Advertisement

Occurrence and Bioactivities of Minor Vitamin E Derivatives

  • Marc BirringerEmail author
  • Jan Frank
Chapter
Part of the Nutrition and Health book series (NH)

Abstract

Besides the well-known tocopherols and tocotrienols, minor derivatives of 6-hydroxy-chromanols and 6-hydroxy-chromenols received intensified attention in recent years. The meroditerpenoids presented here were found in terrestrial and marine organisms and exhibited distinct structural and biochemical properties. Almost 80 sesquiterpenes with side chain modifications are described. Compounds with anti-inflammatory and cytotoxic properties have a high potential as drug lead structures.

Keywords

Vitamin E 6-hydroxy-chromanols Sesquiterpenes Meroditerpenes Biological activity 

References

  1. 1.
    Bunyan J, McHale D, Green J, Marcinkiewicz S. Biological potenices of ε- and ζ1-tocopherol and 5-methyltocol. Br J Nutr. 1961;15:253–7.CrossRefGoogle Scholar
  2. 2.
    Bunyan J. Biological potency of eta-Tocopherol. Nature. 1961;181:1237.Google Scholar
  3. 3.
    Brigelius-Flohé R, Traber MG. Vitamin E. FASEB J. 1999;13:1145–55.CrossRefGoogle Scholar
  4. 4.
    Birringer M, Siems K, Maxones A, Frank J, Lorkowski S. Natural 6-hydroxy-chromanols and -chromenols. RSC Adv. 2018;8:4803–41.  https://doi.org/10.1039/C7RA11819H.CrossRefGoogle Scholar
  5. 5.
    Peh HY, Tan WSD, Liao W, Wong WSF. Vitamin E therapy beyond cancer: tocopherol versus tocotrienol. Pharmacol Ther. 2016;162:152–69.  https://doi.org/10.1016/j.pharmthera.2015.12.003.CrossRefPubMedGoogle Scholar
  6. 6.
    Liebler DC, Burr JA, Philips L, Ham AJ. Gas chromatography-mass spectrometry analysis of vitamin E and its oxidation products. Anal Biochem. 1996;236:27–34.  https://doi.org/10.1006/abio.1996.0127.CrossRefPubMedGoogle Scholar
  7. 7.
    Gille L, Rosenau T, Kozlov AV, Gregor W. Ubiquinone and tocopherol. Biochem Pharmacol. 2008;76:289–302.  https://doi.org/10.1016/j.bcp.2008.04.003.CrossRefPubMedGoogle Scholar
  8. 8.
    Szymańska R, Kruk J. Novel and rare prenyllipids – Occurrence and biological activity. Plant Physiol Biochem. 2018;122:1–9.  https://doi.org/10.1016/j.plaphy.2017.11.008.CrossRefPubMedGoogle Scholar
  9. 9.
    Dörmann P. Functional diversity of tocochromanols in plants. Planta. 2007;225:269–76.  https://doi.org/10.1007/s00425-006-0438-2.CrossRefPubMedGoogle Scholar
  10. 10.
    Spicher L, Kessler F. Unexpected roles of plastoglobules (plastid lipid droplets) in vitamin K1 and E metabolism. Curr Opin Plant Biol. 2015;25:123–9.  https://doi.org/10.1016/j.pbi.2015.05.005.CrossRefPubMedGoogle Scholar
  11. 11.
    Falk J, Munné-Bosch S. Tocochromanol functions in plants: antioxidation and beyond. J Exp Bot. 2010;61:1549–66.  https://doi.org/10.1093/jxb/erq030.CrossRefPubMedGoogle Scholar
  12. 12.
    Kruk J, Pisarski A, Szymańska R. Novel vitamin E forms in leaves of Kalanchoe daigremontiana and Phaseolus coccineus. J Plant Physiol. 2011;168:2021–7.  https://doi.org/10.1016/j.jplph.2011.06.015.CrossRefPubMedGoogle Scholar
  13. 13.
    Horvath G, Wessjohann L, Bigirimana J, Jansen M, Guisez Y, Caubergs R, Horemans N. Differential distribution of tocopherols and tocotrienols in photosynthetic and non-photosynthetic tissues. Phytochemistry. 2006;67:1185–95.  https://doi.org/10.1016/j.phytochem.2006.04.004.CrossRefPubMedGoogle Scholar
  14. 14.
    Shahidi F, deCamargo AC. Tocopherols and Tocotrienols in common and emerging dietary sources: occurrence, applications, and health benefits. Int J Mol Sci. 2016;17:1745–74.  https://doi.org/10.3390/ijms17101745.CrossRefPubMedCentralGoogle Scholar
  15. 15.
    Ashan H, Ahad A, Iqbal J, Siddiqui WA. Pharmacological potential of tocotrienols: a review. Nutr Metab. 2014;52:1–22.Google Scholar
  16. 16.
