Vitamin E and Air Pollution

  • Rebecca F. McLoughlin
  • Bronwyn S. Berthon
  • Evan J. Williams
  • Lisa G. WoodEmail author
Part of the Nutrition and Health book series (NH)


It is estimated that over 80% of the global population is exposed to unacceptably high levels of air pollution, which can have damaging health effects. In fact, according to the most recent analysis of the global burden of diseases (2015), particulate matter (PM) air pollution exposure alone is the 5th leading risk factor for mortality worldwide, accounting for approximately 4.2 million deaths (7.6% of global deaths). Common diseases associated with both acute and chronic PM exposure include asthma, chronic obstructive pulmonary disease (COPD), respiratory infections, cardiovascular, metabolic, gastrointestinal, skin and central nervous system (CNS) diseases. While the specific mechanisms leading to the development and progression of each of these diseases vary, all have a common underlying pathology of inflammation and oxidative stress. Various nutritional interventions have been assessed for their protective effect against air pollution exposure. Dietary supplementation with vitamin E is hypothesised to be beneficial due to its antioxidant and anti-inflammatory properties. Here we review the literature on the adverse health effects of air pollution on the respiratory, cardiovascular, metabolic, gastrointestinal, skin and central nervous systems and the role of vitamin E in modifying the detrimental consequences of air pollution. While there is evidence from clinical trials regarding the benefits of combined vitamin E and C in ameliorating the effects of air pollution in asthma and reducing the risk of respiratory infections, further work is needed to assess the efficacy of vitamin E supplementation in protecting against the numerous other health consequences of air pollution exposure.


Air pollution Particulate matter Vitamin E Alpha tocopherol Dietary antioxidants Disease 


  1. 1.
    Donaldson K, Seaton A, Donaldson K, Seaton A. A short history of the toxicology of inhaled particles. Part Fibre Toxicol. 2012;9(13):06.Google Scholar
  2. 2.
    Tong H, Tong H. Dietary and pharmacological intervention to mitigate the cardiopulmonary effects of air pollution toxicity. Biochim Biophys Acta. 2016;12(8):12.Google Scholar
  3. 3.
    Kelly FJ, Fussell JC. Size, source and chemical composition as determinants of toxicity attributable to ambient particulate matter. Atmos Environ. 2012;60(Supplement C):504–26.CrossRefGoogle Scholar
  4. 4.
    Dockery DW, Pope CA, Xu X, Spengler JD, Ware JH, Fay ME, et al. An association between air pollution and mortality in six US. cities. N Engl J Med. 1993;329(24):1753–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Possamai FP, Junior SA, Parisotto EB, Moratelli AM, Inacio DB, Garlet TR, et al. Antioxidant intervention compensates oxidative stress in blood of subjects exposed to emissions from a coal electric-power plant in South Brazil. Environ Toxicol Pharmacol. 2010;30(2):175–80.PubMedCrossRefGoogle Scholar
  6. 6.
    Agency USEP. Air emissions sources 2017. Available from:
  7. 7.
    Cohen AJ, Brauer M, Burnett R, Anderson HR, Frostad J, Estep K, et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. Lancet. 2017;389(10082):1907–18.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    World Health Organization. Ambient (outdoor) air quality and health 2016. Available from:
  9. 9.
    Seaton A, Godden D, MacNee W, Donaldson K. Particulate air pollution and acute health effects. Lancet. 1995;345(8943):176–8.PubMedCrossRefGoogle Scholar
  10. 10.
    Morakinyo OM, Mokgobu MI, Mukhola MS, Hunter RP, Morakinyo OM, Mokgobu MI, et al. Health outcomes of exposure to biological and chemical components of inhalable and respirable particulate matter. Int J Environ Res Public Health [Electronic Resource]. 2016;13(6):14.Google Scholar
  11. 11.
    United States Environmental Protection Agency. Criteria air pollutants 2017. Available from:
  12. 12.
    World Health Organization. Ambient air pollution: a global assessment of exposure and burden of disease. Geneva; 2016.Google Scholar
  13. 13.
    Health Effects Institute. State of global air 2017. Special report on global exposure to air pollution and its disease burden. Boston: Health Effects Institute; 2017.Google Scholar
  14. 14.
    Trasande L, Thurston GD. The role of air pollution in asthma and other pediatric morbidities. J Allergy Clin Immunol. 2005;115(4):689–99.PubMedCrossRefGoogle Scholar
  15. 15.
    Wright RJ, Brunst KJ. Programming of respiratory health in childhood: influence of outdoor air pollution. Curr Opin Pediatr. 2013;25(2):232–9.PubMedCrossRefGoogle Scholar
  16. 16.
    Arbex MA, Santos Ude P, Martins LC, Saldiva PH, Pereira LA, Braga AL. Air pollution and the respiratory system. Jornal brasileiro de pneumologia. 2012;38(5):643–55.PubMedCrossRefGoogle Scholar
  17. 17.
    Kurt OK, Zhang J, Pinkerton KE. Pulmonary health effects of air pollution. Curr Opin Pulm Med. 2016;22(2):138–43.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Goldberg MS, Burnett RT, Stieb DM, Brophy JM, Daskalopoulou SS, Valois MF, et al. Associations between ambient air pollution and daily mortality among elderly persons in Montreal, Quebec. Sci Total Environ. 2013;463–464:931–42.PubMedCrossRefGoogle Scholar
  19. 19.
    Brook RD, Rajagopalan S, Pope CA 3rd, Brook JR, Bhatnagar A, Diez-Roux AV, et al. Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association. Circulation. 2010;121(21):2331–78.CrossRefGoogle Scholar
  20. 20.
    Hoffman JB, Hennig B. Protective influence of healthful nutrition on mechanisms of environmental pollutant toxicity and disease risks. Ann NY Acad Sci. 2017;1398(1):99–107.PubMedCrossRefGoogle Scholar
  21. 21.
    Brockmeyer S, D’Angiulli A. How air pollution alters brain development: the role of neuroinflammation. Transl Neurosci. 2016;7(1):24–30.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Miller MD, Marty MA, Arcus A, Brown J, Morry D, Sandy M. Differences between children and adults: implications for risk assessment at California EPA. Int J Toxicol. 2002;21(5):403–18.PubMedCrossRefGoogle Scholar
  23. 23.
    Janssen NA, Hoek G, Harssema H, Brunekreef B. Childhood exposure to PM10: relation between personal, classroom, and outdoor concentrations. Occup Environ Med. 1997;54(12):888–94.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Janssen NA, Hoek G, Brunekreef B, Harssema H, Mensink I, Zuidhof A. Personal sampling of particles in adults: relation among personal, indoor, and outdoor air concentrations. Am J Epidemiol. 1998;147(6):537–47.PubMedCrossRefGoogle Scholar
  25. 25.
    Vanos JK. Children’s health and vulnerability in outdoor microclimates: a comprehensive review. Environ Int. 2015;76:1–15.PubMedCrossRefGoogle Scholar
  26. 26.
