Advertisement

The Tocopherol Transfer Protein: Regulator of Vitamin E Status

  • Jeffrey Atkinson
  • Varsha Thakur
  • Danny ManorEmail author
Chapter
Part of the Nutrition and Health book series (NH)

Abstract

The spontaneous intracellular movement of hydrophobic molecules would likely occur too slowly to support life if not for the presence of lipid transfer proteins that accelerate the process. Soluble transfer proteins that carry their hydrophobic ligands in a directed and controllable manner evolved to facilitate the distribution of endogenous lipids, as well as of fat-soluble vitamins. A number of proteins have been identified that can bind α-tocopherol (vitamin E), and it is now well-supported that the α-tocopherol transfer protein (TTP) is the major determinant for the distribution of freshly absorbed dietary tocopherol throughout the body. In this review, we provide an overview of relevant tocopherol binding proteins and then focus on the structure and function of TTP. We present a model for the directional transport of tocopherol from endosomal membranes to the plasma membrane of hepatocytes, based on recent studies showing that tocopherol movement is coupled to binding of the phosphoinositide PI(4,5)P2 to TTP and driven by opposing concentration gradients of the two ligands. We also review recent data showing that regulation of TTP serves to maintain vitamin E homeostasis in cells and tissues.

Keywords

Tocopherol Transfer protein Phosphoinositide Oxidative stress 

References

  1. 1.
    Vance JE. Phospholipid synthesis and transport in mammalian cells. Traffic. 2015;16(1):1–18.PubMedCrossRefGoogle Scholar
  2. 2.
    Stefan CJ, et al. Membrane dynamics and organelle biogenesis-lipid pipelines and vesicular carriers. BMC Biol. 2017;15(1):102.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Lev S. Non-vesicular lipid transport by lipid-transfer proteins and beyond. Nat Rev Mol Cell Biol. 2010;11(10):739–50.PubMedCrossRefGoogle Scholar
  4. 4.
    van Meer G, Voelker DR, Feigenson GW. Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol. 2008;9(2):112–24.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Curwin AJ, McMaster CR. Structure and function of the enigmatic Sec14 domain-containing proteins and the etiology of human disease. Futur Lipidol. 2008;3(4):399–410.CrossRefGoogle Scholar
  6. 6.
    Saito K, Tautz L, Mustelin T. The lipid-binding Sec14 domain. Biochim Biophys Acta. 2007;1771(6):719–26.PubMedCrossRefGoogle Scholar
  7. 7.
    Bankaitis VA, Mousley CJ, Schaaf G. The Sec14 superfamily and mechanisms for crosstalk between lipid metabolism and lipid signaling. Trends Biochem Sci. 2010;35(3):150–60.PubMedCrossRefGoogle Scholar
  8. 8.
    Welti S, et al. The Sec14 homology module of neurofibromin binds cellular glycerophospholipids: mass spectrometry and structure of a lipid complex. J Mol Biol. 2007;366(2):551–62.PubMedCrossRefGoogle Scholar
  9. 9.
    Griac P. Sec14 related proteins in yeast. Biochim Biophys Acta. 2007;1771(6):737–45.PubMedCrossRefGoogle Scholar
  10. 10.
    Stocker A, et al. Crystal structure of the human supernatant protein factor. Structure. 2002;10(11):1533–40.PubMedCrossRefGoogle Scholar
  11. 11.
    Christen M, et al. Structural insights on cholesterol endosynthesis: binding of squalene and 2,3-oxidosqualene to supernatant protein factor. J Struct Biol. 2015;190(3):261–70.PubMedCrossRefGoogle Scholar
  12. 12.
    Ueda S, Kataoka T, Satoh T. Role of the Sec14-like domain of Dbl family exchange factors in the regulation of Rho family GTPases in different subcellular sites. Cell Signal. 2004;16(8):899–906.PubMedCrossRefGoogle Scholar
  13. 13.
    Aravind L, Neuwald AF, Ponting CP. Sec14p-like domains in NF1 and Dbl-like proteins indicate lipid regulation of Ras and Rho signaling. Curr Biol. 1999;9(6):R195–7.PubMedCrossRefGoogle Scholar
  14. 14.
