Spark Plasma Sintering of Diamond- and Nanodiamond-Metal Composites

  • Dina V. Dudina
  • Boris B. Bokhonov
  • Arina V. Ukhina
  • Vyacheslav I. Mali
  • Alexander G. Anisimov


Diamond-metal composites are attractive materials for thermal management and cutting tool fabrication. In order to increase the wettability of the surface of diamond filler particles by certain metals and reduce the interface-associated porosity in sintered composites, coatings are deposited on diamond particles, or alloying additives are introduced into the metal matrices. Nanodiamonds are added to metal matrices to achieve a reinforcing effect. The subject of this chapter is processing of diamond- and nanodiamond-metal composites by spark plasma sintering (SPS). The interest to SPS as a processing method of these materials is stimulated by its capability to rapidly consolidate powder mixtures into dense compacts. In this chapter, the suitability of SPS for diamond-metal composites aimed at different applications is discussed. Recently, the SPS treatment has been used to deposit coatings on micrometer-sized diamond particles. Results of these studies are reviewed. The microstructure development of composites containing nanodiamonds as a reinforcing phase in metal matrices during SPS is analyzed. Future directions of research on the SPS processing of diamond- and nanodiamond-metal composites are suggested.


Diamond Composite Sintering Thermal conductivity Nanodiamond Reinforcement 


  1. Abyzov AM, Kidalov SV, Shakhov FM (2011) High thermal conductivity composites consisting of diamond filler with tungsten coating and copper (silver) matrix. J Mater Sci 46:1424–1438CrossRefGoogle Scholar
  2. Bai H, Ma N, Lang J, Zhu C, Ma Y (2013) Thermal conductivity of Cu/diamond composites prepared by a new pretreatment of diamond powder. Compos Part B 52:182–186CrossRefGoogle Scholar
  3. Bai H, Dai D, Yu JH, Nishimura K, Sasaoka S, Jiang N (2014) Architecting boron nanostructure on the diamond particle surface. Appl Surf Sci 292:790–794CrossRefGoogle Scholar
  4. Blum R, Molian P (2009) Liquid-phase sintering of nanodiamond composite coatings on aluminum A319 using a focused laser beam. Surf Coat Technol 204:1–14CrossRefGoogle Scholar
  5. Bokhonov BB, Dudina DV (2013) Recrystallisation-accompanied phase separation in Ag–Fe and Ag–Ni nanocomposites: a route to structure tailoring of nanoporous silver. RSC Adv 3:12655–12661CrossRefGoogle Scholar
  6. Bokhonov BB, Ukhina AV, Dudina DV, Gerasimov KB, Anisimov AG, Mali VI (2015) Towards a better understanding of nickel/diamond interactions: the interface formation at low temperature. RSC Adv 5:51799–51806CrossRefGoogle Scholar
  7. Bulut B, Tazegul O, Baydogan M, Kayali ES (2016) The comparison of the sintering methods for diamond cutting tools. J Achiev Mater Manuf Eng 76:30–35Google Scholar
  8. Chang R, Zang J, Wang Y, Yu Y, Lu J, Xu X (2017a) Preparation of the gradient Mo layers on diamond grits by spark plasma sintering and their effect on Fe-based matrix diamond composites. J Alloys Compd 695:70–75CrossRefGoogle Scholar
  9. Chang R, Zang J, Wang Y, Yu Y, Lu J, Xu X (2017b) Study of Ti-coated diamond grits prepared by spark plasma coating. Diam Relat Mater 77:72–78CrossRefGoogle Scholar
  10. Che QL, Zhang JJ, Chen XK, Ji YQ, Li YW, Wang LX, Cao SZ, Guo L, Wang Z, Wang SW, Zhang ZK, Jiang YG (2015) Spark plasma sintering of titanium-coated diamond and copper–titanium powder to enhance thermal conductivity of diamond/copper composites. Mater Sci Semicond Process 33:67–75CrossRefGoogle Scholar
  11. Cho HJ, Tam J, Kovylina M, Kim YJ, Erb U (2016) Thermal conductivity of bulk nanocrystalline nickel-diamond composites produced by electrodeposition. J Alloys Compd 687:570–578CrossRefGoogle Scholar
  12. Choudhary D, Bellare J (2000) Manufacture of gem quality diamonds: a review. Ceram Int 26:73–85CrossRefGoogle Scholar