    Pinkerton KE, Joad JP. Influence of air pollution on respiratory health during perinatal development. Clin Exp Pharmacol Physiol. 2006;33(3):269–72.PubMedCrossRefGoogle Scholar
  27. 27.
    Minelli C, Wei I, Sagoo G, Jarvis D, Shaheen S, Burney P. Interactive effects of antioxidant genes and air pollution on respiratory function and airway disease: a HuGE review. Am J Epidemiol. 2011;173(6):603–20.PubMedCrossRefGoogle Scholar
  28. 28.
    Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O. Oxidative stress and antioxidant defense. World Allergy Organ J. 2012;5(1):9–19.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Romieu I, Sienra-Monge JJ, Ramirez-Aguilar M, Moreno-Macias H, Reyes-Ruiz NI, Estela del Rio-Navarro B, et al. Genetic polymorphism of GSTM1 and antioxidant supplementation influence lung function in relation to ozone exposure in asthmatic children in Mexico City. Thorax. 2004;59(1):8–10.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Romieu I, Ramirez-Aguilar M, Sienra-Monge JJ, Moreno-Macias H, del Rio-Navarro BE, David G, et al. GSTM1 and GSTP1 and respiratory health in asthmatic children exposed to ozone. Eur Respir J. 2006;28(5):953–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Health Effects Institute. State of global air 2017. Special report. Boston; 2017.Google Scholar
  32. 32.
    World Health Organisation. Top 10 causes of death fact sheet 2017 updated January 2017. Available from:
  33. 33.
    Anderson HR, Favarato G, Atkinson RW. Long-term exposure to air pollution and the incidence of asthma: meta-analysis of cohort studies. Air Qual Atmos Health. 2013;6(1):47–56.CrossRefGoogle Scholar
  34. 34.
    Bowatte G, Lodge C, Lowe AJ, Erbas B, Perret J, Abramson MJ, et al. The influence of childhood traffic-related air pollution exposure on asthma, allergy and sensitization: a systematic review and a meta-analysis of birth cohort studies. Allergy. 2015;70(3):245–56.PubMedCrossRefGoogle Scholar
  35. 35.
    Gowers AM, Cullinan P, Ayres JG, Anderson HR, Strachan DP, Holgate ST, et al. Does outdoor air pollution induce new cases of asthma? Biological plausibility and evidence; a review. Respirology. 2012;17(6):887–98.PubMedCrossRefGoogle Scholar
  36. 36.
    Barone-Adesi F, Dent JE, Dajnak D, Beevers S, Anderson HR, Kelly FJ, et al. Long-term exposure to primary traffic pollutants and lung function in children: cross-sectional study and meta-analysis. PLoS One. 2015;10(11):e0142565.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Molter A, Agius RM, de Vocht F, Lindley S, Gerrard W, Lowe L, et al. Long-term exposure to PM10 and NO2 in association with lung volume and airway resistance in the MAAS birth cohort. Environ Health Perspect. 2013;121(10):1232–8.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Gehring U, Wijga AH, Hoek G, Bellander T, Berdel D, Brüske I, et al. Exposure to air pollution and development of asthma and rhinoconjunctivitis throughout childhood and adolescence: a population-based birth cohort study. Lancet Respir Med. 2015;3(12):933–42.PubMedCrossRefGoogle Scholar
  39. 39.
    Esposito S, Tenconi R, Lelii M, Preti V, Nazzari E, Consolo S, et al. Possible molecular mechanisms linking air pollution and asthma in children. BMC Pulm Med. 2014;14(31):01.Google Scholar
  40. 40.
    Guarnieri M, Balmes JR. Outdoor air pollution and asthma. Lancet. 2014;383(9928):1581–92.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Schultz ES, Litonjua AA, Melen E. Effects of long-term exposure to traffic-related air pollution on lung function in children. Curr Allergy Asthma Rep. 2017;17(6):41.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Seltzer J, Bigby BG, Stulbarg M, Holtzman MJ, Nadel JA, Ueki IF, et al. O3-induced change in bronchial reactivity to methacholine and airway inflammation in humans. J Appl physiol (Bethesda, MD: 1985). 1986;60(4):1321–6.CrossRefGoogle Scholar
  43. 43.
    Jang A-S. Particulate air pollutants and respiratory diseases. In: Haryanto B, editor. Air pollution – A comprehensive perspective. Rijeka: InTech; 2012. p. Ch. 06.Google Scholar
  44. 44.
    Li N, Xia T, Nel AE. The role of oxidative stress in ambient particulate matter-induced lung diseases and its implications in the toxicity of engineered nanoparticles. Free Radic Biol Med. 2008;44(9):1689–99.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Cho AK, Sioutas C, Miguel AH, Kumagai Y, Schmitz DA, Singh M, et al. Redox activity of airborne particulate matter at different sites in the Los Angeles Basin. Environ Res. 2005;99(1):40–7.PubMedCrossRefGoogle Scholar
  46. 46.
    Totlandsdal AI, Cassee FR, Schwarze P, Refsnes M, Låg M. Diesel exhaust particles induce CYP1A1 and pro-inflammatory responses via differential pathways in human bronchial epithelial cells. Part Fibre Toxicol. 2010;7:41.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Li G, Cao Y, Sun Y, Xu R, Zheng Z, Song H. Ultrafine particles in the airway aggravated experimental lung injury through impairment in Treg function. Biochem Biophys Res Commun. 2016;478(1):494–500.PubMedCrossRefGoogle Scholar
  48. 48.
    Kelly FJ, Mudway I, Blomberg A, Frew A, Sandström T. Altered lung antioxidant status in patients with mild asthma. Lancet. 1999;354(9177):482–3.PubMedCrossRefGoogle Scholar
  49. 49.
    Wood LG, Garg ML, Blake RJ, Simpson JL, Gibson PG. Oxidized vitamin E and glutathione as markers of clinical status in asthma. Clin Nutr. 2008;27(4):579–86.PubMedCrossRefGoogle Scholar
  50. 50.
    Schunemann HJ, Grant BJ, Freudenheim JL, Muti P, Browne RW, Drake JA, et al. The relation of serum levels of antioxidant vitamins C and E, retinol and carotenoids with pulmonary function in the general population. Am J Respir Crit Care Med. 2001;163(5):1246–55.PubMedCrossRefGoogle Scholar
  51. 51.
    Nurmatov U, Devereux G, Sheikh A. Nutrients and foods for the primary prevention of asthma and allergy: systematic review and meta-analysis. J Allergy Clin Immunol. 127(3):724–33.e30.Google Scholar
  52. 52.
    Han YY, Blatter J, Brehm JM, Forno E, Litonjua AA, Celedon JC, et al. Diet and asthma: vitamins and methyl donors. Lancet Respir Med. 2013;1(10):813–22.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Tashakkor AY, Chow KS, Carlsten C, Tashakkor AY, Chow KS, Carlsten C. Modification by antioxidant supplementation of changes in human lung function associated with air pollutant exposure: a systematic review. BMC Public Health. 2011;11(532):05.Google Scholar
  54. 54.