    Miller MB, et al. An N-terminal amphipathic helix binds phosphoinositides and enhances Kalirin Sec14 domain-mediated membrane interactions. J Biol Chem. 2015;290(21):13541–55.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Saito K, et al. Association of protein-tyrosine phosphatase MEG2 via its Sec14p homology domain with vesicle-trafficking proteins. J Biol Chem. 2007;282(20):15170–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Katoh Y, et al. The clavesin family, neuron-specific lipid- and clathrin-binding Sec14 proteins regulating lysosomal morphology. J Biol Chem. 2009;284(40):27646–54.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Rajaram OV, Fatterpaker P, Sreenivasan A. Occurrence of -tocopherol binding protein in rat liver cell sap. Biochem Biophys Res Commun. 1973;52(2):459–65.PubMedCrossRefGoogle Scholar
  18. 18.
    Catignani GL. An alpha-tocopherol binding protein in rat liver cytoplasm. Biochem Biophys Res Commun. 1975;67(1):66–72.PubMedCrossRefGoogle Scholar
  19. 19.
    Catignani GL, Bieri JG. Rat liver alpha-tocopherol binding protein. Biochim Biophys Acta. 1977;497(2):349–57.PubMedCrossRefGoogle Scholar
  20. 20.
    Verdon CP, Blumberg JB. An assay for the alpha-tocopherol binding protein mediated transfer of vitamin E between membranes. Anal Biochem. 1988;169(1):109–20.PubMedCrossRefGoogle Scholar
  21. 21.
    Kuhlenkamp J, et al. Identification and purification of a human liver cytosolic tocopherol binding protein. Protein Expr Purif. 1993;4(5):382–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Sato Y, et al. Primary structure of alpha-tocopherol transfer protein from rat liver. Homology with cellular retinaldehyde-binding protein. J Biol Chem. 1993;268(24):17705–10.PubMedGoogle Scholar
  23. 23.
    Sato Y, et al. Purification and characterization of the alpha-tocopherol transfer protein from rat liver. FEBS Lett. 1991;288(1–2):41–5.PubMedCrossRefGoogle Scholar
  24. 24.
    Panagabko C, et al. Ligand specificity in the CRAL-TRIO protein family. Biochemistry. 2003;42(21):6467–74.PubMedCrossRefGoogle Scholar
  25. 25.
    Morley S, et al. Mechanisms of ligand transfer by the hepatic tocopherol transfer protein. J Biol Chem. 2008;283(26):17797–804.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Crabb JW, et al. Cloning of the cDNAs encoding the cellular retinaldehyde-binding protein from bovine and human retina and comparison of the protein structures. J Biol Chem. 1988;263(35):18688–92.PubMedGoogle Scholar
  27. 27.
    Sha B, et al. Crystal structure of the Saccharomyces cerevisiae phosphatidylinositol transfer protein. Nature. 1998;391:506–10.PubMedCrossRefGoogle Scholar
  28. 28.
    Arita M, et al. Human alpha-tocopherol transfer protein: cDNA cloning, expression and chromosomal localization. Biochem J. 1995;306(Pt 2):437–43.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Mowri H, et al. Enhancement of the transfer of alpha-tocopherol between liposomes and mitochondria by rat-liver protein(s). Eur J Biochem. 1981;117(3):537–42.PubMedCrossRefGoogle Scholar
  30. 30.
    Hosomi A, et al. Affinity for alpha-tocopherol transfer protein as a determinant of the biological activities of vitamin E analogs. FEBS Lett. 1997;409(1):105–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Traber MG, Arai H. Molecular mechanisms of vitamin E transport. Annu Rev Nutr. 1999;19:343–55.PubMedCrossRefGoogle Scholar
  32. 32.
    Copp RP, et al. Localization of alpha-tocopherol transfer protein in the brains of patients with ataxia with vitamin E deficiency and other oxidative stress related neurodegenerative disorders. Brain Res. 1999;822(1–2):80–7.PubMedCrossRefGoogle Scholar
  33. 33.
    Hosomi A, et al. Localization of alpha-tocopherol transfer protein in rat brain. Neurosci Lett. 1998;256(3):159–62.PubMedCrossRefGoogle Scholar
  34. 34.
    Kaempf-Rotzoll DE, et al. Human placental trophoblast cells express alpha-tocopherol transfer protein. Placenta. 2003;24(5):439–44.PubMedCrossRefGoogle Scholar
  35. 35.