    Qureshi AA, Mo H, Packer L, Peterson DM. Isolation and identification of novel tocotrienols from rice bran with hypocholesterolemic, antioxidant, and antitumor properties. J Agric Food Chem. 2000;48:3130–40.  https://doi.org/10.1021/jf000099t.CrossRefPubMedGoogle Scholar
  17. 17.
    He L, Mo H, Hadisusilo S, Qureshi AA, Elson CE. Isoprenoids suppress the growth of murine B16 melanomas in vitro and in vivo. J Nutr. 1997;127:668–74.CrossRefGoogle Scholar
  18. 18.
    Butinar B, Bučar-Miklavčič M, Mariani C, Raspor P. New vitamin E isomers (gamma-tocomonoenol and alpha-tocomonoenol) in seeds, roasted seeds and roasted seed oil from the Slovenian pumpkin variety ‘Slovenska golica’. Food Chem. 2011;128:505–12.  https://doi.org/10.1016/j.foodchem.2011.03.072.CrossRefPubMedGoogle Scholar
  19. 19.
    Irías-Mata A, Stuetz W, Sus N, Hammann S, Gralla K, Cordero-Solano A, Vetter W, Frank J. Tocopherols, tocomonoenols, and tocotrienols in oils of costa rican palm fruits. J Agric Food Chem. 2017;65:7476–82.  https://doi.org/10.1021/acs.jafc.7b02230.CrossRefPubMedGoogle Scholar
  20. 20.
    Fiorentino A, Mastellone C, D’Abrosca B, Pacifico S, Scognamiglio M, Cefarelli G, Caputo R, Monaco P. δ-Tocomonoenol: a new vitamin E from kiwi (Actinidia chinensis) fruits. Food Chem. 2009;115:187–92.  https://doi.org/10.1016/j.foodchem.2008.11.094.CrossRefGoogle Scholar
  21. 21.
    Yamamoto Y, Maita N, Fujisawa A, Takashima J, Ishii Y, Dunlap WC. A new vitamin E (α-Tocomonoenol) from eggs of the pacific salmon Oncorhynchus keta. J Nat Prod. 1999;62:1685–7.  https://doi.org/10.1021/np990230v.CrossRefPubMedGoogle Scholar
  22. 22.
    Yamamoto Y, Fujisawa A, Hara A, Dunlap WC. An unusual vitamin E constituent (alpha-tocomonoenol) provides enhanced antioxidant protection in marine organisms adapted to cold-water environments. PNAS. 2001;98:13144–8.  https://doi.org/10.1073/pnas.241024298.CrossRefPubMedGoogle Scholar
  23. 23.
    Dunlap WC, Fujisawa A, Yamamoto Y, Moylan TJ, Sidell BD. Notothenioid fish, krill and phytoplankton from Antarctica contain a vitamin E constituent (α-tocomonoenol) functionally associated with cold-water adaptation. Comp Biochem Physiol B: Biochem Mol Biol. 2002;133:299–305.  https://doi.org/10.1016/S1096-4959(02)00150-1.CrossRefGoogle Scholar
  24. 24.
    Gee PT, Liew CY, Thong MC, Gay M. Vitamin E analysis by ultra-performance convergence chromatography and structural elucidation of novel α-tocodienol by high-resolution mass spectrometry. Food Chem. 2016;196:367–73.  https://doi.org/10.1016/j.foodchem.2015.09.073.CrossRefPubMedGoogle Scholar
  25. 25.
    Kruk J, Szymańska R, Cela J, Munne-Bosch S. Plastochromanol-8: fifty years of research. Phytochemistry. 2014;108:9–16.  https://doi.org/10.1016/j.phytochem.2014.09.011.CrossRefPubMedGoogle Scholar
  26. 26.
    Whittle KJ, Dunphy PJ, Pennock JF. Plastochromanol in the leaves of Hevea brasiliensis. Biochem J. 1965;96:17C–9C.CrossRefGoogle Scholar
  27. 27.
    Siger A, Kachlicki P, Czubiński J, Polcyn D, Dwiecki K, Nogala-Kalucka M. Isolation and purification of plastochromanol-8 for HPLC quantitative determinations. Eur J Lipid Sci Technol. 2014;116:413–22.  https://doi.org/10.1002/ejlt.201300297.CrossRefGoogle Scholar
  28. 28.
    Müller-Mulot W, Rohrer G, Oesterhelt G, Schmidt K, Allemann L, Maurer R. Zur Auffindung von [alpha]-, [beta]- und [gamma]-Dehydrotocopherol in Weizenkeimöl mittels HPLC und GC/MS – ein Beitrag zur Analytik der Tocopherole. Fette – Seifen – Anstrichmittel. 1983;85:66–71.CrossRefGoogle Scholar
  29. 29.