    Romieu I, Meneses F, Ramirez M, Ruiz S, Perez Padilla R, Sienra JJ, et al. Antioxidant supplementation and respiratory functions among workers exposed to high levels of ozone. Am J Respir Crit Care Med. 1998;158(1):226–32.PubMedCrossRefGoogle Scholar
  55. 55.
    Romieu I, Sienra-Monge JJ, Ramirez-Aguilar M, Tellez-Rojo MM, Moreno-Macias H, Reyes-Ruiz NI, et al. Antioxidant supplementation and lung functions among children with asthma exposed to high levels of air pollutants. Am J Respir Crit Care Med. 2002;166(5):703–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Trenga CA, Koenig JQ, Williams PV. Dietary antioxidants and ozone-induced bronchial hyperresponsiveness in adults with asthma. Arch Environ Health. 2001;56(3):242–9.PubMedCrossRefGoogle Scholar
  57. 57.
    Samet JM, Hatch GE, Horstman D, Steck-Scott S, Arab L, Bromberg PA, et al. Effect of antioxidant supplementation on ozone-induced lung injury in human subjects. Am J Respir Crit Care Med. 2001;164(5):819–25.PubMedCrossRefGoogle Scholar
  58. 58.
    World Health Organisation. Chronic obstructive pulmonary disease (COPD) fact sheet 2017, updated November 2017. Available from:
  59. 59.
    Andersen ZJ, Hvidberg M, Jensen SS, Ketzel M, Loft S, Sorensen M, et al. Chronic obstructive pulmonary disease and long-term exposure to traffic-related air pollution: a cohort study. Am J Respir Crit Care Med. 2011;183(4):455–61.PubMedCrossRefGoogle Scholar
  60. 60.
    Song Q, Christiani DC, Wang X, Ren J. The global contribution of outdoor air pollution to the incidence, prevalence, mortality and hospital admission for chronic obstructive pulmonary disease: a systematic review and meta-analysis. Int J Environ Res Public Health. 2014;11(11):11822–32.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Schikowski T, Mills IC, Anderson HR, Cohen A, Hansell A, Kauffmann F, et al. Ambient air pollution: a cause of COPD? Eur Respir J. 2014;43(1):250–63.PubMedCrossRefGoogle Scholar
  62. 62.
    Peacock JL, Anderson HR, Bremner SA, Marston L, Seemungal TA, Strachan DP, et al. Outdoor air pollution and respiratory health in patients with COPD. Thorax. 2011;66(7):591.PubMedCrossRefGoogle Scholar
  63. 63.
    Zhang S, Li G, Tian L, Guo Q, Pan X. Short-term exposure to air pollution and morbidity of COPD and asthma in East Asian area: a systematic review and meta-analysis. Environ Res. 2016;148:15–23.PubMedCrossRefGoogle Scholar
  64. 64.
    Krachunov Iliya I, Kyuchukov Nikolay H, Ivanova Zlatina I, Yanev Nikolay A, Hristova Petkana A, Borisova Elena D, et al. Impact of air pollution and outdoor temperature on the rate of chronic obstructive pulmonary disease exacerbations. Folia Med. 2017;59:423.CrossRefGoogle Scholar
  65. 65.
    Li J, Sun S, Tang R, Qiu H, Huang Q, Mason TG, et al. Major air pollutants and risk of COPD exacerbations: a systematic review and meta-analysis. Int J Chron Obstruct Pulmon Dis. 2016;11:3079–91.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    He F, Liao B, Pu J, Li C, Zheng M, Huang L, et al. Exposure to ambient particulate matter induced COPD in a rat model and a description of the underlying mechanism. Sci Rep. 2017;7:45666.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Ling SH, van Eeden SF. Particulate matter air pollution exposure: role in the development and exacerbation of chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2009;4:233–43.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Canova C, Dunster C, Kelly FJ, Minelli C, Shah PL, Caneja C, et al. PM10-induced hospital admissions for asthma and chronic obstructive pulmonary disease: the modifying effect of individual characteristics. Epidimiology. 2012;23(4):607–15.CrossRefGoogle Scholar
  69. 69.
    DeVries R, Kriebel D, Sama S. Outdoor air pollution and COPD-related emergency department visits, hospital admissions, and mortality: a meta-analysis. COPD: J Chron Obstruct Pulmon Dis. 2017;14(1):113–21.CrossRefGoogle Scholar
  70. 70.
    Kirkham PA, Barnes PJ. Oxidative stress in COPD. Chest. 2013;144(1):266–73.PubMedCrossRefGoogle Scholar
  71. 71.
    Chuang HC, Ho SC, Lee KY, Chuang KJ. Particulate air pollution and chronic obstructive pulmonary disease: the role of protein oxidation. Austin J Public Health and Epidemiol. 2015;2(3):1024–5.Google Scholar
  72. 72.
    Daga MK, Chhabra R, Sharma B, Mishra TK. Effects of exogenous vitamin E supplementation on the levels of oxidants and antioxidants in chronic obstructive pulmonary disease. J Biosci. 2003;28(1):7–11.PubMedCrossRefGoogle Scholar
  73. 73.
    Gosker HR, Bast A, Haenen GRMM, Fischer MAJG, van der Vusse GJ, Wouters EFM, et al. Altered antioxidant status in peripheral skeletal muscle of patients with COPD. Respir Med. 2005;99(1):118–25.PubMedCrossRefGoogle Scholar
  74. 74.
    McKeever TM, Lewis SA, Smit HA, Burney P, Cassano PA, Britton J. A multivariate analysis of serum nutrient levels and lung function. Respir Res. 2008;9(1):67.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Wright ME, Lawson KA, Weinstein SJ, Pietinen P, Taylor PR, Virtamo J, et al. Higher baseline serum concentrations of vitamin E are associated with lower total and cause-specific mortality in the Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study. Am J Clin Nutr. 2006;84(5):1200–7.PubMedCrossRefGoogle Scholar
  76. 76.
    Rahman I. Antioxidant therapeutic advances in COPD. Ther Adv Respir Dis. 2008;2(6):351–74.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Nadeem A, Raj HG, Chhabra SK. Effect of vitamin E supplementation with standard treatment on oxidant-antioxidant status in chronic obstructive pulmonary disease. Indian J Med Res. 2008;128(6):705–11.PubMedGoogle Scholar
  78. 78.
    Rautalahti M, Virtamo J, Haukka J, Heinonen OP, Sundvall J, Albanes D, et al. The effect of alpha-tocopherol and beta-carotene supplementation on COPD symptoms. Am J Respir Crit Care Med. 1997;156(5):1447–52.PubMedCrossRefGoogle Scholar
  79. 79.