    Kaempf-Rotzoll DE, et al. Alpha-tocopherol transfer protein is specifically localized at the implantation site of pregnant mouse uterus. Biol Reprod. 2002;67(2):599–604.PubMedCrossRefGoogle Scholar
  36. 36.
    Ouahchi K, et al. Ataxia with isolated vitamin E deficiency is caused by mutations in the alpha-tocopherol transfer protein. Nat Genet. 1995;9(2):141–5.PubMedCrossRefGoogle Scholar
  37. 37.
    Morley S, et al. Molecular determinants of heritable vitamin E deficiency. Biochemistry. 2004;43(14):4143–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Qian J, et al. Intracellular localization of alpha-tocopherol transfer protein and alpha-tocopherol. Ann N Y Acad Sci. 2004;1031:330–1.PubMedCrossRefGoogle Scholar
  39. 39.
    Qian J, et al. Intracellular trafficking of vitamin E in hepatocytes: the role of tocopherol transfer protein. J Lipid Res. 2005;46(10):2072–82.PubMedCrossRefGoogle Scholar
  40. 40.
    Qian J, Atkinson J, Manor D. Biochemical consequences of heritable mutations in the alpha-tocopherol transfer protein. Biochemistry. 2006;45(27):8236–42.PubMedCrossRefGoogle Scholar
  41. 41.
    Terasawa Y, et al. Increased atherosclerosis in hyperlipidemic mice deficient in alpha – tocopherol transfer protein and vitamin E. Proc Natl Acad Sci U S A. 2000;97(25):13830–4.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Yokota T, et al. Delayed-onset ataxia in mice lacking alpha -tocopherol transfer protein: model for neuronal degeneration caused by chronic oxidative stress. Proc Natl Acad Sci U S A. 2001;98(26):15185–90.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Jishage K, et al. Alpha-tocopherol transfer protein is important for the normal development of placental labyrinthine trophoblasts in mice. J Biol Chem. 2001;276(3):1669–72.PubMedCrossRefGoogle Scholar
  44. 44.
    Dutta-Roy AK, et al. Purification and partial characterisation of an alpha-tocopherol- binding protein from rabbit heart cytosol. Mol Cell Biochem. 1993;123(1–2):139–44.PubMedCrossRefGoogle Scholar
  45. 45.
    Dutta-Roy AK, et al. Identification of a low molecular mass (14.2 kDa) alpha-tocopherol- binding protein in the cytosol of rat liver and heart. Biochem Biophys Res Commun. 1993;196(3):1108–12.PubMedCrossRefGoogle Scholar
  46. 46.
    Gordon MJ, et al. Characterization of a novel alpha-tocopherol-binding protein from bovine heart cytosol. Arch Biochem Biophys. 1995;318(1):140–6.PubMedCrossRefGoogle Scholar
  47. 47.
    Leishman DJ, et al. A low molecular weight (12–15 kDa) protein fraction in rat liver binds alpha-tocopherol. Biochem Soc Trans. 1993;21(4):408S.PubMedCrossRefGoogle Scholar
  48. 48.
    Campbell FM, et al. Plasma membrane fatty-acid-binding protein in human placenta: identification and characterization. Biochem Biophys Res Commun. 1995;209(3):1011–7.PubMedCrossRefGoogle Scholar
  49. 49.
    Gordon MJ, Campbell FM, Dutta-Roy AK. Alpha-tocopherol-binding protein in the cytosol of the human placenta. Biochem Soc Trans. 1996;24(2):202S.PubMedCrossRefGoogle Scholar
  50. 50.
    Dutta-Roy AK. Molecular mechanism of cellular uptake and intracellular translocation of alpha-tocopherol: role of tocopherol-binding proteins. Food Chem Toxicol. 1999;37(9–10):967–71.PubMedCrossRefGoogle Scholar
  51. 51.
    Stocker A, et al. Identification of a novel cytosolic tocopherol-binding protein: structure, specificity, and tissue distribution. IUBMB Life. 1999;48(1):49–56.PubMedCrossRefGoogle Scholar
  52. 52.
    Zimmer S, et al. A novel human tocopherol-associated protein – cloning, in vitro expression, and characterization. J Biol Chem. 2000;275(33):25672–80.PubMedCrossRefGoogle Scholar
  53. 53.