    Kil Y-S, Park J, Han A-R, Woo HA, Seo E-K. A new 9,10-dihydrophenanthrene and cell proliferative 3,4-δ-dehydrotocopherols from Stemona tuberosa. Molecules (Basel, Switzerland). 2015;20:5965–74.  https://doi.org/10.3390/molecules20045965.CrossRefGoogle Scholar
  30. 30.
    Brem B, Seger C, Pacher T, Hartl M, Hadacek F, Hofer O, Vajrodaya S, Greger H. Antioxidant dehydrotocopherols as a new chemical character of Stemona species. Phytochemistry. 2004;65:2719–29.  https://doi.org/10.1016/j.phytochem.2004.08.023.CrossRefPubMedGoogle Scholar
  31. 31.
    Rowland RL. Flue-cured Tobacco. III. Solanachromene and α-Tocopherol. J Am Chem Soc. 1958;80:6130–3.  https://doi.org/10.1021/ja01555a057.CrossRefGoogle Scholar
  32. 32.
    Krauß S, Hammann S, Vetter W. Phytyl fatty acid esters in the pulp of bell pepper (Capsicum annuum). J Agric Food Chem. 2016;64:6306–11.  https://doi.org/10.1021/acs.jafc.6b02645.CrossRefPubMedGoogle Scholar
  33. 33.
    Klink G, Buchs A, Gülacar FO. Tocopheryl esters from nymphea ada nad Nuphar Luteum. Phytochemistry. 1994;36:813–4.CrossRefGoogle Scholar
  34. 34.
    Kluge S, Schubert M, Schmölz L, Birringer M, Wallert M, Lorkowski S. Chapter 9 – Garcinoic acid: a promising bioactive natural product for better understanding the physiological functions of tocopherol metabolites. Vol. 51. In: Studies in natural products chemistry. Amsterdam: Elsevier B.V; 2016.Google Scholar
  35. 35.
    Setzer WN, Green TJ, Lawton RO, Moriarity DM, Bates RB, Caldera S, Haber WA. An antibacterial vitamin E derivative from Tovomitopsis psychotriifolia. Planta Med. 1995;61:275–6.  https://doi.org/10.1055/s-2006-958072.CrossRefPubMedGoogle Scholar
  36. 36.
    Monache FD, Marta M, Mac-Quhae MM, Nicoletti M. Two new tocotrienolic acids from fruits of Clusia Grandiflora Splith. Gazz Chim Ital. 1984;114:135–7.Google Scholar
  37. 37.
    Terashima K, Shimamura T, Tanabayashi M, Aqil M, Akinniyi JA. Constituents of the seeds of Garcinia Kola: two new antioxidants, garcinoic acid and garcinal. Heterocycles. 1997;45:1559–66.CrossRefGoogle Scholar
  38. 38.
    Mazzini F, Betti M, Netscher T, Galli F, Salvadori P. Configuration of the vitamin E analogue garcinoic acid extracted from Garcinia Kola seeds. Chirality. 2009;21:519–24.  https://doi.org/10.1002/chir.20630.CrossRefPubMedGoogle Scholar
  39. 39.
    Birringer M, Lington D, Vertuani S, Manfredini S, Scharlau D, Glei M, Ristow M. Proapoptotic effects of long-chain vitamin E metabolites in HepG2 cells are mediated by oxidative stress. Free Radic Biol Med. 2010;49:1315–22.  https://doi.org/10.1016/j.freeradbiomed.2010.07.024.CrossRefPubMedGoogle Scholar
  40. 40.
    Lavaud A, Richomme P, Litaudon M, Andriantsitohaina R, Guilet D. Antiangiogenic tocotrienol derivatives from Garcinia amplexicaulis. J Nat Prod. 2013;76:2246–52.  https://doi.org/10.1021/np400598y.CrossRefPubMedGoogle Scholar
  41. 41.
    Alsabil K, Suor-Cherer S, Koeberle A, Viault G, Lavaud A, Temml V, Waltenberger B, Schuster D, Litaudon M, Lorkowski S, de Vaumas R, Helesbeux J-J, Guilet D, Stuppner H, Werz O, Seraphin D, Richomme P. Semisynthetic and natural garcinoic acid isoforms as new mPGES-1 inhibitors. Planta Med. 2016;82:1110–6.  https://doi.org/10.1055/s-0042-108739.CrossRefPubMedGoogle Scholar
  42. 42.
    Maloney DJ, Hecht SM. A stereocontrolled synthesis of delta-trans-tocotrienoloic acid. Org Lett. 2005;7:4297–300.  https://doi.org/10.1021/ol051849t.CrossRefPubMedGoogle Scholar
  43. 43.
    Lavaud A, Richomme P, Gatto J, Aumond M-C, Poullain C, Litaudon M, Andriantsitohaina R, Guilet D. A tocotrienol series with an oxidative terminal prenyl unit from Garcinia amplexicaulis. Phytochemistry. 2015;109:103–10.  https://doi.org/10.1016/j.phytochem.2014.10.024.CrossRefPubMedGoogle Scholar
  44. 44.