    Hanson C, Lyden E, Furtado J, Campos H, Sparrow D, Vokonas P, et al. Serum tocopherol levels and vitamin E intake are associated with lung function in the normative aging study. Clin Nutr (Edinburgh, Scotland). 2016;35(1):169–74.CrossRefGoogle Scholar
  80. 80.
    Joshi P, Kim WJ, Lee SA. The effect of dietary antioxidant on the COPD risk: the community-based KoGES (Ansan-Anseong) cohort. Int J Chron Obstruct Pulmon Dis. 2015;10:2159–68.PubMedPubMedCentralGoogle Scholar
  81. 81.
    Agler AH, Kurth T, Gaziano JM, Buring JE, Cassano PA. Randomised vitamin E supplementation and risk of chronic lung disease in the women’s health study. Thorax. 2011;66(4):320–5.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Souza LS, Nascimento LF. Air pollutants and hospital admission due to pneumonia in children: a time series analysis. Rev Assoc Med Bras (1992). 2016;62(2):151–6.CrossRefGoogle Scholar
  83. 83.
    Darrow LA, Klein M, Flanders WD, Mulholland JA, Tolbert PE, Strickland MJ. Air pollution and acute respiratory infections among children 0–4 years of age: an 18-year time-series study. Am J Epidemiol. 2014;180(10):968–77.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Brauer M, Hoek G, Van Vliet P, Meliefste K, Fischer PH, Wijga A, et al. Air pollution from traffic and the development of respiratory infections and asthmatic and allergic symptoms in children. Am J Respir Crit Care Med. 2002;166(8):1092–8.PubMedCrossRefGoogle Scholar
  85. 85.
    Arbex MA, Santiago SL, Moyses EP, Pereira LA, PHr S, AsLsF B. Impact of urban air pollution on acute upper respiratory tract infections. In: Moldoveanu AM, editor. Advanced topics in environmental health and air pollution case studies. Rijeka: InTech; 2011. p. Ch. 12.Google Scholar
  86. 86.
    Esposito S, Galeone C, Lelii M, Longhi B, Ascolese B, Senatore L, et al. Impact of air pollution on respiratory diseases in children with recurrent wheezing or asthma. BMC Pulm Med. 2014;14(1):130.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Neupane B, Jerrett M, Burnett RT, Marrie T, Arain A, Loeb M. Long-term exposure to ambient air pollution and risk of hospitalization with community-acquired pneumonia in older adults. Am J Respir Crit Care Med. 2010;181(1):47–53.PubMedCrossRefGoogle Scholar
  88. 88.
    Le TG, Ngo L, Mehta S, Do VD, Thach TQ, Vu XD, et al. Effects of short-term exposure to air pollution on hospital admissions of young children for acute lower respiratory infections in Ho Chi Minh City, Vietnam. Res Rep Health Eff Inst. 2012;(169):5–72; discussion 3–83.Google Scholar
  89. 89.
    MacIntyre EA, Gehring U, Mölter A, Fuertes E, Klümper C, Krämer U, et al. Air pollution and respiratory infections during early childhood: an analysis of 10 European birth cohorts within the ESCAPE Project. Environ Health Perspect. 2014;122(1):107–13.PubMedCrossRefGoogle Scholar
  90. 90.
    Ramesh Bhat Y, Manjunath N, Sanjay D, Dhanya Y. Association of indoor air pollution with acute lower respiratory tract infections in children under 5 years of age. Paediatr Int Child Health. 2012;32(3):132–5.PubMedCrossRefGoogle Scholar
  91. 91.
    Tam WW, Wong TW, Ng L, Wong SY, Kung KK, Wong AH. Association between air pollution and general outpatient clinic consultations for upper respiratory tract infections in Hong Kong. PLoS One. 2014;9(1):e86913.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Ciencewicki J, Jaspers I. Air pollution and respiratory viral infection. Inhal Toxicol. 2007;19(14):1135–46.PubMedCrossRefGoogle Scholar
  93. 93.
    Larrieu S, Lefranc A, Gault G, Chatignoux E, Couvy F, Jouves B, et al. Are the short-term effects of air pollution restricted to cardiorespiratory diseases? Am J Epidemiol. 2009;169(10):1201–8.PubMedCrossRefGoogle Scholar
  94. 94.
    Castranova V, Ma JY, Yang HM, Antonini JM, Butterworth L, Barger MW, et al. Effect of exposure to diesel exhaust particles on the susceptibility of the lung to infection. Environ Health Perspect. 2001;109(Suppl 4):609–12.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Mikerov AN, Haque R, Gan X, Guo X, Phelps DS, Floros J. Ablation of SP-A has a negative impact on the susceptibility of mice to Klebsiella pneumoniae infection after ozone exposure: sex differences. Respir Res. 2008;9:77.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Harrod KS, Jaramillo RJ, Rosenberger CL, Wang SZ, Berger JA, McDonald JD, et al. Increased susceptibility to RSV infection by exposure to inhaled diesel engine emissions. Am J Respir Cell Mol Biol. 2003;28(4):451–63.PubMedCrossRefGoogle Scholar
  97. 97.
    Chauhan AJ, Johnston SL. Air pollution and infection in respiratory illness. Br Med Bull. 2003;68(1):95–112.PubMedCrossRefGoogle Scholar
  98. 98.
    Becker S, Soukup JM. Exposure to urban air particulates alters the macrophage-mediated inflammatory response to respiratory viral infection. J Toxicol Environ Health A. 1999;57(7):445–57.PubMedCrossRefGoogle Scholar
  99. 99.
    Huang Y-CT, Li Z, Carter JD, Soukup JM, Schwartz DA, Yang IV. Fine ambient particles induce oxidative stress and metal binding genes in human alveolar macrophages. Am J Respir Cell Mol Biol. 2009;41(5):544–52.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Haryanto B, Suksmasari T, Wintergerst E, Maggini S. Multivitamin supplementation supports immune function and ameliorates conditions triggered by reduced air quality. Vitamin Miner. 2015;3:128.Google Scholar
  101. 101.
    Hemila H, Kaprio J, Albanes D, Heinonen OP, Virtamo J. Vitamin C, vitamin E, and beta-carotene in relation to common cold incidence in male smokers. Epidemiology (Cambridge, MA). 2002;13(1):32–7.CrossRefGoogle Scholar
  102. 102.
    Hemilä H. Vitamin E administration may decrease the incidence of pneumonia in elderly males. Clin Interv Aging. 2016;11:1379–85.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    World Health Organisation. Cardiovascular diseases (CVDs): WHO; 2017. Available from:
  104. 104.
    Tibuakuu M, Jones MR, Navas-Acien A, Zhao D, Guallar E, Gassett AJ, et al. Exposure to ambient air pollution and calcification of the mitral annulus and aortic valve: the multi-ethnic study of atherosclerosis (MESA). Environ Health. 2017;16(1):133.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Badaloni C, Cesaroni G, Cerza F, Davoli M, Brunekreef B, Forastiere F. Effects of long-term exposure to particulate matter and metal components on mortality in the Rome longitudinal study. Environ Int. 2017;109:146–54.PubMedCrossRefGoogle Scholar
  106. 106.