    Shibata N, et al. Supernatant protein factor, which stimulates the conversion of squalene to lanosterol, is a cytosolic squalene transfer protein and enhances cholesterol biosynthesis. Proc Natl Acad Sci U S A. 2001;98(5):2244–9.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Chin J, Bloch K. Role of supernatant protein factor and anionic phospholipid in squalene uptake and conversion by microsomes. J Biol Chem. 1984;259(19):11735–8.PubMedGoogle Scholar
  55. 55.
    Friedlander EJ, et al. Supernatant protein factor facilitates intermembrane transfer of squalene. J Biol Chem. 1980;255(17):8042–5.PubMedGoogle Scholar
  56. 56.
    Manor D, Atkinson J. Is tocopherol associated protein a misnomer? J Nutr Biochem. 2003;14(7):421–2; author reply 423.PubMedCrossRefGoogle Scholar
  57. 57.
    Shibata N, et al. Regulation of hepatic cholesterol synthesis by a novel protein (SPF) that accelerates cholesterol biosynthesis. FASEB J. 2006;20(14):2642–4.PubMedCrossRefGoogle Scholar
  58. 58.
    Zingg JM, Azzi A, Meydani M. Induction of VEGF expression by alpha-tocopherol and alpha-tocopheryl phosphate via PI3Kgamma/PKB and hTAP1/SEC14L2-mediated lipid exchange. J Cell Biochem. 2015;116(3):398–407.PubMedCrossRefGoogle Scholar
  59. 59.
    Johnson KG, Kornfeld K. The CRAL/TRIO and GOLD domain protein TAP-1 regulates RAF-1 activation. Dev Biol. 2010;341(2):464–71.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Singh DK, et al. Phosphorylation of supernatant protein factor enhances its ability to stimulate microsomal squalene monooxygenase. J Biol Chem. 2003;278(8):5646–51.PubMedCrossRefGoogle Scholar
  61. 61.
    Meier R, et al. The molecular basis of vitamin E retention: structure of human alpha-tocopherol transfer protein. J Mol Biol. 2003;331(3):725–34.PubMedCrossRefGoogle Scholar
  62. 62.
    Min KC, Kovall RA, Hendrickson WA. Crystal structure of human alpha-tocopherol transfer protein bound to its ligand: implications for ataxia with vitamin E deficiency. Proc Natl Acad Sci U S A. 2003;100(25):14713–8.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Kono N, et al. Impaired alpha-TTP-PIPs interaction underlies familial vitamin E deficiency. Science. 2013;340(6136):1106–10.PubMedCrossRefGoogle Scholar
  64. 64.
    Ryan MM, et al. Conformational dynamics of the major yeast phosphatidylinositol transfer protein sec 14p: insight into the mechanisms of phospholipid exchange and diseases of sec 14p-like protein deficiencies. Mol Biol Cell. 2007;18(5):1928–42.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Zhang WX, et al. The contribution of surface residues to membrane binding and ligand transfer by the alpha-tocopherol transfer protein (alpha-TTP). J Mol Biol. 2011;405(4):972–88.PubMedCrossRefGoogle Scholar
  66. 66.
    Sullivan SM, Holyoak T. Enzymes with lid-gated active sites must operate by an induced fit mechanism instead of conformational selection. Proc Natl Acad Sci U S A. 2008;105(37):13829–34.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Stank A, et al. Protein binding pocket dynamics. Acc Chem Res. 2016;49(5):809–15.PubMedCrossRefGoogle Scholar
  68. 68.
    Vogt AD, et al. Essential role of conformational selection in ligand binding. Biophys Chem. 2014;186:13–21.PubMedCrossRefGoogle Scholar
  69. 69.
    Kono N, Arai H. Intracellular transport of fat-soluble vitamins A and E. Traffic. 2015;16(1):19–34.PubMedCrossRefGoogle Scholar
  70. 70.
    Lomize MA, et al. OPM database and PPM web server: resources for positioning of proteins in membranes. Nucleic Acids Res. 2012;40(Database issue):D370–6.PubMedCrossRefGoogle Scholar
  71. 71.
    Saari JC, et al. Release of 11-cis-retinal from cellular retinaldehyde-binding protein by acidic lipids. Mol Vis. 2009;15:844–54.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Chung S, et al. Vitamin E and phosphoinositides regulate the intracellular localization of the hepatic alpha-tocopherol transfer protein. J Biol Chem. 2016;291(33):17028–39.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    de Saint-Jean M, et al. Osh4p exchanges sterols for phosphatidylinositol 4-phosphate between lipid bilayers. J Cell Biol. 2011;195(6):965–78.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Mesmin B, Antonny B. The counterflow transport of sterols and PI4P. Biochim Biophys Acta. 2016;1861(8 Pt B):940–51.PubMedCrossRefGoogle Scholar
  75. 75.
