Advertisement

Recent R&D Technologies and Future Prospective of Flying Robot in Tough Robotics Challenge

  • Kenzo NonamiEmail author
  • Kotaro Hoshiba
  • Kazuhiro Nakadai
  • Makoto Kumon
  • Hiroshi G. Okuno
  • Yasutada Tanabe
  • Koichi Yonezawa
  • Hiroshi Tokutake
  • Satoshi Suzuki
  • Kohei Yamaguchi
  • Shigeru Sunada
  • Takeshi Takaki
  • Toshiyuki Nakata
  • Ryusuke Noda
  • Hao Liu
  • Satoshi Tadokoro
Chapter
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 128)

Abstract

This chapter contains from Sects. 3.1 to 3.5. Section 3.1 describes firstly the definition of drones and recent trends. The important functions of the search and rescue flying robot are also generally described. And, Sect. 3.1 consists of an overview of R&D technologies of flying robot in Tough Robotics Challenge and a technical and general discussion about a future prospective of flying robot including the real disaster survey and technical issues. Namely, drones or unmanned aerial vehicles (UAVs) should be going to real and bio-inspired flying robot.

Notes

Acknowledgements

This work was supported by Impulsing Paradigm Change through Disruptive Technologies (ImPACT) Tough Robotics Challenge program of Japan Science and Technology (JST) Agency.