  13. Chu K, Jia C, Liang X, Chen H, Gao W (2009) Effect of particle size on the microstructure and thermal conductivity of Al/diamond composites prepared by spark plasma sintering. Rare Metals 28:646–650CrossRefGoogle Scholar
  14. Chu K, Jia C, Liang X, Chen H (2010a) Effect of sintering temperature on the microstructure and thermal conductivity of Al/diamond composites prepared by spark plasma sintering. Int J Miner Metall Mater 17:234–240CrossRefGoogle Scholar
  15. Chu K, Liu Z, Jia C, Chen H, Liang X, Gao W, Tian W, Guo H (2010b) Thermal conductivity of SPS consolidated Cu/diamond composites with Cr-coated diamond particles. J Alloys Compd 490:453–458CrossRefGoogle Scholar
  16. Ciupiński Ł, Siemiaszko D, Rosiński M, Michalski A, Kurzydłowski KJ (2009) Heat sink materials processing by pulse plasma sintering. Adv Mater Res 59:120–124CrossRefGoogle Scholar
  17. Ciupiński Ł, Kruszewski MJ, Grzonka J, Chmielewski M, Zielińsk R, Moszczyńska D, Michalski A (2017) Design of interfacial Cr3C2 carbide layer via optimization of sintering parameters used to fabricate copper/diamond composites for thermal management applications. Mater Des 120:170–185CrossRefGoogle Scholar
  18. Dudina DV (2017) Phase and microstructure formation of composite materials and coatings obtained under conditions of non-equilibrium consolidation and pulse treatment. Doctoral thesis (Dr Sci), Novosibirsk State Technical University, Russia (in Russian)Google Scholar
  19. Dudina DV, Mukherjee AK (2013) Reactive spark plasma sintering: successes and challenges of nanomaterial synthesis. J Nanomater 2013:625218, 12 pCrossRefGoogle Scholar
  20. Dudina DV, Mali VI, Anisimov AG, Bulina NV, Korchagin MA, Lomovsky OI, Bataev IA, Bataev VA (2013) Ti3SiC2-Cu composites by mechanical milling and spark plasma sintering: possible microstructure formation scenarios. Met Mater Int 19:1235–1241CrossRefGoogle Scholar
  21. Galashov EN, Yusuf AA, Mandrik EM, Atuchin VV (2016a) Preparation and thermo-physical parameters of diamond/W, Cu heat- conducting composite substrates. Int J Adv Manuf Technol 86:475–478CrossRefGoogle Scholar
  22. Galashov EN, Yusuf AA, Mandrik EM (2016b) Cu/synthetic and impact-diamond composite heat-conducting substrates. J Phys Conf Ser 690:012043CrossRefGoogle Scholar
  23. Gao W, Jia C, Jia X, Liang X, Chu K, Zhang L, Huang H, Liu M (2010) Effect of processing parameters on the microstructure and thermal conductivity of diamond/Ag composites fabricated by spark plasma sintering. Rare Metals 29:625–629CrossRefGoogle Scholar
  24. Garay JE (2010) Current-activated, pressure-assisted densification of materials. Annu Rev Mater Res 40:445–468CrossRefGoogle Scholar
  25. Hanada K, Yamamoto K, Taguchi T, Ōsawa E, Inakuma M, Livramento V, Correia JB, Shohoji N (2007) Further studies on copper nanocomposite with dispersed single-digit-nanodiamond particles. Diam Relat Mater 16:2054–2057CrossRefGoogle Scholar
  26. Hulbert DM, Jiang D, Dudina DV, Mukherjee AK (2009) The synthesis and consolidation of hard materials by spark plasma sintering. Int J Refract Met Hard Mater 27(2):367–375CrossRefGoogle Scholar
  27. Kaftelen H, Öveçoğlu ML (2011) Microstructural characterization and wear properties of ultra-dispersed nanodiamond (UDD) reinforced Al matrix composites fabricated by ball-milling and sintering. J Compos Mater 46:1521–1534CrossRefGoogle Scholar
  28. Kahraman Y, Bulut B, Sabri Kayali E (2017) Conventional sintering behavior of matrix materials used for diamond beads. Mater Test 59:647–652CrossRefGoogle Scholar
  29. Lee MT, Fu MH, Wu JL, Chung CY, Lin SJ (2011) Thermal properties of diamond/Ag composites fabricated by electroless silver plating. Diam Relat Mater 20:130–133CrossRefGoogle Scholar
  30. Livramento V, Correia JB, Nunes D, Carvalho PA, Fernandes H, Silva C, Hanada K, Shohoji N, Osawa E (2008) Novel approach to plasma facing materials in nuclear fusion reactors. AIP Conf Proc 996:166CrossRefGoogle Scholar