    Mesmin B, et al. A four-step cycle driven by PI(4)P hydrolysis directs sterol/PI(4)P exchange by the ER-Golgi tether OSBP. Cell. 2013;155(4):830–43.PubMedCrossRefGoogle Scholar
  76. 76.
    Moser von Filseck J, et al. Building lipid ‘PIPelines’ throughout the cell by ORP/Osh proteins. Biochem Soc Trans. 2014;42(5):1465–70.PubMedCrossRefGoogle Scholar
  77. 77.
    Matsuo H, et al. Role of LBPA and Alix in multivesicular liposome formation and endosome organization. Science. 2004;303(5657):531–4.PubMedCrossRefGoogle Scholar
  78. 78.
    Kobayashi T, et al. Separation and characterization of late endosomal membrane domains. J Biol Chem. 2002;277(35):32157–64.PubMedCrossRefGoogle Scholar
  79. 79.
    Zhang WX, et al. Effect of bilayer phospholipid composition and curvature on ligand transfer by the alpha-tocopherol transfer protein. Lipids. 2009;44(7):631–41.PubMedCrossRefGoogle Scholar
  80. 80.
    Balla T. Phosphoinositides: tiny lipids with giant impact on cell regulation. Physiol Rev. 2013;93(3):1019–137.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    De Matteis MA, et al. The 5-phosphatase OCRL in Lowe syndrome and Dent disease 2. Nat Rev Nephrol. 2017;13(8):455–70.PubMedCrossRefGoogle Scholar
  82. 82.
    Choudhury R, et al. Lowe syndrome protein OCRL1 interacts with clathrin and regulates protein trafficking between endosomes and the trans-Golgi network. Mol Biol Cell. 2005;16(8):3467–79.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Ungewickell A, et al. The inositol polyphosphate 5-phosphatase Ocrl associates with endosomes that are partially coated with clathrin. Proc Natl Acad Sci U S A. 2004;101(37):13501–6.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Vicinanza M, et al. OCRL controls trafficking through early endosomes via PtdIns4,5P(2)-dependent regulation of endosomal actin. EMBO J. 2011;30(24):4970–85.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Elong Edimo W, et al. SHIP2 controls plasma membrane PI(4,5)P2 thereby participating in the control of cell migration in 1321 N1 glioblastoma cells. J Cell Sci. 2016;129(6):1101–14.PubMedCrossRefGoogle Scholar
  86. 86.
    Hammond GR, Schiavo G, Irvine RF. Immunocytochemical techniques reveal multiple, distinct cellular pools of PtdIns4P and PtdIns(4,5)P(2). Biochem J. 2009;422(1):23–35.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Manor D, Morley S. The alpha-tocopherol transfer protein. Vitam Horm. 2007;76:45–65.PubMedCrossRefGoogle Scholar
  88. 88.
    Cavalier L, et al. Ataxia with isolated vitamin E deficiency: heterogeneity of mutations and phenotypic variability in a large number of families. Am J Hum Genet. 1998;62(2):301–10.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Ulatowski LM, Manor D. Vitamin E and neurodegeneration. Neurobiol Dis. 2015;84:78–83.PubMedCrossRefGoogle Scholar
  90. 90.
    Ulatowski L, et al. Vitamin E is essential for Purkinje neuron integrity. Neuroscience. 2014;260:120–9.PubMedCrossRefGoogle Scholar
  91. 91.
    Ulatowshi L, Manor D. Vitamin E trafficking in neurologic health and disease. Anna Rev Nutr. 2013;33:87–103.Google Scholar
  92. 92.
    Evans HM, Bishop KS. On the existence of a hitherto unrecognized dietary factor essential for reproduction. Science. 1922;56:650–1.PubMedCrossRefGoogle Scholar
  93. 93.
    Weiser H, Vecchi M. Stereoisomers of alpha-tocopheryl acetate – characterization of the samples by physico-chemical methods and determination of biological activities in the rat resorption-gestation test. Int J Vitam Nutr Res. 1981;51(2):100–13.PubMedGoogle Scholar
  94. 94.