References

  1. 1.
  2. 2.
    Murphy, R.R.: Disaster Robotics. MIT Press, Cambridge (2014)CrossRefGoogle Scholar
  3. 3.
    Valavanis, K.P., Vachtsevanos, G.J. (eds.): Handbook of Unmanned Aerial Vehicles, pp. 529–710, 2997–3000. Springer, Berlin (2015)Google Scholar
  4. 4.
    Office of the Secretary of Defense, Unmanned Aircraft Systems Roadmap, 2005–2030Google Scholar
  5. 5.
    Nonami, K., Kartidjo, M., Yoon, K.J., Budiyono, A. (eds.): Autonomous Control Systems and Vehicles: Intelligent Unmanned Systems, pp. 55–71. Springer, Berlin (2013)Google Scholar
  6. 6.
    Quan, Q.: Introduction to Multicopter Design and Control. Springer, Berlin (2017)CrossRefGoogle Scholar
  7. 7.
    Nonami, K.: All of the Drone Industry Application, pp. 179–183. Ohmsha (2018)Google Scholar
  8. 8.
  9. 9.
    Nonami, K., Kendoul, F., Wan, W., Suzuki, S., Nakazawa, D.: Autonomous Flying Robots. Springer, Berlin (2010)CrossRefGoogle Scholar
  10. 10.
    Nonami, K., Inoue, S.: Research on sub-committee of aerial robot of ImPACT/TRC. J. Robot. Soc. Jpn. 35(10), 700–706 (2017)CrossRefGoogle Scholar
  11. 11.
    de Bree, H.-E.: Acoustic vector sensors increasing UAV’s situational awareness, SAE Technical Paper, pp. 2009–01–3249 (2009).  https://doi.org/10.4271/2009-01-3249
  12. 12.
    Kaushik, B., Nance, D., Ahuj, K.K.: A review of the role of acoustic sensors in the modern battlefield. In: Proceedings of 11th AIAA/CEAS Aeroacoustics Conference (26th AIAA Aeroacoustics Conference), pp. 1–13 (2005)Google Scholar
  13. 13.
    Basiri, M., Schill, F., Lima, P.U., Floreano, D.: Robust acoustic source localization of emergency signals from micro air vehicles. In: Proceedings of the IEEE/RSJ International Conference on Robots and Intelligent Systems (IROS), pp. 4737–4742 (2012)Google Scholar
  14. 14.
    Okutani, K., Yoshida, T., Nakamura, K., Nakadai, K.: Outdoor auditory scene analysis using a moving microphone array embedded in a quadrocopter. In: Proceedings of the IEEE/RSJ International Conference on Robots and Intelligent Systems (IROS), pp. 3288–3293 (2012)Google Scholar
  15. 15.
    Schmidt, R.O.: Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. 34(3), 276–280 (1986).  https://doi.org/10.1109/TAP.1986.1143830CrossRefGoogle Scholar
  16. 16.
    Ohata, T., Nakamura, K., Mizumoto, T., Tezuka, T., Nakadai, K.: Improvement in outdoor sound source detection using a quadrotor-embedded microphone array. In: Proceedings of the IEEE/RSJ International Conference on Robots and Intelligent Systems (IROS), pp. 1902–1907 (2014)Google Scholar
  17. 17.
    Furukawa, K., Okutani, K., Nagira, K., Otsuka, T., Itoyama, K., Nakadai, K., Okuno, H.G.: Noise correlation matrix estimation for improving sound source localization by multirotor UAV. In: Proceedings of the IEEE/RSJ International Conference on Robots and Intelligent Systems (IROS), pp. 3943–3948 (2013)Google Scholar
  18. 18.
    Hoshiba, K., Washizaki, K., Wakabayashi, M., Ishiki, T., Kumon, M., Bando, Y., Gabriel, D., Nakadai, K., Okuno, H.G.: Design of UAV-embedded microphone array system for sound source localization in outdoor environments. Sensors 17(11), 1–16 (2017).  https://doi.org/10.3390/s17112535CrossRefGoogle Scholar
  19. 19.
    Nakadai, K., Takahashi, T., Okuno, H.G., Nakajima, H., Hasegawa, Y., Tsujino, H.: Design and Implementation of robot audition system ‘HARK’–open source software for listening to three simultaneous speakers. Adv. Robot. 24(5–6), 739–761 (2010).  https://doi.org/10.1163/016918610X493561CrossRefGoogle Scholar
  20. 20.
    Wakabayashi, M., Kumon, M.: Position estimation of multiple sound sources on the ground by multirotor helicopter with microphone array. JSAI Technical report SIG-Challenge-049-3, pp. 15–22 (2017). (in Japanese)Google Scholar
  21. 21.
    Konstantinova, P., Udvarev, A., Semerdjiev, T.: A study of a target tracking algorithm using global nearest neighbor approach. In: Proceedings of International Conference on Computer Systems and Technologies (CompSysTech), pp. 290–295 (2003)Google Scholar
  22. 22.