    Lin Y-C, Chang J-C, Cheng S-Y, Wang C-M, Jhan Y-L, Lo I-W, Hsu Y-M, Liaw C-C, Hwang C-C, Chou C-H. New bioactive chromanes from Litchi chinensis. J Agric Food Chem. 2015;63:2472–8.  https://doi.org/10.1021/jf5056387.CrossRefPubMedGoogle Scholar
  45. 45.
    Menna M, Imperatore C, D’Aniello F, Aiello A. Meroterpenes from marine invertebrates: structures, occurrence, and ecological implications. Mar Drugs. 2013;11:1602–43.  https://doi.org/10.3390/md11051602.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Jensen A. Tocopherol content of seaweed and seaweed meal. 3. Influence of processing and storage on the content of tocopherols, carotenoids, and ascorbic acid in seaweed meal. J Sci Food Agric. 1969;20:622–6.CrossRefGoogle Scholar
  47. 47.
    Rengasamy KRR, Kulkarni MG, Stirk WA, van Staden J. Advances in algal drug research with emphasis on enzyme inhibitors. Biotechnol Adv. 2014;32:1364–81.  https://doi.org/10.1016/j.biotechadv.2014.08.005.CrossRefPubMedGoogle Scholar
  48. 48.
    Kato T, Kumanireng AS, Ichinose I, Kitahara Y, Kakinuma Y, Kato Y. Structure and synthesis of active component from marine alga Sargassum tortile, which induces the settling of swimming larvae of coryne uchidai. Chem Lett. 1975;4:335–8.CrossRefGoogle Scholar
  49. 49.
    Kakinuma Y. Bul Mar Bio Stat. 1960;10:37.Google Scholar
  50. 50.
    Jang KH, Lee BH, Choi BW, Lee H-S, Shin J. Chromenes from the brown alga Sargassum siliquastrum. J Nat Prod. 2005;68:716–23.  https://doi.org/10.1021/np058003i.CrossRefPubMedGoogle Scholar
  51. 51.
    Lee JI, Seo Y. Chromanols from Sargassum siliquastrum and their antioxidant activity in HT 1080 cells. Chem Pharm Bull. 2011;59:757–61.CrossRefGoogle Scholar
  52. 52.
    Chung S-C, Jang KH, Park J, Ahn C-H, Shin J, Oh K-B. Sargachromanols as inhibitors of Na+/K+ ATPase and isocitrate lyase. Bioorg Med Chem Lett. 2011;21:1958–61.  https://doi.org/10.1016/j.bmcl.2011.02.035.CrossRefPubMedGoogle Scholar
  53. 53.
    Heo S-J, Jang J, Ye B-R, Kim M-S, Yoon W-J, Oh C, Kang D-H, Lee J-H, Kang M-C, Jeon Y-J, Kang S-M, Kim D, Kim K-N. Chromene suppresses the activation of inflammatory mediators in lipopolysaccharide-stimulated RAW 264.7 cells. Food Chem Toxicol. 2014;67:169–75.  https://doi.org/10.1016/j.fct.2014.02.023.CrossRefPubMedGoogle Scholar
  54. 54.
    Park B-G, Shin W-S, Oh S, Park G-M, Kim NI, Lee S. A novel antihypertension agent, sargachromenol D from marine brown algae, Sargassum siliquastrum, exerts dual action as an L-type Ca(2+) channel blocker and endothelin A/B2 receptor antagonist. Bioorg Med Chem. 2017;25:4649–55.  https://doi.org/10.1016/j.bmc.2017.07.002.CrossRefPubMedGoogle Scholar
  55. 55.
    Yoon W-J, Kim K-N, Heo S-J, Han S-C, Kim J, Ko Y-J, Kang H-K, Yoo E-S. Sargachromanol G inhibits osteoclastogenesis by suppressing the activation NF-κB and MAPKs in RANKL-induced RAW 264.7 cells. Biochem Biophys Res Commun. 2013;434:892–7.  https://doi.org/10.1016/j.bbrc.2013.04.046.CrossRefPubMedGoogle Scholar
  56. 56.
    Yoon W-J, Heo S-J, Han S-C, Lee H-J, Kang G-J, Yang E-J, Park S-S, Kang H-K, Yoo E-S. Sargachromanol G regulates the expression of osteoclastogenic factors in human osteoblast-like MG-63 cells. Food Chem Toxicol. 2012;50:3273–9.  https://doi.org/10.1016/j.fct.2012.06.022.CrossRefPubMedGoogle Scholar
  57. 57.
    Fernando IPS, Nah J-W, Jeon Y-J. Potential anti-inflammatory natural products from marine algae. Environ Toxicol Pharmacol. 2016;48:22–30.  https://doi.org/10.1016/j.etap.2016.09.023.CrossRefPubMedGoogle Scholar
  58. 58.
