Advertisement

Simulator for Disaster Response Robotics

  • Fumio KanehiroEmail author
  • Shin’ichiro Nakaoka
  • Tomomichi Sugihara
  • Naoki Wakisaka
  • Genya Ishigami
  • Shingo Ozaki
  • Satoshi Tadokoro
Chapter
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 128)

Abstract

This chapter presents a simulator for disaster response robots based on the Choreonoid framework. Two physics engines and a graphics engine were developed and integrated into the framework. One physics engine enables robust contact-force computation among rigid bodies based on volumetric intersection and a relaxed constraint, whereas the other enables accurate and computationally efficient computation of machine–terrain interaction mechanics based on macro and microscopic approaches. The graphics engine allows simulating natural phenomena, such as rain, fire, and smoke, based on a particle system to resemble tough scenarios at disaster sites. In addition, wide-angle vision sensors, such as omnidirectional cameras and LIDAR sensors, can be simulated using multiple rendering screens. Overall, the simulator provides a tool for the efficient and safe development of disaster response robots.

Notes

Acknowledgements

This work was supported by Impulsing Paradigm Change through Disruptive Technologies (ImPACT) Tough Robotics Challenge program of Japan Science and Technology (JST) Agency.

References

  1. 1.
    Algoryx Simulation AB: AGX Dynamics. https://www.algoryx.se/products/agx-dynamics/
  2. 2.
    Ando, N., Suehiro, T., Kitagaki, K., Kotoku, T., Yoon, W.-K.: RT-middleware: distributed component middleware for RT (robot technology). In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robotics and Systems (IROS), pp. 3933–3938 (2005)Google Scholar
  3. 3.
    Askari, H., Kamrin, K.: Intrusion rheology in grains and other flowable materials. Nat. Mater. 15(12), 1274–1279 (2016)CrossRefGoogle Scholar
  4. 4.
    Baraff, D.: Linear-time dynamics using lagrange multipliers. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, pp. 137–146 (1996)Google Scholar
  5. 5.
    Bullet Real-Time Physics Simulation. https://pybullet.org/wordpress/
  6. 6.
    CM Labs Simulations: Vortex Studio Simulation Platform. https://www.cm-labs.com/vortex-studio/
  7. 7.
    Coppelia Robotics GmbH: V-REP Virtual Robot Experimentation Platform. http://www.coppeliarobotics.com/
  8. 8.
    Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Geotechnique 29(1), 47–65 (1979)CrossRefGoogle Scholar
  9. 9.
    Hasegawa, S., Fujii, N., Akahane, K., Koike, Y., Sato, M.: Real-time rigid body simulation for haptic interactions based on contact volume of polygonal objects. Comput. Graph. Forum 23(3), 529–538 (2004)CrossRefGoogle Scholar
  10. 10.
    Hashimoto, K., Kimura, S., Sakai, N., Hamamoto, S., Koizumi, A., Sun, X., Matsuzawa, T., Teramachi, T., Yoshida, Y., Imai, A., Kumagai, K., Matsubara, T., Yamaguchi, K., Ma, G., Takanishi, A.: WAREC-1 - a four-limbed robot having high locomotion ability with versatility in locomotion styles. In: Proceedings of the 15th IEEE International Symposium on Safety, Security, and Rescue Robotics, pp. 172–178 (2017)Google Scholar
  11. 11.
    Holz, D., Azimi, A., Teichmann, M., Mercier, S.: Real-time simulation of mining and earthmoving operations: a level set-based model for tool-induced terrain deformations. In Proceedings of the International Symposium on Automation and Robotics in Construction and Mining (ISARC), p. 1 (2013)Google Scholar
  12. 12.
    Holz, D., Azimi, A., Teichmann, M.: Advances in physically-based modeling of deformable soil for real-time operator training simulators. In: Proceedings of the IEEE International Conference on Virtual Reality and Visualization (ICVRV), pp. 166–172 (2015)Google Scholar
  13. 13.
    Johnson, J., Kulchitsky, A., Duvoy, P., Iagnemma, K., Senatore, C., Arvidson, R., Moore, J.: Discrete element method simulations of Mars Exploration Rover wheel performance. J. Terramechanics 62, 31–40 (2015)CrossRefGoogle Scholar
  14. 14.
    Kokkevis, E.: Practical physics for articulated characters. In: Proceedings of Game Developers Conference, pp. 1–16 (2004)Google Scholar
  15. 15.
    Kusakabe, Y., Ide, T., Hirota, Y., Nabae, H., Suzumori, K.: Development of high performance hydraulic actuators and their application to tough robot hand. In Proceedings of JSME Conference on Robotics and Mechatronics, 1P1-09b6 (2016)Google Scholar
  16. 16.