    Washizaki, K., Wakabayashi, M., Kumon, M.: Position estimation of sound source on ground by multirotor helicopter with microphone array. In: Proceedings of the IEEE/RSJ International Conference on Robots and Intelligent Systems (IROS), pp. 1980–1985 (2016)Google Scholar
  23. 23.
    Hoshiba, K., Sugiyama, O., Nagamine, A., Kojima, R., Kumon, M., Nakadai, K.: Design and assessment of sound source localization system with a UAV-embedded microphone array. J. Robot. Mechatron. 29(1), 154–167 (2017).  https://doi.org/10.20965/jrm.2017.p0154CrossRefGoogle Scholar
  24. 24.
    Morito, T., Sugiyama, O., Kojima, R., Nakadai, K.: Partially shared deep neural network in sound source separation and identification using a UAV-embedded microphone array. In: Proceedings of the IEEE/RSJ International Conference on Robots and Intelligent Systems (IROS), pp. 1299–1304 (2016)Google Scholar
  25. 25.
    Morito, T., Sugiyama, O., Kojima, R., Nakadai, K.: Reduction of computational cost using two-stage deep neural network for training for denoising and sound source identification. In: Proceedings of the IEA/AIE 2016 Trends in Applied Knowledge-Based Systems and Data Science. Series Lecture Notes in Computer Science, vol. 9799, pp. 562–573 (2016)Google Scholar
  26. 26.
    Sugiyama, O., Uemura, S., Nagamine, A., Kojima, R., Nakamura, K., Nakadai, K.: Outdoor acoustic event identification with DNN using a quadrotor-embedded microphone array. J. Robot. Mechatron. 29(1), 188–197 (2017).  https://doi.org/10.20965/jrm.2017.p0188CrossRefGoogle Scholar
  27. 27.
    Sunada, S., Tanabe, Y., Yonezawa, K., Tokutake, H.: Improvement of flight performance of minisurveyor by using pitch control and decreasing the number of rotors. In: 2016 Asia-Pacific International Symposium on Aerospace Technology, Toyama, Japan (2017)Google Scholar
  28. 28.
    Yonezawa, K., Yoshida, N., Sugiyama, K., Tokutake, H., Tanabe, Y., Sunada, S.: Development of a multicopter with ducted and variable pitch rotors. In: Proceedings of the 5th Asian/Australian Rotorcraft Forum, American Helicopter Society International, Fairfax, Virginia. U.S. (2016)Google Scholar
  29. 29.
    Yonezawa, K., Matsumoto, H., Sugiyama, K., Tokutake, H., Tanabe, Y., Sunada, S.: Development of a ducted rotor for multicopters. In: 6th Asian/Australian Rotorcraft Forum(ARF) and Heli Japan 2017, Kanazawa, Japan (2017)Google Scholar
  30. 30.
    Hrishikeshavan, V., Sirohi, J., Tishchenko, M., Chopra, I.: Design, development, and testing of a shrouded single-rotor micro air vehicle with antitorque vanes. J. Am. Helicopter Soc. 56, 012008-1–012008-11 (2011)Google Scholar
  31. 31.
    Hrishikeshavan, V., Black, J., Chopra, I.: Design and performance of a quad-shrouded rotor micro air vehicle. J. Aircr. 51, 779–791 (2014)CrossRefGoogle Scholar
  32. 32.
    Tanabe, Y., Saito, S., Sugawara, H.: Construction and validation of an analysis tool chain for rotorcraft active noise reduction, In: Proceedings of 38th European Rotorcraft Forlum (ERF), Netherlands Association of Aeronautical Engineers, Amsterdam, NL (2012)Google Scholar
  33. 33.
    Tanabe, Y., Sugiura, M., Aoyama, T., Sugawara, H., Sunada, S., Yonezawa, K., Tokutake, H.: Multiple rotors hovering near an upper or a side wall. J. Robot. Mechatron. 30, 344–353 (2018)CrossRefGoogle Scholar
  34. 34.
    Torita, R., Kishi, T., Tokutake, H., Sunada, S., Tanabe, Y., Yonezawa, K.: Modeling of aerodynamic characteristics of drone and improvement of gust response. In: 6th Asian/Australian Rotorcraft Forum(ARF) and Heli Japan 2017, Kanazawa, Japan (2017)CrossRefGoogle Scholar
  35. 35.
    Kim, S., Choi, S., Kim, H.J.: Aerial manipulation using a quadrotor with a two DOF robotic arm. In: Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4990–4995 (2013)Google Scholar
  36. 36.
    Kim, S., Seo, H., Choi, S., Kim, H.J.: Vision-guided aerial manipulation using a multirotor with a robotic arm. IEEE/ASME Trans. Mechatron. 21(4), 1912–1923 (2016)CrossRefGoogle Scholar
  37. 37.