    Lee J-H, Ko J-Y, Samarakoon K, Oh J-Y, Heo S-J, Kim C-Y, Nah J-W, Jang M-K, Lee J-S, Jeon Y-J. Preparative isolation of sargachromanol E from Sargassum siliquastrum by centrifugal partition chromatography and its anti-inflammatory activity. Food Chem Toxicol. 2013;62:54–60.  https://doi.org/10.1016/j.fct.2013.08.010.CrossRefPubMedGoogle Scholar
  59. 59.
    Yoon W-J, Heo S-J, Han S-C, Lee H-J, Kang G-J, Kang H-K, Hyun J-W, Koh Y-S, Yoo E-S. Anti-inflammatory effect of sargachromanol G isolated from Sargassum siliquastrum in RAW 264.7 cells. Arch Pharm Res. 2012;35:1421–30.  https://doi.org/10.1007/s12272-012-0812-5.CrossRefPubMedGoogle Scholar
  60. 60.
    Heo S-J, Kim K-N, Yoon W-J, Oh C, Choi Y-U, Affan A, Lee Y-J, Lee H-S, Kang D-H. Chromene induces apoptosis via caspase-3 activation in human leukemia HL-60 cells. Food Chem Toxicol. 2011;49:1998–2004.  https://doi.org/10.1016/j.fct.2011.05.011.CrossRefPubMedGoogle Scholar
  61. 61.
    Kim J-A, Ahn B-N, Kong C-S, Kim S-K. The chromene sargachromanol E inhibits ultraviolet A-induced ageing of skin in human dermal fibroblasts. Br J Dermatol. 2013;168:968–76.  https://doi.org/10.1111/bjd.12187.CrossRefPubMedGoogle Scholar
  62. 62.
    Numata A, Kanbara S, Takahashi C, Fujiki R, Yoneda M, Fujita E, Nabeshima Y. Cytotoxic activity of marine algae and a cytotoxic principle of the brown alga Sargassum tortile. Chem Pharm Bull. 1991;39:2129–31.CrossRefGoogle Scholar
  63. 63.
    Vieira PC, Gottlieb OR, Gottlieb HE. Tocotrienols from Iryanthera grandis. Phytochemistry. 1983;22:2281–6.  https://doi.org/10.1016/S0031-9422(00)80162-4.CrossRefGoogle Scholar
  64. 64.
    Silva DHS, Pereira FC, Zanoni MVB, Yoshida M. Lipophyllic antioxidants from Iryanthera juruensis fruits. Phytochemistry. 2001;57:437–42.  https://doi.org/10.1016/S0031-9422(00)00477-5.CrossRefPubMedGoogle Scholar
  65. 65.
    Silva DHS, Zhang Y, Santos LA, Bolzani VS, Nair MG. Lipoperoxidation and cyclooxygenases 1 and 2 inhibitory compounds from Iryanthera juruensis. J Agric Food Chem. 2007;55:2569–74.  https://doi.org/10.1021/jf063451x.CrossRefPubMedGoogle Scholar
  66. 66.
    Pérez-Castorena AL, Arciniegas A, Apan MT, Villaseñor JL, de Vivar AR. Evaluation of the anti-inflammatory and antioxidant activities of the plastoquinone derivatives isolated from Roldana barba-johannis. Planta Med. 2002;68:645–7.  https://doi.org/10.1055/s-2002-32890.CrossRefPubMedGoogle Scholar
  67. 67.
    Kusumi T, Shibata Y, Ishitsuka M, Kinoshita T, Kakisawa H. Structures of new Plastoquinones from the brown alga Sargassum Serratifolium. Chem Lett. 1979;8:277–8.CrossRefGoogle Scholar
  68. 68.
    Choi BW, Ryu G, Park SH, Kim ES, Shin J, Roh SS, Shin HC, Lee BH. Anticholinesterase activity of plastoquinones from Sargassum sagamianum: lead compounds for Alzheimer’s disease therapy. Phytother Res. 2007;21:423–6.  https://doi.org/10.1002/ptr.2090.CrossRefPubMedGoogle Scholar
  69. 69.
    Seong SH, Ali MY, Kim H-R, Jung HA, Choi JS. BACE1 inhibitory activity and molecular docking analysis of meroterpenoids from Sargassum serratifolium. Bioorg Med Chem. 2017;25:3964–70.  https://doi.org/10.1016/j.bmc.2017.05.033.CrossRefPubMedGoogle Scholar
  70. 70.
    Tsang CK, Ina A, Goto T, Kamei Y. Sargachromenol, a novel nerve growth factor-potentiating substance isolated from Sargassum macrocarpum, promotes neurite outgrowth and survival via distinct signaling pathways in PC12D cells. Neuroscience. 2005;132:633–43.  https://doi.org/10.1016/j.neuroscience.2005.01.028.CrossRefPubMedGoogle Scholar
  71. 71.