    Zhang C, Ding R, Xiao C, Xu Y, Cheng H, Zhu F, et al. Association between air pollution and cardiovascular mortality in Hefei, China: a time-series analysis. Environ Pollut (Barking, Essex: 1987). 2017;229:790–7.CrossRefGoogle Scholar
  107. 107.
    Zanobetti A, Schwartz J. The effect of fine and coarse particulate air pollution on mortality: a national analysis. Environ Health Perspect. 2009;117(6):898–903.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Kunzli N, Jerrett M, Mack WJ, Beckerman B, LaBree L, Gilliland F, et al. Ambient air pollution and atherosclerosis in Los Angeles. Environ Health Perspect. 2005;113(2):201–6.PubMedCrossRefGoogle Scholar
  109. 109.
    Hoffmann B, Moebus S, Mohlenkamp S, Stang A, Lehmann N, Dragano N, et al. Residential exposure to traffic is associated with coronary atherosclerosis. Circulation. 2007;116(5):489–96.PubMedCrossRefGoogle Scholar
  110. 110.
    Kaufman JD, Adar SD, Barr RG, Budoff M, Burke GL, Curl CL, et al. Association between air pollution and coronary artery calcification within six metropolitan areas in the USA (the Multi-Ethnic Study of Atherosclerosis and Air Pollution): a longitudinal cohort study. Lancet (London, England). 2016;388(10045):696–704.CrossRefGoogle Scholar
  111. 111.
    Nemmar A, Hoet PH, Vanquickenborne B, Dinsdale D, Thomeer M, Hoylaerts MF, et al. Passage of inhaled particles into the blood circulation in humans. Circulation. 2002;105(4):411–4.PubMedCrossRefGoogle Scholar
  112. 112.
    Furuyama A, Kanno S, Kobayashi T, Hirano S. Extrapulmonary translocation of intratracheally instilled fine and ultrafine particles via direct and alveolar macrophage-associated routes. Arch Toxicol. 2009;83(5):429–37.PubMedCrossRefGoogle Scholar
  113. 113.
    Oberdorster G, Sharp Z, Atudorei V, Elder A, Gelein R, Lunts A, et al. Extrapulmonary translocation of ultrafine carbon particles following whole-body inhalation exposure of rats. J Toxicol Environ Health A. 2002;65(20):1531–43.PubMedCrossRefGoogle Scholar
  114. 114.
    Huang W, Wang G, Lu SE, Kipen H, Wang Y, Hu M, et al. Inflammatory and oxidative stress responses of healthy young adults to changes in air quality during the Beijing Olympics. Am J Respir Crit Care Med. 2012;186(11):1150–9.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Seagrave J. Mechanisms and implications of air pollution particle associations with chemokines. Toxicol Appl Pharmacol. 2008;232(3):469–77.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Brook RD, Rajagopalan S, Pope CA 3rd, Brook JR, Bhatnagar A, Diez-Roux AV, et al. Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association. Circulation. 2010;121(21):2331–78.CrossRefGoogle Scholar
  117. 117.
    Holguin F, Tellez-Rojo MM, Hernandez M, Cortez M, Chow JC, Watson JG, et al. Air pollution and heart rate variability among the elderly in Mexico City. Epidemiology. 2003;14(5):521–7.PubMedCrossRefGoogle Scholar
  118. 118.
    Sesso HD, Buring JE, Christen WG, Kurth T, Belanger C, MacFadyen J, et al. Vitamins E and C in the prevention of cardiovascular disease in men: the physicians’ health study II randomized controlled trial. JAMA. 2008;300(18):2123–33.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Saremi A, Arora R. Vitamin E and cardiovascular disease. Am J Ther. 2010;17(3):e56–65.PubMedCrossRefGoogle Scholar
  120. 120.
    Pham DQ, Plakogiannis R. Vitamin E supplementation in cardiovascular disease and cancer prevention: part 1. Ann Pharmacother. 2005;39(11):1870–8.PubMedCrossRefGoogle Scholar
  121. 121.
    Wang S, Sun NN, Zhang J, Watson RR, Witten ML. Immunomodulatory effects of high-dose alpha-tocopherol acetate on mice subjected to sidestream cigarette smoke. Toxicology. 2002;175(1–3):235–45.PubMedCrossRefGoogle Scholar
  122. 122.
    World Health Organisation. Obesity and overweight 2017. Available from:
  123. 123.
    Jerrett M, McConnell R, Wolch J, Chang R, Lam C, Dunton G, et al. Traffic-related air pollution and obesity formation in children: a longitudinal, multilevel analysis. Environ Health. 2014;13:49.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Alderete TL, Habre R, Toledo-Corral CM, Berhane K, Chen Z, Lurmann FW, et al. Longitudinal associations between ambient air pollution with insulin sensitivity, beta-cell function, and adiposity in Los Angeles Latino children. Diabetes. 2017;66(7):1789–96.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Eze IC, Schaffner E, Foraster M, Imboden M, von Eckardstein A, Gerbase MW, et al. Long-term exposure to ambient air pollution and metabolic syndrome in adults. PLoS One. 2015;10(6):e0130337.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Tamayo T, Rathmann W, Krämer U, Sugiri D, Grabert M, Holl RW. Is particle pollution in outdoor air associated with metabolic control in type 2 diabetes? PLoS One. 2014;9(3):e91639.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Toledo-Corral CM, Alderete TL, Habre R, Berhane K, Lurmann FW, Weigensberg MJ, et al. Effects of air pollution exposure on glucose metabolism in Los Angeles minority children. Pediatric Obesity. 2018;13(1):54–62.PubMedCrossRefGoogle Scholar
  128. 128.
    Rao X, Patel P, Puett R, Rajagopalan S. Air pollution as a risk factor for type 2 diabetes. Toxicol Sci. 2015;143(2):231–41.PubMedCrossRefGoogle Scholar
  129. 129.
    Shoelson SE, Lee J, Goldfine AB. Inflammation and insulin resistance. J Clin Invest. 2006;116(7):1793–801.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Rajagopalan S, Brook RD. Air pollution and type 2 diabetes: mechanistic insights. Diabetes. 2012;61(12):3037–45.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Bo L, Jiang S, Xie Y, Kan H, Song W, Zhao J. Effect of vitamin E and omega-3 fatty acids on protecting ambient PM(2.5)-induced inflammatory response and oxidative stress in vascular endothelial cells. PLoS One. 2016;11(3):e0152216.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Wilhelm Filho D, Avila S Jr, Possamai FP, Parisotto EB, Moratelli AM, Garlet TR, et al. Antioxidant therapy attenuates oxidative stress in the blood of subjects exposed to occupational airborne contamination from coal mining extraction and incineration of hospital residues. Ecotoxicology (London, England). 2010;19(7):1193–200.CrossRefGoogle Scholar
  133. 133.