  31. Mizuuchi K, Inoue K, Agari Y, Sugioka M, Tanaka M, Takeuchi T, Kawahara M, Makino Y (2011) Thermal conductivity of diamond particle dispersed aluminum matrix composites fabricated in solid-liquid co-existent state by SPS. Compos Part B 42:1029–1034CrossRefGoogle Scholar
  32. Moriguchi H, Tsuduki K, Ikegaya A, Miyamoto Y, Morisada Y (2007) Sintering behavior and properties of diamond/cemented carbides. Int J Refract Met Hard Mater 25:237–243CrossRefGoogle Scholar
  33. Munir ZA, Quach D, Ohyanagi M (2011) Electric current activation of sintering: a review of the pulsed electric current sintering process. J Am Ceram Soc 94(1):1–19CrossRefGoogle Scholar
  34. Nieto A, Jiang L, Kim J, Kim DE, Schoenung JM (2017) Synthesis and multi scale tribological behavior of WC-Co/nanodiamond nanocomposites. Sci Rep 7:7060CrossRefGoogle Scholar
  35. Nunes D, Livramento V, Correia JB, Hanada K, Carvalho PA, Mateus R, Shohoji N, Fernandes H, Silva C, Alves E, Osawa E (2010) Consolidation of Cu-n diamond nanocomposites: hot extrusion vs spark plasma sintering. Mater Sci Forum 636–637:682–687CrossRefGoogle Scholar
  36. Nunes D, Correia JB, Carvalho PA, Shohoji N, Fernandes H, Silva C, Alves LC, Hanada K, Ōsawa E (2011) Production of Cu/diamond composites for first-wall heat sinks. Fusion Eng Des 86:2589–2592CrossRefGoogle Scholar
  37. Nunes D, Vilarigues M, Correia JB, Carvalho PA (2012) Nickel–carbon nanocomposites: synthesis, structural changes and strengthening mechanisms. Acta Mater 60:737–747CrossRefGoogle Scholar
  38. Orrù R, Licheri R, Locci AM, Cincotti A, Cao G (2009) Consolidation/synthesis of materials by electric current activated/assisted sintering. Mater Sci Eng R 63(4–6):127–287CrossRefGoogle Scholar
  39. Padyukov KL, Levashov EA (1993) Self-propagating high-temperature synthesis: a new method for the production of diamond-containing materials. Diam Relat Mater 2:207–210CrossRefGoogle Scholar
  40. Popov VA (2013) Metal matrix composites with non-agglomerated nanodiamond reinforcing particles. In: Wang X (ed) Nanocomposites. Nova Science Publishers Inc, New YorkGoogle Scholar
  41. Rape A, Liu X, Kulkarni A, Singh J (2013) Alloy development for highly conductive thermal management materials using copper-diamond composites fabricated by field assisted sintering technology. J Mater Sci 48:1262–1267CrossRefGoogle Scholar
  42. Reinert L, Zeiger M, Suárez S, Presser V, Mücklich F (2015) Dispersion analysis of carbon nanotubes, carbon onions, and nanodiamonds for their application as reinforcement phase in nickel metal matrix composites. RSC Adv 5:95149–95159CrossRefGoogle Scholar
  43. Ren S, Shen X, Guo C, Liu N, Zang J, He X, Qu X (2011) Effect of coating on the microstructure and thermal conductivities of diamond–Cu composites prepared by powder metallurgy. Compos Sci Technol 71:1550–1555CrossRefGoogle Scholar
  44. Schmidt J, Knote A, Armbrüster M, Weißgärber T, Kieback B (2010) Spark plasma sintering of diamond impregnated wire saw beads. In: Proceedings of the World Powder Metallurgy Congress and Exhibition, World PM2010 – Diamond Tools 3Google Scholar
  45. Schubert T, Ciupiński Ł, Zieliński W, Michalski A, Weißgärber T, Kieback B (2008a) Interfacial characterization of Cu/diamond composites prepared by powder metallurgy for heat sink applications. Scr Mater 58:263–266CrossRefGoogle Scholar
  46. Schubert T, Trindade B, Weißgärber T, Kieback B (2008b) Interfacial design of Cu-based composites prepared by powder metallurgy for heat sink applications. Mater Sci Eng A 475:39–44CrossRefGoogle Scholar
  47. Selvi E, Topaloglu F, Tazegul O, Kayali ES (2013) Conventional sintering of diamond cutting tool used in natural stone cutting. AIP Conf Proc 1569:427–432CrossRefGoogle Scholar
  48. Sidorenko DA, Zaitsev AA, Kirichenko AN, Levashov EA, Kurbatkina VV, Loginov PA, Rupasov SI, Andreev VA (2013) Interaction of diamond grains with nanosized alloying agents in metal – matrix composites as studied by Raman spectroscopy. Diam Relat Mater 38:59–62CrossRefGoogle Scholar