    Yang E-J, Ham YM, Yang K-W, Lee NH, Hyun C-G. Sargachromenol from Sargassum micracanthum inhibits the lipopolysaccharide-induced production of inflammatory mediators in RAW 264.7 macrophages. Sci World J. 2013;2013:712303.  https://doi.org/10.1155/2013/712303.CrossRefGoogle Scholar
  72. 72.
    Kim S, Lee M-S, Lee B, Gwon W-G, Joung E-J, Yoon N-Y, Kim H-R. Anti-inflammatory effects of sargachromenol-rich ethanolic extract of Myagropsis myagroides on lipopolysaccharide-stimulated BV-2 cells. BMC Complement Altern Med. 2014;14:231.  https://doi.org/10.1186/1472-6882-14-231.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Gwon W-G, Joung E-J, Kwon M-S, Lim S-J, Utsuki T, Kim H-R. Sargachromenol protects against vascular inflammation by preventing TNF-α-induced monocyte adhesion to primary endothelial cells via inhibition of NF-κB activation. Int Immunopharmacol. 2017;42:81–9.  https://doi.org/10.1016/j.intimp.2016.11.014.CrossRefPubMedGoogle Scholar
  74. 74.
    Choi H, Hwang H, Chin J, Kim E, Lee J, Nam S-J, Lee BC, Rho BJ, Kang H. Tuberatolides, potent FXR antagonists from the Korean marine tunicate Botryllus tuberatus. J Nat Prod. 2011;74:90–4.  https://doi.org/10.1021/np100489u.CrossRefPubMedGoogle Scholar
  75. 75.
    Stonik VA, Makarieva TN, Dmitrenok AS. Sarcochromenol sulfates A-C and sarcohydroquinone sulfates A-C, new natural products from the sponge Sarcotragus spinulosus. J Nat Prod. 1992;55:1256–60.CrossRefGoogle Scholar
  76. 76.
    Venkateswarlu Y, Reddy MVR. Three new heptaprenylhydroquinone derivatives from the sponge Ircinia Fasciculata. J Nat Prod. 1994;57:1286–9.CrossRefGoogle Scholar
  77. 77.
    Dong LX, Hua WUS, Bao MAY, Gang WUD. Chemical constituents from walsura yunnanensis. Acta Bot Yunnanica. 2001;23:515–20.Google Scholar
  78. 78.
    Cichewicz RH, Kenyon VA, Whitman S, Morales NM, Arguello JF, Holman TR, Crews P. Redox inactivation of human 15-lipoxygenase by marine-derived meroditerpenes and synthetic chromanes: archetypes for a unique class of selective and recyclable inhibitors. J Am Chem Soc. 2004;126:14910–20.  https://doi.org/10.1021/ja046082z.CrossRefPubMedGoogle Scholar
  79. 79.
    González AG, Darias J, Martín JD. Taondiol, a new component from taonia atomaria. Tetrahedron Lett. 1971;12:2729–32.  https://doi.org/10.1016/S0040-4039(01)96964-3.CrossRefGoogle Scholar
  80. 80.
    Rovirosa J, Sepulveda M, Quezada E, San-Martin A. Isoepitaondiol, a diterpenoid of Stypopodium flabelliforme and the insecticidal activity of stypotriol, epitaondiol and derivatives. Phytochemistry. 1992;31:2679–81.  https://doi.org/10.1016/0031-9422(92)83610-B.CrossRefGoogle Scholar
  81. 81.
    Gonzales AG, Alvarez MA, Darias J, Martin JD. Marine natural products of the atlantic zone. Part V1.l Base-catalysed rearrangement of taondiol. J C S Perkin I. 1973;1:2637–42.CrossRefGoogle Scholar
  82. 82.
    Sanchez-Ferrando F, San-Martin A. Epitaondiol: the first polycyclic meroditerpenoid containing two fused six-membered rings forced into the twist-boat conformation. J Org Chem. 1995;60:1475–8.CrossRefGoogle Scholar
  83. 83.
    Pereira DM, Cheel J, Areche C, San-Martin A, Rovirosa J, Silva LR, Valentao P, Andrade PB. Anti-proliferative activity of meroditerpenoids isolated from the brown alga Stypopodium flabelliforme against several cancer cell lines. Mar Drugs. 2011;9:852–62.  https://doi.org/10.3390/md9050852.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Soares AR, da Gama BAP, da Cunha AP, Teixeira VL, Pereira RC. Induction of attachment of the Mussel Perna perna by natural products from the brown seaweed Stypopodium zonale. Mar Biotechnol (NY). 2008;10:158–65.  https://doi.org/10.1007/s10126-007-9048-7.CrossRefGoogle Scholar
  85. 85.