    Beamish LA, Osornio-Vargas AR, Wine E. Air pollution: an environmental factor contributing to intestinal disease. J Crohns Colitis. 2011;5(4):279–86.PubMedCrossRefGoogle Scholar
  134. 134.
    Kaplan GG, Dixon E, Panaccione R, Fong A, Chen L, Szyszkowicz M, et al. Effect of ambient air pollution on the incidence of appendicitis. CMAJ. 2009;181(9):591–7.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Salim SY, Kaplan GG, Madsen KL. Air pollution effects on the gut microbiota: a link between exposure and inflammatory disease. Gut Microbes. 2014;5(2):215–9.PubMedCrossRefGoogle Scholar
  136. 136.
    Claus SP, Guillou H, Ellero-Simatos S. The gut microbiota: a major player in the toxicity of environmental pollutants? NPJ Biofilms and Microbiomes. 2017;3:17001.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Ribière C, Peyret P, Parisot N, Darcha C, Déchelotte PJ, Barnich N, et al. Oral exposure to environmental pollutant benzo[a]pyrene impacts the intestinal epithelium and induces gut microbial shifts in murine model. Sci Rep. 2016;6:31027.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Kish L, Hotte N, Kaplan GG, Vincent R, Tso R, Gänzle M, et al. Environmental particulate matter induces murine intestinal inflammatory responses and alters the gut microbiome. PLoS One. 2013;8(4):e62220.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Mutlu EA, Engen PA, Soberanes S, Urich D, Forsyth CB, Nigdelioglu R, et al. Particulate matter air pollution causes oxidant-mediated increase in gut permeability in mice. Part Fibre Toxicol. 2011;8:19.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Tahan G, Aytac E, Aytekin H, Gunduz F, Dogusoy G, Aydin S, et al. Vitamin E has a dual effect of anti-inflammatory and antioxidant activities in acetic acid–induced ulcerative colitis in rats. Can J Surg. 2011;54(5):333–8.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Mirbagheri SA, Nezami BG, Assa S, Hajimahmoodi M. Rectal administration of d-alpha tocopherol for active ulcerative colitis: a preliminary report. World J Gastroenterol. 2008;14(39):5990–5.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Aghdassi E, Wendland BE, Steinhart AH, Wolman SL, Jeejeebhoy K, Allard JP. Antioxidant vitamin supplementation in Crohn’s disease decreases oxidative stress. a randomized controlled trial. Am J Gastroenterol. 2003;98(2):348–53.PubMedGoogle Scholar
  143. 143.
    Karimkhani C, Dellavalle RP, Coffeng LE, et al. Global skin disease morbidity and mortality: an update from the global burden of disease study 2013. JAMA Dermatol. 2017;153(5):406–12.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Puri P, Nandar SK, Kathuria S, Ramesh V. Effects of air pollution on the skin: a review. Indian J Dermatol Venereol Leprol. 2017;83(4):415–23.PubMedCrossRefGoogle Scholar
  145. 145.
    Ngoc LTN, Park D, Lee Y, Lee YC. Systematic review and meta-analysis of human skin diseases due to particulate matter. Int J Environ Res Public Health. 2017;14(12)Google Scholar
  146. 146.
    Goldsmith LA. Skin effects of air pollution. Otolaryngol Head Neck Surg. 1996;114(2):217–9.PubMedCrossRefGoogle Scholar
  147. 147.
    Kim KE, Cho D, Park HJ. Air pollution and skin diseases: adverse effects of airborne particulate matter on various skin diseases. Life Sci. 2016;152:126–34.PubMedCrossRefGoogle Scholar
  148. 148.
    Valacchi G, Weber SU, Luu C, Cross CE, Packer L. Ozone potentiates vitamin E depletion by ultraviolet radiation in the murine stratum corneum. FEBS Lett. 2000;466(1):165–8.PubMedCrossRefGoogle Scholar
  149. 149.
    Lefebvre MA, Pham DM, Boussouira B, Bernard D, Camus C, Nguyen QL, et al. Evaluation of the impact of urban pollution on the quality of skin: a multicentre study in Mexico. Int J Cosmet Sci. 2015;37(3):329–38.PubMedCrossRefGoogle Scholar
  150. 150.
    Nemelka O, Bleidel D, Fabrizi G, Camplone G, Occella C, Marzatico F, et al. Experimental survey of a new topical anti-oxidant based on furfuryl palmitate in the treatment of child’s and baby’s dermatitis with eczema: results from a multicenter clinical investigation. Minerva Pediatr. 2002;54(5):465–74.PubMedGoogle Scholar
  151. 151.
    Tsoureli-Nikita E, Hercogova J, Lotti T, Menchini G. Evaluation of dietary intake of vitamin E in the treatment of atopic dermatitis: a study of the clinical course and evaluation of the immunoglobulin E serum levels. Int J Dermatol. 2002;41(3):146–50.PubMedCrossRefGoogle Scholar
  152. 152.
    Jaffary F, Faghihi G, Mokhtarian A, Hosseini SM. Effects of oral vitamin E on treatment of atopic dermatitis: a randomized controlled trial. J Res Med Sci. 2015;20(11):1053–7.PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Babaye-Nazhad S, Amirnia M, Khodaeyani E, Noor Afza P, Alikhah H, Naghavi-Behzad M. Effect of oral vitamin e on atopic dermatitis. J Clin Res Gov. 2013;2:66–9.Google Scholar
  154. 154.
    Javanbakht MH, Keshavarz SA, Djalali M, Siassi F, Eshraghian MR, Firooz A, et al. Randomized controlled trial using vitamins E and D supplementation in atopic dermatitis. J Dermatol Treat. 2011;22(3):144–50.CrossRefGoogle Scholar
  155. 155.
    Oh SY, Chung J, Kim MK, Kwon SO, Cho BH. Antioxidant nutrient intakes and corresponding biomarkers associated with the risk of atopic dermatitis in young children. Eur J Clin Nutr. 2010;64(3):245–52.PubMedCrossRefGoogle Scholar
  156. 156.
    Calderon-Garciduenas L, Solt AC, Henriquez-Roldan C, Torres-Jardon R, Nuse B, Herritt L, et al. Long-term air pollution exposure is associated with neuroinflammation, an altered innate immune response, disruption of the blood-brain barrier, ultrafine particulate deposition, and accumulation of amyloid beta-42 and alpha-synuclein in children and young adults. Toxicol Pathol. 2008;36(2):289–310.PubMedCrossRefGoogle Scholar
  157. 157.
