) Shape memory alloys, Part I: General properties and modeling of single crystals. Mech Mater 38(5–6):391–429CrossRefGoogle Scholar
  41. Predki W, Knopik A, Bauer B (2008) Engineering applications of NiTi shape memory alloys. Mater Sci Eng A 481:598–601CrossRefGoogle Scholar
  42. Qiu Y, Young ML, Nie X (2015) High strain rate compression of martensitic NiTi shape memory alloys. Shape Memo Superelast 1(3):310–318CrossRefGoogle Scholar
  43. Qiu Y, Young ML, Nie X (2017) High Strain Rate Compression of Martensitic NiTi Shape Memory Alloy at Different Temperatures. Metal Mater Trans A 48(2):601–608CrossRefGoogle Scholar
  44. Rao A, Srinivasa AR, Reddy JN (2015) Design of shape memory alloy (SMA) actuators, vol 3. Springer, HeidelbergCrossRefGoogle Scholar
  45. Resnina N, Belyaev S, Shelyakov A, Ubyivovk E (2017) Violation of the sequence of martensite crystals formation on cooling and their shrinking on heating during B2↔B19 martensitic transformation in Ti40.7Hf9.5Ni44.8Cu5 shape-memory alloy. Phase Transit 90(3):289–298CrossRefGoogle Scholar
  46. Seelecke S, Muller I (2004) Shape memory alloy actuators in smart structures: Modeling and simulation. Appl Mech Rev 57(1):23–46CrossRefGoogle Scholar
  47. Shao Y, Guo F, Ren Y, Zhang J, Yang H, Jiang D et al (2017) NiTi-enabled composite design for exceptional performances. Shape Memo Superelast 3(1):67–81CrossRefGoogle Scholar
  48. Shearwood C, Fu YQ, Yu L, Khor KA (2005) Spark plasma sintering of TiNi nano-powder. Scr Mater 52(6):455–460CrossRefGoogle Scholar
  49. Shishkovsky I, Yadroitsev I, Smurov I (2012) Direct selective laser melting of nitinol powder. Phys Procedia 39:447–454CrossRefGoogle Scholar
  50. Stoeckel D (1995) The shape memory effect-phenomenon, alloys and applications. In: Proceedings: Shape Memory Alloys for Power Systems EPRI (1), Fremont, pp 1–13Google Scholar
  51. Sun L, Huang WM (2009) Nature of the multistage transformation in shape memory alloys upon heating. Met Sci Heat Treat 51(11):573–578CrossRefGoogle Scholar
  52. Tadaki T (1998) Cu-based shape memory alloys. In: Otsuka K, Wayman CM (eds) Shape memory materials. Cambridge University Press, Cambridge, pp 97–116Google Scholar
  53. Tadayyon G, Mazinani M, Guo Y, Zebarjad SM, Tofail SA, Biggs MJ (2016) The effect of annealing on the mechanical properties and microstructural evolution of Ti-rich NiTi shape memory alloy. Mater Sci Eng A 662:564–577CrossRefGoogle Scholar
  54. Tang W (1997) Thermodynamic study of the low-temperature phase B19’ and the martensitic transformation in near-equiatomic Ti-Ni shape memory alloys. Metall Trans 28A:537CrossRefGoogle Scholar
  55. Tokita M (2013) Handbook of advanced ceramics: Chapter 11.2. 3. Spark Plasma Sintering (SPS) method, systems, and applications. Elsevier Inc. ChaptersGoogle Scholar
  56. Velmurugan C, Senthilkumar V, Dinesh S, Arulkirubakaran D (2017) Machining of NiTi-shape memory alloys-A review. Mach Sci Technol.  https://doi.org/10.1080/10910344.2017.1365894
  57. Wagner MX, Dey SR, Gugel H, Frenzel J, Somsen C, Eggeler G (2010) Effect of low-temperature precipitation on the transformation characteristics of Ni-rich NiTi shape memory alloys during thermal cycling. Intermetallics 18(6):1172–1179CrossRefGoogle Scholar
  58. Wen YH, Peng HB, Raabe D, Gutierrez-urrutia I, Chen J, Du YY (2014) Large recovery strain in Fe–Mn–Si-based shape memory steels obtained by engineering annealing twin boundaries. Nat Commun 5:4964CrossRefGoogle Scholar
  59. Yamamoto T, Sakuma T, Uchida K, Sutou Y, Yamauchi K (2007) Effect of heat aging on thermal and mechanical properties of Ti-Ni-Nb shape memory alloy. Mater Trans 48(3):439–444CrossRefGoogle Scholar
  60. Ye LL, Liu ZG, Raviprasad K, Quan MX, Umemoto M, Hu ZQ (1998) Consolidation of MA amorphous NiTi powders by spark plasma sintering. Mater Sci Eng A 241(1–2):290–293CrossRefGoogle Scholar
  61. Zhang L, Zhang YQ, Jiang YH, Zhou R (2015) Superelastic behaviors of biomedical porous NiTi alloy with high porosity and large pore size prepared by spark plasma sintering. J Alloys Compd 644:513–522CrossRefGoogle Scholar
  62. Zhao Y, Taya M, Kang Y, Kawasaki A (2005) Compression behavior of porous NiTi shape memory alloy. Acta Mater 53(2):337–343CrossRefGoogle Scholar
  63. Zhou N, Shen C, Wagner MX, Eggeler G, Mills MJ, Wang Y (2010) Effect of Ni4Ti3 precipitation on martensitic transformation in Ti–Ni. Acta Mater 58(20):6685–6694CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.National Institute of TechnologyTiruchirappalliIndia

Personalised recommendations