    Mendes G, Soares AR, Sigiliano L, Machado F, Kaiser C, Romeiro N, Gestinari L, Santos N, Romanos MTV. In vitro anti-HMPV activity of meroditerpenoids from marine alga Stypopodium zonale (Dictyotales). Molecules (Basel, Switzerland). 2011;16:8437–50.  https://doi.org/10.3390/molecules16108437.CrossRefGoogle Scholar
  86. 86.
    Areche C, San-Martín A, Rovirosa J, Sepúlveda B. Gastroprotective activity of epitaondiol and sargaol. Nat Prod Commun. 2011;6:1073–4.PubMedGoogle Scholar
  87. 87.
    Gerwick WH, Fenical W. Ichthyotoxic and cytotoxic metabolites of the tropical brown Alga Stypopodium zonale (Lamouroux) Papenfuss. J Org Chem. 1981;46:22–7.CrossRefGoogle Scholar
  88. 88.
    Soares AR, Abrantes JL, Lopes Souza TM, Leite Fontes CF, Pereira RC, de Palmer Paixão Frugulhetti IC, Teixeira VL. In vitro antiviral effect of meroditerpenes isolated from the Brazilian seaweed Stypopodium zonale (Dictyotales). Planta Med. 2007;73:1221–4.  https://doi.org/10.1055/s-2007-981589.CrossRefPubMedGoogle Scholar
  89. 89.
    Gil B, Ferrándiz ML, Sanz MJ, Terencio MC, Ubeda A, Rovirosa J, San-Martin A, Alcaraz MJ, Payá M. Inhibition of inflammatory responses by epitaondiol and other marine natural products. Life Sci. 1995;57:PL25–30.  https://doi.org/10.1016/0024-3205(95)00260-D.CrossRefPubMedGoogle Scholar
  90. 90.
    Sabry OMM, Andrews S, McPhail KL, Goeger DE, Yokochi A, LePageh KT, Murray TF, Gerwick WH. Neurotoxic meroditerpenoids from the tropical marine brown alga Stypopodium flabelliforme. J Nat Prod. 2005;68:1022–30.  https://doi.org/10.1021/np050051f.CrossRefPubMedGoogle Scholar
  91. 91.
    Areche C, San-Martín A, Rovirosa J, Muñoz MA, Hernández-Barragán A, Bucio MA, Joseph-Nathan P. Stereostructure reassignment and absolute configuration of isoepitaondiol, a meroditerpenoid from Stypopodium flabelliforme. J Nat Prod. 2010;73:79–82.  https://doi.org/10.1021/np900553p.CrossRefPubMedGoogle Scholar
  92. 92.
    Fadli M, Aracil JM, Jeanty G, Banaigs B, Francisco C, Moreau S. Mediterraneol E: Proposition de Structure pour un Meroditerpene Transpose de l’Algue Brune Cystoseira Meditemanea. Tetrahedron Lett. 1991;32:2477–80.CrossRefGoogle Scholar
  93. 93.
    Francisco C, Banaigs B, Teste J, Cave A. Mediterraneols: a novel biologically active class of rearranged diterpenoid metabolites from Cystoseira mediterranea (Pheophyta). J Org Chem. 1986;51:1115–20.CrossRefGoogle Scholar
  94. 94.
    Fadli M, Aracil JM, Jeanty G, Banaigs B, Francisco C. Novel meroterpenoids from Cystoseira mediterranea. J Nat Prod. 1991;54:261–4.CrossRefGoogle Scholar
  95. 95.
    Francisco C, Banaigs B, Rakba M, Teste J, Cave A. Cystoseirols: novel rearranged diterpenoids of mixed biogenesis from Cystoseiraceae (Brown marine algae). J Org Chem. 1986;51:2707–11.CrossRefGoogle Scholar
  96. 96.
    Francisco C, Banaigs B, Codomier L, Cave A. Cystoseirol A, a novel rearranged diterpene of mixed biosynthesis from the brown alga Cystoseira Mediterranea. Tetrahedron Lett. 1985;26:4919–22.CrossRefGoogle Scholar
  97. 97.
    Amico V, Consulo F, Oriente G, Piattelli M. Cystoketal, a new metabolite from the brown alga Cystoseira balearica. J Nat Prod. 1984;47:947–52.CrossRefGoogle Scholar
  98. 98.
    Vizetto-Duarte C, Custódio L, Acosta G, Lago JHG, Morais TR, Bruno de Sousa C, Gangadhar KN, Rodrigues MJ, Pereira H, Lima RT, Vasconcelos MH, Barreira L, Rauter AP, Albericio F, Varela J. Can macroalgae provide promising anti-tumoral compounds? A closer look at Cystoseira tamariscifolia as a source for antioxidant and anti-hepatocarcinoma compounds. PeerJ. 2016;4:e1704.  https://doi.org/10.7717/peerj.1704.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Valls R, Mesguiche V, Piovetti L, Prost M, Peiffer G. Meroditerpenes from the brown alga Cystoseira amentacea var. stricta collected off the French mediterranean coast. Phytochemistry. 1996;41:1367–71.  https://doi.org/10.1016/0031-9422(95)00750-4.CrossRefGoogle Scholar
  100. 100.