    Lisabeth LD, Escobar JD, Dvonch JT, Sanchez BN, Majersik JJ, Brown DL, et al. Ambient air pollution and risk for ischemic stroke and transient ischemic attack. Ann Neurol. 2008;64(1):53–9.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Wellenius GA, Burger MR, Coull BA, et al. Ambient air pollution and the risk of acute ischemic stroke. Arch Intern Med. 2012;172(3):229–34.PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Shah ASV, Lee KK, McAllister DA, Hunter A, Nair H, Whiteley W, et al. Short term exposure to air pollution and stroke: systematic review and meta-analysis. BMJ. 2015;350:h1295.PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Tzivian L, Winkler A, Dlugaj M, Schikowski T, Vossoughi M, Fuks K, et al. Effect of long-term outdoor air pollution and noise on cognitive and psychological functions in adults. Int J Hyg Environ Health. 2015;218(1):1–11.PubMedCrossRefGoogle Scholar
  161. 161.
    Esmaeil Mousavi S, Heydarpour P, Reis J, Amiri M, Sahraian MA. Multiple sclerosis and air pollution exposure: mechanisms toward brain autoimmunity. Med Hypotheses. 2017;100:23–30.PubMedCrossRefGoogle Scholar
  162. 162.
    Xu X, Ha SU, Basnet R. A review of epidemiological research on adverse neurological effects of exposure to ambient air pollution. Front Public Health. 2016;4:157.PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Perera FP, Rauh V, Whyatt RM, Tsai W-Y, Tang D, Diaz D, et al. Effect of prenatal exposure to airborne polycyclic aromatic hydrocarbons on neurodevelopment in the first 3 years of life among inner-city children. Environ Health Perspect. 2006;114(8):1287–92.PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Suades-González E, Gascon M, Guxens M, Sunyer J. Air pollution and neuropsychological development: a review of the latest evidence. Endocrinology. 2015;156(10):3473–82.PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Genc S, Zadeoglulari Z, Fuss SH, Genc K. The adverse effects of air pollution on the nervous system. J Toxicol. 2012;2012:782462.PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Block ML, Calderon-Garciduenas L. Air pollution: mechanisms of neuroinflammation and CNS disease. Trends Neurosci. 2009;32(9):506–16.PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Guerrero AL, Dorado-Martinez C, Rodriguez A, Pedroza-Rios K, Borgonio-Perez G, Rivas-Arancibia S. Effects of vitamin E on ozone-induced memory deficits and lipid peroxidation in rats. Neuroreport. 1999;10(8):1689–92.PubMedCrossRefGoogle Scholar
  168. 168.
    Etminan M, Gill SS, Samii A. Intake of vitamin E, vitamin C, and carotenoids and the risk of Parkinson’s disease: a meta-analysis. Lancet Neurol. 2005;4(6):362–5.PubMedCrossRefGoogle Scholar
  169. 169.
    Yang F, Wolk A, Hakansson N, Pedersen NL, Wirdefeldt K. Dietary antioxidants and risk of Parkinson’s disease in two population-based cohorts. Mov Disord. 2017;32(11):1631–6.PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Zandi PP, Anthony JC, Khachaturian AS, Stone SV, Gustafson D, Tschanz JT, et al. Reduced risk of Alzheimer disease in users of antioxidant vitamin supplements: the cache county study. Arch Neurol. 2004;61(1):82–8.PubMedCrossRefGoogle Scholar
  171. 171.
    Engelhart MJ, Geerlings MI, Ruitenberg A, et al. Dietary intake of antioxidants and risk of alzheimer disease. JAMA. 2002;287(24):3223–9.PubMedCrossRefGoogle Scholar
  172. 172.
    Fariss MW, Zhang J-G. Vitamin E therapy in Parkinson’s disease. Toxicology. 2003;189(1):129–46.PubMedCrossRefGoogle Scholar
  173. 173.
    Pham DQ, Plakogiannis R. Vitamin E supplementation in Alzheimer’s disease, Parkinson’s disease, tardive dyskinesia, and cataract: part 2. Ann Pharmacother. 2005;39(12):2065–72.PubMedCrossRefGoogle Scholar
  174. 174.
    Etminan M, Gill SS, Samii A. Intake of vitamin E, vitamin C, and carotenoids and the risk of Parkinson’s disease: a meta-analysis. Lancet Neurol. 2005;4(6):362–5.PubMedCrossRefGoogle Scholar
  175. 175.
    Seidl SE, Santiago JA, Bilyk H, Potashkin JA. The emerging role of nutrition in Parkinson’s disease. Front Aging Neurosci. 2014;6:36.PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Farina N, Llewellyn D, Isaac MG, Tabet N. Vitamin E for Alzheimer’s dementia and mild cognitive impairment. Cochrane Database Syst Rev. 2017;1:Cd002854.PubMedGoogle Scholar
  177. 177.
    Šrám RJ, Binková B, Dejmek J, Bobak M. Ambient air pollution and pregnancy outcomes: a review of the literature. Environ Health Perspect. 2005;113(4):375–82.PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Warren JL, Fuentes M, Herring AH, Langlois PH. Air pollution metric analysis while determining susceptible periods of pregnancy for low birth weight. ISRN Obstet Gynecol. 2013;2013:9.CrossRefGoogle Scholar
  179. 179.
    Bell ML, Ebisu K, Belanger K. Ambient air pollution and low birth weight in Connecticut and Massachusetts. Environ Health Perspect. 2007;115(7):1118–24.PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    Jacobs M, Zhang G, Chen S, Mullins B, Bell M, Jin L, et al. The association between ambient air pollution and selected adverse pregnancy outcomes in China: a systematic review. Sci Total Environ. 2017;579:1179–92.PubMedCrossRefGoogle Scholar
  181. 181.
    Pedersen M, Giorgis-Allemand L, Bernard C, Aguilera I, Andersen AMN, Ballester F, et al. Ambient air pollution and low birthweight: a European cohort study (ESCAPE). Lancet Respir Med. 2013;1(9):695–704.PubMedCrossRefGoogle Scholar
  182. 182.
    Fleischer NL, Merialdi M, van Donkelaar A, Vadillo-Ortega F, Martin RV, Betran AP, et al. Outdoor air pollution, preterm birth, and low birth weight: analysis of the world health organization global survey on maternal and perinatal health. Environ Health Perspect. 2014;122(4):425–30.PubMedPubMedCentralCrossRefGoogle Scholar
  183. 183.
    Haider MR, Rahman MM, Islam F, Khan MM. Association of low birthweight and indoor air pollution: biomass fuel use in Bangladesh. J Health Pollut. 2016;6(11):18–25.PubMedPubMedCentralCrossRefGoogle Scholar
  184. 184.
    Pope DP, Mishra V, Thompson L, Siddiqui AR, Rehfuess EA, Weber M, et al. Risk of low birth weight and stillbirth associated with indoor air pollution from solid fuel use in developing countries. Epidemiol Rev. 2010;32:70–81.PubMedCrossRefGoogle Scholar
  185. 185.
    Malmqvist E, Liew Z, Källén K, Rignell-Hydbom A, Rittner R, Rylander L, et al. Fetal growth and air pollution – A study on ultrasound and birth measures. Environ Res. 2017;152:73–80.PubMedCrossRefGoogle Scholar
  186. 186.
    Smith RB, Fecht D, Gulliver J, Beevers SD, Dajnak D, Blangiardo M, et al. Impact of London’s road traffic air and noise pollution on birth weight: retrospective population based cohort study. BMJ. 2017;359:j5299.PubMedPubMedCentralCrossRefGoogle Scholar
  187. 187.
    Ballester F, Iñiguez C. Air pollution exposure during pregnancy and reproductive outcomes. In: Moldoveanu AM, editor. Air pollution – new developments. Rijeka: InTech; 2011. p. Ch. 01.Google Scholar
  188. 188.
    Schembari A, de Hoogh K, Pedersen M, Dadvand P, Martinez D, Hoek G, et al. Ambient air pollution and newborn size and adiposity at birth: differences by maternal ethnicity (the born in Bradford study cohort). Environ Health Perspect. 2015;123(11):1208–15.PubMedPubMedCentralCrossRefGoogle Scholar
  189. 189.
    Estarlich M, Ballester F, Davdand P, Llop S, Esplugues A, Fernández-Somoano A, et al. Exposure to ambient air pollution during pregnancy and preterm birth: a Spanish multicenter birth cohort study. Environ Res. 2016;147:50–8.PubMedCrossRefGoogle Scholar
  190. 190.
    Pereira G, Belanger K, Ebisu K, Bell ML. Fine particulate matter and risk of preterm birth in Connecticut in 2000–2006: a longitudinal study. Am J Epidemiol. 2014;179(1):67–74.PubMedCrossRefGoogle Scholar
  191. 191.
    Farhi A, Boyko V, Almagor J, Benenson I, Segre E, Rudich Y, et al. The possible association between exposure to air pollution and the risk for congenital malformations. Environ Res. 2014;135:173–80.PubMedCrossRefGoogle Scholar
  192. 192.
    Padula AM, Tager IB, Carmichael SL, Hammond SK, Lurmann F, Shaw GM. The association of ambient air pollution and traffic exposures with selected congenital anomalies in the San Joaquin Valley of California. Am J Epidemiol. 2013;177(10):1074–85.PubMedPubMedCentralCrossRefGoogle Scholar
  193. 193.
    Chen EK-C, Zmirou-Navier D, Padilla C, Deguen S. Effects of air pollution on the risk of congenital anomalies: a systematic review and meta-analysis. Int J Environ Res Public Health. 2014;11(8):7642–68.PubMedPubMedCentralCrossRefGoogle Scholar
  194. 194.
    Vrijheid M, Martinez D, Manzanares S, Dadvand P, Schembari A, Rankin J, et al. Ambient air pollution and risk of congenital anomalies: a systematic review and meta-analysis. Environ Health Perspect. 2011;119(5):598–606.PubMedCrossRefGoogle Scholar
  195. 195.
    Zhang B, Zhao J, Yang R, Qian Z, Liang S, Bassig BA, et al. Ozone and other air pollutants and the risk of congenital heart defects. Sci Rep. 2016;6:34852.PubMedPubMedCentralCrossRefGoogle Scholar
  196. 196.
    Lavigne E, Yasseen AS, Stieb DM, Hystad P, van Donkelaar A, Martin RV, et al. Ambient air pollution and adverse birth outcomes: differences by maternal comorbidities. Environ Res. 2016;148:457–66.PubMedCrossRefGoogle Scholar
  197. 197.
    Kannan S, Misra DP, Dvonch JT, Krishnakumar A. Exposures to airborne particulate matter and adverse perinatal outcomes: a biologically plausible mechanistic framework for exploring potential effect modification by nutrition. Environ Health Perspect. 2006;114(11):1636–42.PubMedPubMedCentralCrossRefGoogle Scholar
  198. 198.
    Pedersen M, Mendez MA, Schoket B, Godschalk RW, Espinosa A, Landström A, et al. Environmental, dietary, maternal, and fetal predictors of bulky DNA adducts in cord blood: a European mother–child study (NewGeneris). Environ Health Perspect. 2015;123(4):374–80.PubMedPubMedCentralCrossRefGoogle Scholar
  199. 199.
    Pedersen M, Schoket B, Godschalk RW, Wright J, von Stedingk H, Tornqvist M, et al. Bulky DNA adducts in cord blood, maternal fruit-and-vegetable consumption, and birth weight in a European mother-child study (NewGeneris). Environ Health Perspect. 2013;121(10):1200–6.PubMedPubMedCentralCrossRefGoogle Scholar
  200. 200.
    Sram RJ, Binkova B, Rossner P, Rubes J, Topinka J, Dejmek J. Adverse reproductive outcomes from exposure to environmental mutagens. Mutat Res. 1999;428(1–2):203–15.PubMedCrossRefGoogle Scholar
  201. 201.
    van den Hooven EH, de Kluizenaar Y, Pierik FH, Hofman A, van Ratingen SW, Zandveld PY, et al. Chronic air pollution exposure during pregnancy and maternal and fetal C-reactive protein levels: the generation R study. Environ Health Perspect. 2012;120(5):746–51.PubMedPubMedCentralCrossRefGoogle Scholar
  202. 202.
    Ernst GD, de Jonge LL, Hofman A, Lindemans J, Russcher H, Steegers EA, et al. C-reactive protein levels in early pregnancy, fetal growth patterns, and the risk for neonatal complications: the generation R study. Am J Obstet Gynecol. 2011;205(2):132.e1–12.CrossRefGoogle Scholar
  203. 203.
    van den Hooven EH, de Kluizenaar Y, Pierik FH, Hofman A, van Ratingen SW, Zandveld PYJ, et al. Chronic air pollution exposure during pregnancy and maternal and fetal C-reactive protein levels: the generation R study. Environ Health Perspect. 2012;120(5):746–51.PubMedPubMedCentralCrossRefGoogle Scholar
  204. 204.
    Abdou HM, Mohamed NA, El Mekkawy DA, El-Hengary SB. Vitamin E and/or wheat germ oil supplementation ameliorate oxidative stress induced by cadmium chloride in pregnant rats and their fetuses. Jordan J Biol Sci. 2017;10(1):39–48.Google Scholar
  205. 205.
    Delashoub M, Khojasteh S. An investigation on protective effects of vitamin E against lipopolysaccharide-induced fetal injuries in rat. Adv Environ Biol. 2012;6(8):2274–9.Google Scholar
  206. 206.
    Rumbold A, Ota E, Hori H, Miyazaki C, Crowther CA. Vitamin E supplementation in pregnancy. Cochrane Database Syst Rev. 2015;9:CD0046069.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Rebecca F. McLoughlin
    • 1
  • Bronwyn S. Berthon
    • 1
  • Evan J. Williams
    • 1
  • Lisa G. Wood
    • 1
    Email author
  1. 1.Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of NewcastleNewcastleAustralia

Personalised recommendations