    Weiser H, Vecchi M. Stereoisomers of a-tocopheryl acetate. II. Biopotencies of all eight stereoisomers, individually or in mixtures, as determined by rat resorption-gestation test. Int J Vitam Nutr Res. 1982;52:351–70.PubMedGoogle Scholar
  95. 95.
    Jishage K, et al. Vitamin E is essential for mouse placentation but not for embryonic development itself. Biol Reprod. 2005;73(5):983–7.PubMedCrossRefGoogle Scholar
  96. 96.
    Rotzoll DE, et al. Immunohistochemical localization of alpha-tocopherol transfer protein and lipoperoxidation products in human first-trimester and term placenta. Eur J Obstet Gynecol Reprod Biol. 2008;140(2):183–91.PubMedCrossRefGoogle Scholar
  97. 97.
    Etzl RP, et al. Oxidative stress stimulates alpha-tocopherol transfer protein in human trophoblast tumor cells BeWo. J Perinat Med. 2012;40(4):373–8.PubMedCrossRefGoogle Scholar
  98. 98.
    Practice Committee of the American Society for Reproductive Medicine. Evaluation and treatment of recurrent pregnancy loss: a committee opinion. Fertil Steril. 2012;98(5):1103–11.CrossRefGoogle Scholar
  99. 99.
    Ulatowski L, et al. Expression of the alpha-tocopherol transfer protein gene is regulated by oxidative stress and common single-nucleotide polymorphisms. Free Radic Biol Med. 2012;53(12):2318–26.PubMedCrossRefGoogle Scholar
  100. 100.
    Thakur V, Morley S, Manor D. The hepatic tocopherol transfer protein (TTP): ligand-induced protection from proteasomal degradation. Biochemistry. 2010;49:9339–44.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Ockner RK, et al. A binding protein for fatty acids in cytosol of intestinal mucosa, liver, myocardium, and other tissues. Science. 1972;177(4043):56–8.PubMedCrossRefGoogle Scholar
  102. 102.
    Ockner RK, Manning JA. Fatty acid binding protein in small intestine. Identification, isolation and evidence for its role in cellular fatty acid transport. J Clin Invest. 1974;54:326–38.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Wirtz KW, Zilversmit DB. Partial purification of phospholipid exchange protein from beef heart. FEBS Lett. 1970;7(1):44–6.PubMedCrossRefGoogle Scholar
  104. 104.
    Harvey MS, et al. A study on phospholipid exchange proteins present in the soluble fractions of beef liver and brain. Biochim Biophys Acta. 1973;323(2):234–9.PubMedCrossRefGoogle Scholar
  105. 105.
    Heo WD, et al. PI(3,4,5)P3 and PI(4,5)P2 lipids target proteins with polybasic clusters to the plasma membrane. Science. 2006;314(5804):1458–61.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Idevall-Hagren O, De Camilli P. Detection and manipulation of phosphoinositides. Biochim Biophys Acta. 2015;1851(6):736–45.PubMedCrossRefGoogle Scholar
  107. 107.
    Idevall-Hagren O, et al. Optogenetic control of phosphoinositide metabolism. Proc Natl Acad Sci U S A. 2012;109(35):E2316–23.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Varnai P, Balla T. Live cell imaging of phosphoinositide dynamics with fluorescent protein domains. Biochim Biophys Acta. 2006;1761(8):957–67.PubMedCrossRefGoogle Scholar
  109. 109.
    Varnai P, Balla T. Live cell imaging of phosphoinositides with expressed inositide binding protein domains. Methods. 2008;46(3):167–76.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Best MD. Global approaches for the elucidation of phosphoinositide-binding proteins. Chem Phys Lipids. 2014;182:19–28.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jeffrey Atkinson
    • 1
  • Varsha Thakur
    • 2
  • Danny Manor
    • 2
    • 3
    • 4
    Email author
  1. 1.Department of Chemistry and Centre for BiotechnologyBrock UniversitySt. CatharinesCanada
  2. 2.Department of NutritionCase Western Reserve UniversityClevelandUSA
  3. 3.Department of PharmacologyCase Western Reserve UniversityClevelandUSA
  4. 4.Case Comprehensive Cancer CenterCase Western Reserve UniversityClevelandUSA

Personalised recommendations