    Braekman JC, Daloze D, Hulot G, Tursch B, Declercq JP. Bull Soc Chim Belg. 1978;87:917.CrossRefGoogle Scholar
  101. 101.
    Salva J, Faulkner DJ. Metabolites of the sponge Strongylophora durissima from Maricaban Island, Philippines. J Org Chem. 1990;55:1941–3.CrossRefGoogle Scholar
  102. 102.
    Balbin-Oliveros M, Edrada RA, Proksch P, Wray V, Witte L, van Soest RW. A new meroditerpenoid dimer from an undescribed Philippine marine sponge of the genus Strongylophora. J Nat Prod. 1998;61:948–52.  https://doi.org/10.1021/np980005y.CrossRefPubMedGoogle Scholar
  103. 103.
    Shen Y-C, Hung M-C, Prakash CVS, Wang J-J. New meroditerpenoids from a Taiwanese marine sponge Strongylophora Durissima. J Chin Chem Soc. 2000;47:567–70.  https://doi.org/10.1002/jccs.200000076.CrossRefGoogle Scholar
  104. 104.
    Liu H, Namikoshi M, Akano K, Kobayashi H, Nagai H, Yao X. Seven new meroditerpenoids, from the marine sponge Strongylophora strongylata, that inhibited the maturation of starfish oocytes. J Asian Nat Prod Res. 2005;7:661–70.  https://doi.org/10.1080/1028602032000169604.CrossRefPubMedGoogle Scholar
  105. 105.
    Noda A, Sakai E, Kato H, Losung F, Mangindaan REP, de Voogd NJ, Yokosawa H, Tsukamoto S. Strongylophorines, meroditerpenoids from the marine sponge Petrosia corticata, function as proteasome inhibitors. Bioorg Med Chem Lett. 2015;25:2650–3.  https://doi.org/10.1016/j.bmcl.2015.04.075.CrossRefPubMedGoogle Scholar
  106. 106.
    Lee J-S, Abdjul DB, Yamazaki H, Takahashi O, Kirikoshi R, Ukai K, Namikoshi M. Strongylophorines, new protein tyrosine phosphatase 1B inhibitors, from the marine sponge Strongylophora strongilata collected at Iriomote Island. Bioorg Med Chem Lett. 2015;25:3900–2.  https://doi.org/10.1016/j.bmcl.2015.07.039.CrossRefPubMedGoogle Scholar
  107. 107.
    Mohammed KA, Jadulco RC, Bugni TS, Harper MK, Sturdy M, Ireland CM. Strongylophorines. J Med Chem. 2008;51:1402–5.  https://doi.org/10.1021/jm7010854.CrossRefPubMedGoogle Scholar
  108. 108.
    Hoshino A, Mitome H, Miyaoka H, Shintani A, Yamada Y, van Soest RWM. New strongylophorines from the Okinawan marine sponge Petrosia (Strongylophora) corticata. J Nat Prod. 2003;66:1600–5.  https://doi.org/10.1021/np030312q.CrossRefPubMedGoogle Scholar
  109. 109.
    Bardowell SA, Duan F, Manor D, Swanson JE, Parker RS. Disruption of mouse cytochrome p450 4f14 (Cyp4f14 gene) causes severe perturbations in vitamin E metabolism. J Biol Chem. 2012;287:26077–86.  https://doi.org/10.1074/jbc.M112.373597.CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Bardowell SA, Ding X, Parker RS. Disruption of P450-mediated vitamin E hydroxylase activities alters vitamin E status in tocopherol supplemented mice and reveals extra-hepatic vitamin E metabolism. J Lipid Res. 2012;53:2667–76.  https://doi.org/10.1194/jlr.M030734.CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Schubert M, Kluge S, Schmölz L, Wallert M, Galli F, Birringer M, Lorkowski S. Long-chain metabolites of vitamin E. Antioxidants (Basel, Switzerland). 2018;7  https://doi.org/10.3390/antiox7010010.
  112. 112.
    Schmölz L, Wallert M, Rozzino N, Cignarella A, Galli F, Glei M, Werz O, Koeberle A, Birringer M, Lorkowski S. Structure-function relationship studies in vitro reveal distinct and specific effects of long-chain metabolites of vitamin E. Mol Nutr Food Res. 2017;  https://doi.org/10.1002/mnfr.201700562.
  113. 113.
    Blunt JW, Copp BR, Munro MHG, Northcote PT, Prinsep MR. Marine natural products. Nat Prod Rep. 2011;28:196–268.  https://doi.org/10.1039/c005001f.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of Applied Sciences FuldaNutritional, Food and Consumer SciencesFuldaGermany
  2. 2.Institute of Nutritional SciencesUniversity of HohenheimStuttgartGermany

Personalised recommendations