    Li, C., Zhang, T., Goldman, D.I.: A terradynamics of legged locomotion on granular media. Science 339(6126), 1408–1412 (2013)CrossRefGoogle Scholar
  17. 17.
    Lötstedt, P.: Numerical simulation of time-dependent contact and friction problems in rigid body mechanics. SIAM J. Sci. Stat. Comput. 5(2), 370–393 (1984)MathSciNetCrossRefGoogle Scholar
  18. 18.
    LSCT, LS-DYNA User’s Manual, (2018)Google Scholar
  19. 19.
    Luengo, O., Singh, S., Cannon, H.: Modeling and identification of soil-tool interaction in automated excavation. In Proceedings of the 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1900–1906 (1998)Google Scholar
  20. 20.
    METI and NEDO: World Robot Summit. http://worldrobotsummit.org/
  21. 21.
    Nakaoka, S.: Choreonoid: extensible virtual robot environment built on an integrated GUI framework. In: Proceedings of the 2012 IEEE/SICE International Symposium on System Integration (SII2012), pp. 79–85 (2012)Google Scholar
  22. 22.
    Nakaoka, S., Hattori, S., Kanehiro, F., Kajita, S., Hirukawa, H.: Constraint-based dynamics simulator for humanoid robots with shock absorbing mechanisms. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3641–3647 (2007)Google Scholar
  23. 23.
    Nakaoka, S., Morisawa, M., Cisneros, R., Sakaguchi, T., Kajita, S., Kaneko, K., Kanehiro, F.: Task sequencer integrated into a teleoperation interface for biped humanoid robots. In: Proceedings of the IEEE-RAS International Conference on Humanoid Robots, pp. 895–900 (2015)Google Scholar
  24. 24.
    Nakashima, H., Fujii, H., Oida, A., Momozu, M., Kanamori, H., Aoki, S., Yokoyama, T., Shimizu, H., Miyasaka, J., Ohdoi, K.: Discrete element method analysis of single wheel performance for a small lunar rover on sloped terrain. J. Terramechanics 47(5), 307–321 (2010)CrossRefGoogle Scholar
  25. 25.
    NVIDIA Corporation: PhysX SDK. https://developer.nvidia.com/physx-sdk
  26. 26.
    Open Dynamics Engine. http://www.ode.org/
  27. 27.
    Open Source Robotics Foundation: Gazebo. http://gazebosim.org/
  28. 28.
    Open Source Robotics Foundation: ROS Robot Operating System. http://ros.org/
  29. 29.
    Reece, A.R.: The fundamental equation of earth-moving mechanics. Proc. Inst. Mech. Eng. 179(6), 16–22 (1964)Google Scholar
  30. 30.
    Takahashi, H., Minakami, K., Saito, Y.: Analysis on the resistive forces acting on the bucket of power shovel in the excavating task of crushed rocks. J. Appl. Mech. 339, 603–612 (2003)CrossRefGoogle Scholar
  31. 31.
    Tsuchiya, K., Ishigami, G.: Experimental analysis of bucket-soil interaction mechanics using sensor-embedded bucket test apparatus. In: Proceedings of the Asia-Pacific Conference of the International Society for Terrain-Vehicle Systems (ISTVS) for Terrain-Vehicle Systems (ISTVS) (2018)Google Scholar
  32. 32.
    Wakisaka, N., Sugihara, T.: Fast and reasonable contact force computation in forward dynamics based on momentum-level penetration compensation. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2434–2439 (2014)Google Scholar
  33. 33.
    Wakisaka, N., Sugihara, T.: Loosely-constrained volumetric contact force computation for rigid body simulation. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 6428–6433 (2017)Google Scholar
  34. 34.
    Yamane, K., Nakamura, Y.: Stable penalty-based model of frictional contacts. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp. 1904–1909 (2006)Google Scholar
  35. 35.
    Yoneyama, R., Omura, T., Ishigami, G.: Modeling of bucket-soil interaction mechanics based on improved resistive force theory. In: Proceedings of the European-African REgional Conference of the International Society for Terrain-Vehicle Systems (ISTVS) (2017)Google Scholar
  36. 36.
    Yoshinada, H.: A dual-arm construction robot in ImPACT tough robotics challenge program. J. Robot. Soc. Jpn. 33(10), 711–715 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Fumio Kanehiro
    • 1
    Email author
  • Shin’ichiro Nakaoka
    • 1
  • Tomomichi Sugihara
    • 2
  • Naoki Wakisaka
    • 2
  • Genya Ishigami
    • 3
  • Shingo Ozaki
    • 4
  • Satoshi Tadokoro
    • 5
  1. 1.National Institute of Advanced Industrial Science and Technology (AIST)Tsukuba, IbarakiJapan
  2. 2.Osaka UniversitySuita, OsakaJapan
  3. 3.Keio UniversityKohoku, YokohamaJapan
  4. 4.Yokohama National UniversityHodogaya-ku, YokohamaJapan
  5. 5.Tohoku UniversityAoba-ku, SendaiJapan

Personalised recommendations