    Lippiello, V., Cacace, J., Santamaria-Navarro, A., Andrade-Cetto, J., Trujillo, M.À., Esteves, Y.R., Viguria, A.: Hybrid visual servoing with hierarchical task composition for aerial manipulation. IEEE Robot. Autom. Lett. 1(1), 259–266 (2016)CrossRefGoogle Scholar
  38. 38.
    Ohnishi, Y., Takaki, T., Aoyama, T., Ishii, I.: Development of a 4-Joint 3-DOF robotic arm with anti-reaction force mechanism for a multicopter. In: Proceedings of the 2013 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 985–991 (2017)Google Scholar
  39. 39.
    Parsons, B.N.V., Stanton, S.: Linear actuator. US Patent 4,794,810 (1989)Google Scholar
  40. 40.
    Nonami, K.: Drone technology, cutting-edge drone business, and future prospects. J. Robot. Mech. 28, 262–272 (2016)CrossRefGoogle Scholar
  41. 41.
    Rothstein, A.: Drone (Object Lessons). Bloomsbury Publishing, New York (2015)Google Scholar
  42. 42.
    Christian, A., Cabell, R.: Initial investigation into the psychoacoustic properties of small unmanned aerial system noise. In: 23rd AIAA/CEAS Aeroacoustics Conference, AIAA AVIATION Forum, AIAA 2017-4051 (2017)Google Scholar
  43. 43.
    Wagner, H., Weger, M., Klaas, M., Schro, W.: Features of owl wings that promote silent flight. Interface Focus 7, 20160078 (2017)CrossRefGoogle Scholar
  44. 44.
    Ikeda, T., Ueda, T., Nakata, T., Noda, R., Tanaka, H., Fujii, T., Liu, H.: Morphology effects of leading-edge serrations on aerodynamic force production: an integrated study with PIV and force measurements. J. Bionic Eng. 14, 661–672 (2018)CrossRefGoogle Scholar
  45. 45.
    Rao, C., Ikeda, T., Nakata, T., Liu, H.: Owl-inspired leading-edge serrations play a crucial role in aerodynamic force production and sound suppression. Bioinspiration Biomim. 12, 046008 (2017)CrossRefGoogle Scholar
  46. 46.
    Usherwood, J.R., Ellington, C.P.: The aerodynamics of revolving wings I. Model hawkmoth wings. J. Exp. Biol. 205, 1547–1564 (2002)Google Scholar
  47. 47.
    Ellington, C.P.: The aerodynamics of hovering insect flight. V. A vortex theory. Philos. Trans. R. Soc. Lond. B 305, 115–144 (1984)CrossRefGoogle Scholar
  48. 48.
    Henderson, L., Glaser, T., Kuester, L.: Towards bio-inspired structural design of a 3D printable, ballistically deployable, multi-rotor UAV. In: 2017 IEEE Aerospace Conference (2017)Google Scholar
  49. 49.
    Keshavan, J., Gremillion, G., Escobar-Alravez, H., Humbert, J.S.: A \(\mu \) analysis-based controller-synthesis framework for robust bioinspired visual navigation in less-structured environments. Bioinspiration Biomim. 9, 025011 (2014)CrossRefGoogle Scholar
  50. 50.
    Mintichev, S., Rivaz, S., Floreano, D.: Insect-inspired mechanical resilience for multicopters. IEEE Robot. Autom. Lett. 2, 1248–1255 (2017)CrossRefGoogle Scholar
  51. 51.
    Sabo, C., Cope, A., Gurny, K., Vasilaki, E., Marshall, J.A.: Bio-inspired visual navigation for a quadcopter using optic flow. In: AIAA Infotech @ Aerospace, AIAA SciTech Forum, AIAA 2016-0404 (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Kenzo Nonami
    • 1
    Email author
  • Kotaro Hoshiba
    • 2
  • Kazuhiro Nakadai
    • 3
  • Makoto Kumon
    • 4
  • Hiroshi G. Okuno
    • 5
  • Yasutada Tanabe
    • 6
  • Koichi Yonezawa
    • 7
  • Hiroshi Tokutake
    • 8
  • Satoshi Suzuki
    • 9
  • Kohei Yamaguchi
    • 10
  • Shigeru Sunada
    • 10
  • Takeshi Takaki
    • 11
  • Toshiyuki Nakata
    • 12
  • Ryusuke Noda
    • 13
  • Hao Liu
    • 12
  • Satoshi Tadokoro
    • 14
  1. 1.Autonomous Control Systems LaboratoryChibaJapan
  2. 2.Kanagawa UniversityYokohamaJapan
  3. 3.Tokyo Institute of Technology/Honda Research Institute Japan Co., Ltd.TokyoJapan
  4. 4.Kumamoto UniversityKumamotoJapan
  5. 5.Waseda UniversityTokyoJapan
  6. 6.Japan Aerospace Exploration AgencyTokyoJapan
  7. 7.Central Research Institute of Electric Power IndustryTokyoJapan
  8. 8.Kanazawa UniversityKanazawaJapan
  9. 9.Shinshu UniversityMatsumotoJapan
  10. 10.Nagoya UniversityNagoyaJapan
  11. 11.Hiroshima UniversityHiroshimaJapan
  12. 12.Chiba UniversityChibaJapan
  13. 13.Kanto Gakuin UniversityYokohamaJapan
  14. 14.Tohoku UniversitySendaiJapan

Personalised recommendations