  49. Tan Z, Li Z, Fan G, Kai X, Ji G, Zhang L, Zhang D (2013a) Fabrication of diamond/aluminum composites by vacuum hot pressing: process optimization and thermal properties. Compos Part B 47(2013):173–180CrossRefGoogle Scholar
  50. Tan ZQ, Li ZQ, Fan GL, Guo Q, Kai XZ, Ji G, Zhang LT, Zhang D (2013b) Enhanced thermal conductivity in diamond/aluminum composites with a tungsten interface nanolayer. Mater Des 47:160–166CrossRefGoogle Scholar
  51. Tan Z, Ji G, Addad A, Li Z, Silvain JF, Zhang D (2016) Tailoring interfacial bonding states of highly thermal performance diamond/Al composites: spark plasma sintering vs. vacuum hot pressing. Compos Part A 91:9–19CrossRefGoogle Scholar
  52. Tillmann W, Kronholz C, Ferreira M (2009) Novel current induced short-time sintering processes for the production of diamond tools. In: Proceedings of the Euro International Powder Metallurgy Congress and Exhibition, Euro PM 2009 1Google Scholar
  53. Tillmann W, Kronholz C, Ferreira M, Knote A, Theisen W, Schütte P, Schmidt J (2010) Comparison of different metal matrix systems for diamond tools fabricated by new current induced short-time sintering processes. In: Proceedings of the World Powder Metallurgy Congress and Exhibition, World PM2010 – Diamond Tools 3Google Scholar
  54. Ukhina AV, Dudina DV, Anisimov AG, Mali VI, Bulina NV, Bataev IA, Skovorodin IN, Bokhonov BB (2015) Porous electrically conductive materials produced by spark plasma sintering and hot pressing of nanodiamonds. Ceram Int 41:12459–12463CrossRefGoogle Scholar
  55. Ukhina A, Bokhonov B, Samoshkin D, Stankus S, Dudina D, Galashov E, Katsui H, Goto T, Kato H (2017a) Morphological features of W- and Ni-containing coatings on diamond crystals and properties of diamond-copper composites obtained by spark plasma sintering. Mater Today Proc 4:11396–11401CrossRefGoogle Scholar
  56. Ukhina AV, Bokhonov BB, Dudina DV, Yubuta K, Kato H (2017b) Structural characterization of carbon-based materials obtained by spark plasma sintering of non-graphitic carbon with nickel and iron as catalysts and space holders. In: Bansal NP, Castro RHR, Jenkins M, Bandyopadhyay A, Bose S, Bhalla A, Singh JP, Mahmoud MM, Pickrell G, Johnson S (ed) Ceramic transactions, V. 261, Processing, properties, and design of advanced ceramics and composites II – Proceedings of 2016 Materials Science and Technology (MS&T’16), Salt Lake City, October 24–27, 2016, pp 117–126Google Scholar
  57. Woo DJ, Sneed B, Peerally F, Heer FC, Brewer LN, Hooper JP, Osswald S (2013) Synthesis of nanodiamond-reinforced aluminum metal composite powders and coatings using high-energy ball milling and cold spray. Carbon 63:404–415CrossRefGoogle Scholar
  58. Zhang Y, Li J, Zhao L, Zhang H, Wang X (2014) Effect of metalloid silicon addition on densification, microstructure and thermal – physical properties of Al/diamond composites consolidated by spark plasma sintering. Mater Des 63:838–847CrossRefGoogle Scholar
  59. Zhang F, Liu S, Zhao P, Liu T, Sun J (2017) Titanium/nanodiamond nanocomposites: effect of nanodiamond on microstructure and mechanical properties of titanium. Mater Des 131:144–155CrossRefGoogle Scholar
  60. Zhu C, Ma N, Jin Y, Bai H, Ma Y, Lang J (2012) Thermal properties of Si(Al)/diamond composites prepared by in situ reactive sintering. Mater Des 41:208–213CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Dina V. Dudina
    • 1
    • 2
    • 3
  • Boris B. Bokhonov
    • 3
    • 4
  • Arina V. Ukhina
    • 3
  • Vyacheslav I. Mali
    • 1
  • Alexander G. Anisimov
    • 1
  1. 1.Lavrentyev Institute of Hydrodynamics, Siberian Branch of the Russian Academy of Sciences (LIH SB RAS)NovosibirskRussia
  2. 2.Novosibirsk State Technical UniversityNovosibirskRussia
  3. 3.Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch of the Russian Academy of Sciences (ISSCM SB RAS)NovosibirskRussia
  4. 4.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations