Advertisement

Vitamin E Intake and Serum Levels in the General Population: A Global Perspective

  • Szabolcs PéterEmail author
  • Manfred Eggersdorfer
  • Peter Weber
Chapter
Part of the Nutrition and Health book series (NH)

Abstract

According to data from various surveys, mean vitamin E intakes in Europe were between 7.8 and 16.0 mg α-tocopherol per day (EFSA Panel on Dietetic Products N, and Allergies. EFSA J 13(7):4149, 2015). About 50% of all German men and women had a daily intake of vitamin E below the recommended value (II. NV. Max-Rubner-Institut, Karlsruhe, http://www.bmel.de/DE/Ernaehrung/GesundeErnaehrung/_Texte/NationaleVerzehrsstudie_Zusammenfassung.html, 2008). In the UK, at a recommended intake level of 3–4 mg/day, only 1–3% of the population did not meet national recommendations for vitamin E set in 1991. However, more recent recommendations of 12 mg/day would not be met by between 64 and 75% of the population (Statistics UKOfN. The National Diet & Nutrition Survey (NDNS): adults aged 19 to 64 years, 2003). Marginal intake of vitamin E is relatively common in the USA: The National Health and Nutrition Examination Survey III (NHANES III, 1988–1994) examined the dietary intake and blood levels of α-tocopherol in 16,295 adults over the age of 18 years. Twenty-seven percent of white participants, 41% of African Americans, 28% of Mexican Americans, and 32% of the other participants were found to have blood levels of α-tocopherol less than 20 μmol/L (Ford and Sowell. Am J Epidemiol 150(3):290–300, 1999). Later on, data from 1999–2000 showed that mean dietary intake of α-tocopherol was 6.3 mg/day and 7.8 mg/day for US women and men, respectively (Ahuja et al. Ann N Y Acad Sci 1031:387–90, 2004). These intakes were well below the current intake recommendations of 15 mg/day. In fact, in recent publications it has been estimated that more than 90% of Americans do not meet the daily dietary recommendations for vitamin E (Fulgoni et al. J Nutr 141(10):1847–54, 2011). Most recently, a comprehensive review of vitamin E dietary intake and blood serum levels demonstrated that the majority of reported intake values worldwide were below the recommended level. Globally, 82% of the vitamin E intakes were below 15 mg/day; this ratio was 91% in North and South America, 79% in the Asia-Pacific region, and 80% in Europe. Regarding serum concentrations, globally 13% of the included data points were below the functional deficiency threshold concentration of 12 μmol/L. Of the reported study populations and subpopulations, only 21% reached the desirable threshold of ≥30 μmol/L serum α-tocopherol concentration globally (Peter et al. Int J Vitam Nutr Res 2016:1–21, 2016).

Keywords

α-tocopherol Intake Serum Status Global Vitamin E reference values 

References and Recommended Literature

  1. 1.
    EFSA Panel on Dietetic Products N, and Allergies. Scientific opinion on dietary reference values for vitamin E as α-tocopherol. EFSA J. 2015;13(7):4149.Google Scholar
  2. 2.
    Ford ES, Sowell A. Serum alpha-tocopherol status in the United States population: findings from the third national health and nutrition examination survey. Am J Epidemiol. 1999;150(3):290–300.PubMedCrossRefGoogle Scholar
  3. 3.
    Peter S, Friedel A, Roos FF, Wyss A, Eggersdorfer M, Hoffmann K, et al. A systematic review of global alpha-tocopherol status as assessed by nutritional intake levels and blood serum concentrations. Int J Vitam Nutr Res. 2016:1–21.  https://doi.org/10.1024/0300-9831/a000281.
  4. 4.
    Horwitt MK, Harvey CC, Duncan GD, Wilson WC. Effects of limited tocopherol intake in man with relationships to erythrocyte hemolysis and lipid oxidations. Am J Clin Nutr. 1956;4(4):408–19.PubMedCrossRefGoogle Scholar
  5. 5.
    Horwitt MK, Century B, Zeman AA. Erythrocyte survival time and reticulocyte levels after tocopherol depletion in man. Am J Clin Nutr. 1963;12:99–106.PubMedCrossRefGoogle Scholar
  6. 6.
    IOM. Vitamin E. Dietary reference intakes for vitamin C, vitamin E, selenium, and carotenoids. Washington, DC: National Academies Press (US); 2000. p. 186–283.Google Scholar
  7. 7.
    Raederstorff D, Wyss A, Calder PC, Weber P, Eggersdorfer M. Vitamin E function and requirements in relation to PUFA. Br J Nutr. 2015;114(8):1113–22.  https://doi.org/10.1017/S000711451500272X.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Deutsche Gesellschaft für Ernährung ÖGfE, Schweizerische Gesellschaft für Ernährung. Referenzwerte für die Nährstoffzufuhr. Neustadt an der Weinstraße: Neuer Umschau Buchverlag; 2008.Google Scholar
  9. 9.
    Abiaka C, Al-Tobi M, Joshi R. Serum micronutrient and micromineral concentrations and ratios in healthy Omani subjects. Med Princ Pract. 2008;17(4):334–9.  https://doi.org/10.1159/000129616.PubMedCrossRefGoogle Scholar
  10. 10.
    Abiaka C, Olusi S, Simbeye A. Serum concentrations of micronutrient antioxidants in an adult Arab population. Asia Pac J Clin Nutr. 2002;11(1):22–7.PubMedCrossRefGoogle Scholar
  11. 11.
    Agudo A, Cabrera L, Amiano P, Ardanaz E, Barricarte A, Berenguer T, et al. Fruit and vegetable intakes, dietary antioxidant nutrients, and total mortality in Spanish adults: findings from the Spanish cohort of the European Prospective Investigation into Cancer and Nutrition (EPIC-Spain). Am J Clin Nutr. 2007;85(6):1634–42.PubMedCrossRefGoogle Scholar
  12. 12.
    Alencar LE, Martinez A, Fernandez C, Garaulet M, Perez-Llamas F, Zamora S. Dietary intake in adolescents from south-east Spain and its relationship with physical activity. Nutricion hospitalaria: organo oficial de la Sociedad Espanola de. Nutricion Parenteral y Enteral. 2000;15(2):51–7.Google Scholar
  13. 13.
    Amirlak I, Ezimokhai M, Dawodu A, Dawson KP, Kochiyil J, Thomas L, et al. Current maternal-infant micronutrient status and the effects on birth weight in the United Arab Emirates. East Mediterr Health J. 2009;15(6):1399–406.PubMedGoogle Scholar
  14. 14.
    Anderson JJ, Suchindran CM, Roggenkamp KJ. Micronutrient intakes in two US populations of older adults: lipid research clinics program prevalence study findings. J Nutr Health Aging. 2009;13(7):595–600.PubMedCrossRefGoogle Scholar
  15. 15.
    Arab L, Carriquiry A, Steck-Scott S, Gaudet MM. Ethnic differences in the nutrient intake adequacy of premenopausal US women: results from the third National Health Examination Survey. J Am Diet Assoc. 2003;103(8):1008–14.  https://doi.org/10.1053/jada.2003.50194.PubMedCrossRefGoogle Scholar
  16. 16.
    Arnlov J, Zethelius B, Riserus U, Basu S, Berne C, Vessby B, et al. Serum and dietary beta-carotene and alpha-tocopherol and incidence of type 2 diabetes mellitus in a community-based study of Swedish men: report from the Uppsala Longitudinal Study of Adult Men (ULSAM) study. Diabetologia. 2009;52(1):97–105.  https://doi.org/10.1007/s00125-008-1189-3.PubMedCrossRefGoogle Scholar
  17. 17.
    Azzini E, Polito A, Fumagalli A, Intorre F, Venneria E, Durazzo A, et al. Mediterranean diet effect: an Italian picture. Nutr J. 2011;10:125.  https://doi.org/10.1186/1475-2891-10-125.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Balkan J, Dogru-Abbasoglu S, Aykac-Toker G, Uysal M. Serum pro-oxidant-antioxidant balance and low-density lipoprotein oxidation in healthy subjects with different cholesterol levels. Clin Exp Med. 2004;3(4):237–42.  https://doi.org/10.1007/s10238-004-0031-6.PubMedCrossRefGoogle Scholar
  19. 19.
    Balkan J, Kanbagli O, Mehmetcik G, Mutlu-Turkoglu U, Aykac-Toker G, Uysal M. Increased lipid peroxidation in serum and low-density lipoproteins associated with aging in humans. Int J Vitam Nutr Res. 2002;72(5):315–20.PubMedCrossRefGoogle Scholar
  20. 20.
    Barros MF, Leger CL, Lira PI, Lima MC, Carbonneau MA, Descomps B, et al. Cord blood essential fatty acid and alpha-tocopherol in full-term newborns in a Northeast Brazil area. Int J Vitam Nutr Res. 2002;72(3):155–60.PubMedCrossRefGoogle Scholar
  21. 21.
    Bartali B, Frongillo EA, Guralnik JM, Stipanuk MH, Allore HG, Cherubini A, et al. Serum micronutrient concentrations and decline in physical function among older persons. JAMA. 2008;299(3):308–15.  https://doi.org/10.1001/jama.299.3.308.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Bas M, Altan T, Dincer D, Aran E, Kaya HG, Yuksek O. Determination of dietary habits as a risk factor of cardiovascular heart disease in Turkish adolescents. Eur J Nutr. 2005;44(3):174–82.  https://doi.org/10.1007/s00394-004-0509-8.PubMedCrossRefGoogle Scholar
  23. 23.
    Bates CJ, Matthews N, West B, Morison L, Walraven G. Plasma carotenoid and vitamin E concentrations in women living in a rural west African (Gambian) community. Int J Vitam Nutr Res. 2002;72(3):133–41.PubMedCrossRefGoogle Scholar
  24. 24.
    Beitz R, Mensink GB, Fischer B, Thamm M. Vitamins – dietary intake and intake from dietary supplements in Germany. Eur J Clin Nutr. 2002;56(6):539–45.  https://doi.org/10.1038/sj.ejcn.1601346.PubMedCrossRefGoogle Scholar
  25. 25.
    Beitz R, Mensink GB, Henschel Y, Fischer B, Erbersdobler HF. Dietary behaviour of German adults differing in levels of sport activity. Public Health Nutr. 2004;7(1):45–52.PubMedCrossRefGoogle Scholar
  26. 26.
    Belanger MC, Mirault ME, Dewailly E, Berthiaume L, Julien P. Environmental contaminants and redox status of coenzyme Q10 and vitamin E in Inuit from Nunavik. Metabolism. 2008;57(7):927–33.  https://doi.org/10.1016/j.metabol.2008.02.007.PubMedCrossRefGoogle Scholar
  27. 27.
    Beydoun MA, Shroff MR, Chen X, Beydoun HA, Wang Y, Zonderman AB. Serum antioxidant status is associated with metabolic syndrome among U.S. adults in recent national surveys. J Nutr. 2011;141(5):903–13.  https://doi.org/10.3945/jn.110.136580.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Bianchini F, Elmstahl S, Martinez-Garcia C, van Kappel AL, Douki T, Cadet J, et al. Oxidative DNA damage in human lymphocytes: correlations with plasma levels of alpha-tocopherol and carotenoids. Carcinogenesis. 2000;21(2):321–4.PubMedCrossRefGoogle Scholar
  29. 29.
    Ble A, Cherubini A, Volpato S, Bartali B, Walston JD, Windham BG, et al. Lower plasma vitamin E levels are associated with the frailty syndrome: the InCHIANTI study. J Gerontol A Biol Sci Med Sci. 2006;61(3):278–83.PubMedCrossRefGoogle Scholar
  30. 30.
    Boeing H, Weisgerber UM, Jeckel A, Rose HJ, Kroke A. Association between glycated hemoglobin and diet and other lifestyle factors in a nondiabetic population: cross-sectional evaluation of data from the Potsdam cohort of the European prospective investigation into cancer and nutrition study. Am J Clin Nutr. 2000;71(5):1115–22.PubMedCrossRefGoogle Scholar
  31. 31.
    Breilmann J, Pons-Kuhnemann J, Brunner C, Richter M, Neuhauser-Berthold M. Effect of antioxidant vitamins on the plasma homocysteine level in a free-living elderly population. Ann Nutr Metab. 2010;57(3–4):177–82.  https://doi.org/10.1159/000321538.PubMedCrossRefGoogle Scholar
  32. 32.
    Briefel R, Hanson C, Fox MK, Novak T, Ziegler P. Feeding infants and toddlers study: do vitamin and mineral supplements contribute to nutrient adequacy or excess among US infants and toddlers? J Am Diet Assoc. 2006;106(1 Suppl 1):S52–65.  https://doi.org/10.1016/j.jada.2005.09.041.PubMedCrossRefGoogle Scholar
  33. 33.
    Briefel R, Ziegler P, Novak T, Ponza M. Feeding infants and toddlers study: characteristics and usual nutrient intake of Hispanic and non-Hispanic infants and toddlers. J Am Diet Assoc. 2006;106(1 Suppl 1):S84–95.  https://doi.org/10.1016/j.jada.2005.09.040.PubMedCrossRefGoogle Scholar
  34. 34.
    Buijsse B, Feskens EJ, Kwape L, Kok FJ, Kromhout D. Both alpha- and beta-carotene, but not tocopherols and vitamin C, are inversely related to 15-year cardiovascular mortality in Dutch elderly men. J Nutr. 2008;138(2):344–50.PubMedCrossRefGoogle Scholar
  35. 35.
    Buijsse B, Feskens EJ, Schlettwein-Gsell D, Ferry M, Kok FJ, Kromhout D, et al. Plasma carotene and alpha-tocopherol in relation to 10-y all-cause and cause-specific mortality in European elderly: the Survey in Europe on Nutrition and the Elderly, a Concerted Action (SENECA). Am J Clin Nutr. 2005;82(4):879–86.PubMedCrossRefGoogle Scholar
  36. 36.
    Butland BK, Fehily AM, Elwood PC. Diet, lung function, and lung function decline in a cohort of 2512 middle aged men. Thorax. 2000;55(2):102–8.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Butte NF, Fox MK, Briefel RR, Siega-Riz AM, Dwyer JT, Deming DM, et al. Nutrient intakes of US infants, toddlers, and preschoolers meet or exceed dietary reference intakes. J Am Diet Assoc. 2010;110(12 Suppl):S27–37.  https://doi.org/10.1016/j.jada.2010.09.004.PubMedCrossRefGoogle Scholar
  38. 38.
    Camoes M, Lopes C. Dietary intake and different types of physical activity: full-day energy expenditure, occupational and leisure-time. Public Health Nutr. 2008;11(8):841–8.  https://doi.org/10.1017/s1368980007001309.PubMedCrossRefGoogle Scholar
  39. 39.
    Cesari M, Pahor M, Bartali B, Cherubini A, Penninx BW, Williams GR, et al. Antioxidants and physical performance in elderly persons: the Invecchiare in Chianti (InCHIANTI) study. Am J Clin Nutr. 2004;79(2):289–94.PubMedCrossRefGoogle Scholar
  40. 40.
    Chelchowska M, Ambroszkiewicz J, Gajewska J, Laskowska-Klita T, Leibschang J. The effect of tobacco smoking during pregnancy on plasma oxidant and antioxidant status in mother and newborn. Eur J Obstet Gynecol Reprod Biol. 2011;155(2):132–6.  https://doi.org/10.1016/j.ejogrb.2010.12.006.PubMedCrossRefGoogle Scholar
  41. 41.
    Chen K, Zhang X, Wei XP, Qu P, Liu YX, Li TY. Antioxidant vitamin status during pregnancy in relation to cognitive development in the first two years of life. Early Hum Dev. 2009;85(7):421–7.  https://doi.org/10.1016/j.earlhumdev.2009.02.001.PubMedCrossRefGoogle Scholar
  42. 42.
    Cheng WY, Fu ML, Wen LJ, Chen C, Pan WH, Huang CJ. Plasma retinol and a-tocopherol status of the Taiwanese elderly population. Asia Pac J Clin Nutr. 2005;14(3):256–62.PubMedGoogle Scholar
  43. 43.
    Cherubini A, Martin A, Andres-Lacueva C, Di Iorio A, Lamponi M, Mecocci P, et al. Vitamin E levels, cognitive impairment and dementia in older persons: the InCHIANTI study. Neurobiol Aging. 2005;26(7):987–94.  https://doi.org/10.1016/j.neurobiolaging.2004.09.002.PubMedCrossRefGoogle Scholar
  44. 44.
    Chun OK, Floegel A, Chung SJ, Chung CE, Song WO, Koo SI. Estimation of antioxidant intakes from diet and supplements in U.S. adults. J Nutr. 2010;140(2):317–24.  https://doi.org/10.3945/jn.109.114413.PubMedCrossRefGoogle Scholar
  45. 45.
    Dancheck B, Nussenblatt V, Kumwenda N, Lema V, Neville MC, Broadhead R, et al. Status of carotenoids, vitamin A, and vitamin E in the mother-infant dyad and anthropometric status of infants in Malawi. J Health Popul Nutr. 2005;23(4):343–50.PubMedGoogle Scholar
  46. 46.
    Daryani A, Basu S, Becker W, Larsson A, Riserus U. Antioxidant intake, oxidative stress and inflammation among immigrant women from the Middle East living in Sweden: associations with cardiovascular risk factors. Nutr Metab Cardiovasc Dis. 2007;17(10):748–56.  https://doi.org/10.1016/j.numecd.2006.07.011.PubMedCrossRefGoogle Scholar
  47. 47.
    de Oliveira Otto MC, Alonso A, Lee DH, Delclos GL, Bertoni AG, Jiang R, et al. Dietary intakes of zinc and heme iron from red meat, but not from other sources, are associated with greater risk of metabolic syndrome and cardiovascular disease. J Nutr. 2012;142(3):526–33.  https://doi.org/10.3945/jn.111.149781.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Dejmek J, Ginter E, Solansky I, Podrazilova K, Stavkova Z, Benes I, et al. Vitamin C, E and A levels in maternal and fetal blood for Czech and Gypsy ethnic groups in the Czech Republic. Int J Vitam Nutr Res. 2002;72(3):183–90.PubMedCrossRefGoogle Scholar
  49. 49.
    Devaney B, Ziegler P, Pac S, Karwe V, Barr SI. Nutrient intakes of infants and toddlers. J Am Diet Assoc. 2004;104(1 Suppl 1):s14–21.  https://doi.org/10.1016/j.jada.2003.10.022.PubMedCrossRefGoogle Scholar
  50. 50.
    Didenco S, Gillingham MB, Go MD, Leonard SW, Traber MG, McEvoy CT. Increased vitamin E intake is associated with higher alpha-tocopherol concentration in the maternal circulation but higher alpha-carboxyethyl hydroxychroman concentration in the fetal circulation. Am J Clin Nutr. 2011;93(2):368–73.  https://doi.org/10.3945/ajcn.110.008367.PubMedCrossRefGoogle Scholar
  51. 51.
    Drewel BT, Giraud DW, Davy SR, Driskell JA. Less than adequate vitamin E status observed in a group of preschool boys and girls living in the United States. J Nutr Biochem. 2006;17(2):132–8.  https://doi.org/10.1016/j.jnutbio.2005.06.003.PubMedCrossRefGoogle Scholar
  52. 52.
    Engelhart MJ, Geerlings MI, Ruitenberg A, van Swieten JC, Hofman A, Witteman JC, et al. Dietary intake of antioxidants and risk of Alzheimer disease. JAMA. 2002;287(24):3223–9.PubMedCrossRefGoogle Scholar
  53. 53.
    Erinosho T, Dixon LB, Young C, Brotman LM, Hayman LL. Nutrition practices and children’s dietary intakes at 40 child-care centers in New York City. J Am Diet Assoc. 2011;111(9):1391–7.  https://doi.org/10.1016/j.jada.2011.06.001.PubMedCrossRefGoogle Scholar
  54. 54.
    Fares S, Chahed MK, Feki M, Beji C, Traissac P, El Ati J, et al. Status of vitamins A and E in schoolchildren in the centre west of Tunisia: a population-based study. Public Health Nutr. 2011;14(2):255–60.  https://doi.org/10.1017/S1368980010001631.PubMedCrossRefGoogle Scholar
  55. 55.
    Farmer B, Larson BT, Fulgoni VL 3rd, Rainville AJ, Liepa GU. A vegetarian dietary pattern as a nutrient-dense approach to weight management: an analysis of the national health and nutrition examination survey 1999–2004. J Am Diet Assoc. 2011;111(6):819–27.  https://doi.org/10.1016/j.jada.2011.03.012.PubMedCrossRefGoogle Scholar
  56. 56.
    Fogarty A, Lewis S, Weiss S, Britton J. Dietary vitamin E, IgE concentrations, and atopy. Lancet. 2000;356(9241):1573–4.  https://doi.org/10.1016/s0140-6736(00)03132-9.PubMedCrossRefGoogle Scholar
  57. 57.
    Foksinski M, Gackowski D, Rozalski R, Siomek A, Guz J, Szpila A, et al. Effects of basal level of antioxidants on oxidative DNA damage in humans. Eur J Nutr. 2007;46(3):174–80.  https://doi.org/10.1007/s00394-006-0642-7.PubMedCrossRefGoogle Scholar
  58. 58.
    Ford ES, Mokdad AH, Ajani UA, Liu S. Associations between concentrations of alpha- and gamma-tocopherol and concentrations of glucose, glycosylated haemoglobin, insulin and C-peptide among US adults. Br J Nutr. 2005;93(2):249–55.PubMedCrossRefGoogle Scholar
  59. 59.
    Ford ES, Schleicher RL, Mokdad AH, Ajani UA, Liu S. Distribution of serum concentrations of alpha-tocopherol and gamma-tocopherol in the US population. Am J Clin Nutr. 2006;84(2):375–83.PubMedCrossRefGoogle Scholar
  60. 60.
    Gabriel HE, Liu Z, Crott JW, Choi SW, Song BC, Mason JB, et al. A comparison of carotenoids, retinoids, and tocopherols in the serum and buccal mucosa of chronic cigarette smokers versus nonsmokers. Cancer Epidemiol Biomark Prev. 2006;15(5):993–9.  https://doi.org/10.1158/1055-9965.EPI-05-0664.CrossRefGoogle Scholar
  61. 61.
    Gale CR, Ashurst HE, Powers HJ, Martyn CN. Antioxidant vitamin status and carotid atherosclerosis in the elderly. Am J Clin Nutr. 2001;74(3):402–8.PubMedCrossRefGoogle Scholar
  62. 62.
    Gale CR, Hall NF, Phillips DI, Martyn CN. Plasma antioxidant vitamins and carotenoids and age-related cataract. Ophthalmology. 2001;108(11):1992–8.PubMedCrossRefGoogle Scholar
  63. 63.
    Galloway AT, Fiorito L, Lee Y, Birch LL. Parental pressure, dietary patterns, and weight status among girls who are “picky eaters”. J Am Diet Assoc. 2005;105(4):541–8.  https://doi.org/10.1016/j.jada.2005.01.029.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Ganji V, Hampl JS, Betts NM. Race-, gender- and age-specific differences in dietary micronutrient intakes of US children. Int J Food Sci Nutr. 2003;54(6):485–90.  https://doi.org/10.1080/09637480310001622341.PubMedCrossRefGoogle Scholar
  65. 65.
    Gao X, Wilde PE, Lichtenstein AH, Bermudez OI, Tucker KL. The maximal amount of dietary alpha-tocopherol intake in U.S. adults (NHANES 2001–2002). J Nutr. 2006;136(4):1021–6.PubMedCrossRefGoogle Scholar
  66. 66.
    Genkinger JM, Platz EA, Hoffman SC, Comstock GW, Helzlsouer KJ. Fruit, vegetable, and antioxidant intake and all-cause, cancer, and cardiovascular disease mortality in a community-dwelling population in Washington County, Maryland. Am J Epidemiol. 2004;160(12):1223–33.  https://doi.org/10.1093/aje/.PubMedCrossRefGoogle Scholar
  67. 67.
    Gilliland FD, Berhane KT, Li YF, Gauderman WJ, McConnell R, Peters J. Children’s lung function and antioxidant vitamin, fruit, juice, and vegetable intake. Am J Epidemiol. 2003;158(6):576–84.PubMedCrossRefGoogle Scholar
  68. 68.
    Giraud DW, Kim YN, Cho YO, Driskell JA. Vitamin E inadequacy observed in a group of 2- to 6-year-old children living in Kwangju, Republic of Korea. Int J Vitam Nutr Res. 2008;78(3):148–55.  https://doi.org/10.1024/0300-9831.78.3.148.PubMedCrossRefGoogle Scholar
  69. 69.
    Gonzalez CA, Travier N, Lujan-Barroso L, Castellsague X, Bosch FX, Roura E, et al. Dietary factors and in situ and invasive cervical cancer risk in the European prospective investigation into cancer and nutrition study. Int J Cancer. 2011;129(2):449–59.  https://doi.org/10.1002/ijc.25679.PubMedCrossRefGoogle Scholar
  70. 70.
    Gopinath B, Flood VM, McMahon CM, Burlutsky G, Spankovich C, Hood LJ, et al. Dietary antioxidant intake is associated with the prevalence but not incidence of age-related hearing loss. J Nutr Health Aging. 2011;15(10):896–900.PubMedCrossRefGoogle Scholar
  71. 71.
    Grant BJ, Kudalkar DP, Muti P, McCann SE, Trevisan M, Freudenheim JL, et al. Relation between lung function and RBC distribution width in a population-based study. Chest. 2003;124(2):494–500.PubMedCrossRefGoogle Scholar
  72. 72.
    Gross M, Yu X, Hannan P, Prouty C, Jacobs DR Jr. Lipid standardization of serum fat-soluble antioxidant concentrations: the YALTA study. Am J Clin Nutr. 2003;77(2):458–66.PubMedCrossRefGoogle Scholar
  73. 73.
    Helmersson J, Arnlov J, Larsson A, Basu S. Low dietary intake of beta-carotene, alpha-tocopherol and ascorbic acid is associated with increased inflammatory and oxidative stress status in a Swedish cohort. Br J Nutr. 2009;101(12):1775–82.  https://doi.org/10.1017/S0007114508147377.PubMedCrossRefGoogle Scholar
  74. 74.
    Helmersson J, Arnlov J, Vessby B, Larsson A, Alfthan G, Basu S. Serum selenium predicts levels of F2-isoprostanes and prostaglandin F2alpha in a 27 year follow-up study of Swedish men. Free Radic Res. 2005;39(7):763–70.  https://doi.org/10.1080/10715760500108513.PubMedCrossRefGoogle Scholar
  75. 75.
    Helmersson J, Larsson A, Vessby B, Basu S. Active smoking and a history of smoking are associated with enhanced prostaglandin F(2alpha), interleukin-6 and F2-isoprostane formation in elderly men. Atherosclerosis. 2005;181(1):201–7.  https://doi.org/10.1016/j.atherosclerosis.2004.11.026.PubMedCrossRefGoogle Scholar
  76. 76.
    Herrera E, Ortega H, Alvino G, Giovannini N, Amusquivar E, Cetin I. Relationship between plasma fatty acid profile and antioxidant vitamins during normal pregnancy. Eur J Clin Nutr. 2004;58(9):1231–8.  https://doi.org/10.1038/sj.ejcn.1601954.PubMedCrossRefGoogle Scholar
  77. 77.
    Hodge AM, Simpson JA, Fridman M, Rowley K, English DR, Giles GG, et al. Evaluation of an FFQ for assessment of antioxidant intake using plasma biomarkers in an ethnically diverse population. Public Health Nutr. 2009;12(12):2438–47.  https://doi.org/10.1017/S1368980009005539.PubMedCrossRefGoogle Scholar
  78. 78.
    Hu G, Cassano PA. Antioxidant nutrients and pulmonary function: the Third National Health and Nutrition Examination Survey (NHANES III). Am J Epidemiol. 2000;151(10):975–81.PubMedCrossRefGoogle Scholar
  79. 79.
    Jenab M, Salvini S, van Gils CH, Brustad M, Shakya-Shrestha S, Buijsse B, et al. Dietary intakes of retinol, beta-carotene, vitamin D and vitamin E in the European prospective investigation into cancer and nutrition cohort. Eur J Clin Nutr. 2009;63(Suppl 4):S150–78.  https://doi.org/10.1038/ejcn.2009.79.PubMedCrossRefGoogle Scholar
  80. 80.
    Gemming L, Jiang Y, Swinburn B, Utter J, Mhurchu CN. Under-reporting remains a key limitation of self-reported dietary intake: an analysis of the 2008/09 New Zealand adult nutrition survey. Eur J Clin Nutr. 2014;68(2):259–64.  https://doi.org/10.1038/ejcn.2013.242.PubMedCrossRefGoogle Scholar
  81. 81.
    Pignitter M, Stolze K, Gartner S, Dumhart B, Stoll C, Steiger G, et al. Cold fluorescent light as major inducer of lipid oxidation in soybean oil stored at household conditions for eight weeks. J Agric Food Chem. 2014;62(10):2297–305.  https://doi.org/10.1021/jf405736j.PubMedCrossRefGoogle Scholar
  82. 82.
    Traber MG, Sies H. Vitamin E in humans: demand and delivery. Annu Rev Nutr. 1996;16:321–47.  https://doi.org/10.1146/annurev.nu.16.070196.001541.PubMedCrossRefGoogle Scholar
  83. 83.
    Dror DK, Allen LH. Vitamin E deficiency in developing countries. Food Nutr Bull. 2011;32(2):124–43.PubMedCrossRefGoogle Scholar
  84. 84.
    Valtuena J, Breidenassel C, Folle J, Gonzalez-Gross M. Retinol, beta-carotene, alpha-tocopherol and vitamin D status in European adolescents; regional differences an variability: a review. Nutricion hospitalaria. 2011;26(2):280–8.  https://doi.org/10.1590/S0212-16112011000200006.PubMedCrossRefGoogle Scholar
  85. 85.
    Traber MG. Vitamin E inadequacy in humans: causes and consequences. Adv Nutr. 2014;5(5):503–14.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Heseker H, Kohlmeier M, Schneider R. Lipid adjustment of alpha-tocopherol concentrations in plasma. Zeitschrift für Ernährungswissenschaft. 1993;32(3):219–28.PubMedCrossRefGoogle Scholar
  87. 87.
    Leonard PJ, Doyle E, Harrington W. Levels of vitamin E in the plasma of newborn infants and of the mothers. Am J Clin Nutr. 1972;25(5):480–4.PubMedCrossRefGoogle Scholar
  88. 88.
    Shamim AA, Schulze K, Merrill RD, Kabir A, Christian P, Shaikh S, et al. First-trimester plasma tocopherols are associated with risk of miscarriage in rural Bangladesh. Am J Clin Nutr. 2015;101(2):294–301.  https://doi.org/10.3945/ajcn.114.094920.PubMedCrossRefGoogle Scholar
  89. 89.
    Mangialasche F, Xu W, Kivipelto M, Costanzi E, Ercolani S, Pigliautile M, et al. Tocopherols and tocotrienols plasma levels are associated with cognitive impairment. Neurobiol Aging. 2012;33(10):2282–90.  https://doi.org/10.1016/j.neurobiolaging.2011.11.019.PubMedCrossRefGoogle Scholar
  90. 90.
    Wright ME, Lawson KA, Weinstein SJ, Pietinen P, Taylor PR, Virtamo J, et al. Higher baseline serum concentrations of vitamin E are associated with lower total and cause-specific mortality in the Alpha-Tocopherol, Beta-Carotene cancer prevention study. Am J Clin Nutr. 2006;84(5):1200–7.PubMedCrossRefGoogle Scholar
  91. 91.
    Lebold KM, Ang A, Traber MG, Arab L. Urinary alpha-carboxyethyl hydroxychroman can be used as a predictor of alpha-tocopherol adequacy, as demonstrated in the energetics study. Am J Clin Nutr. 2012;96(4):801–9.  https://doi.org/10.3945/ajcn.112.038620.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Lemoyne M, Van Gossum A, Kurian R, Ostro M, Axler J, Jeejeebhoy KN. Breath pentane analysis as an index of lipid peroxidation: a functional test of vitamin E status. Am J Clin Nutr. 1987;46(2):267–72.PubMedCrossRefGoogle Scholar
  93. 93.
    Traber MG, Jialal I. Measurement of lipid-soluble vitamins – further adjustment needed? Lancet. 2000;355(9220):2013–4.  https://doi.org/10.1016/S0140-6736(00)02345-X.PubMedCrossRefGoogle Scholar
  94. 94.
    Novotny JA, Fadel JG, Holstege DM, Furr HC, Clifford AJ. This kinetic, bioavailability, and metabolism study of RRR-alpha-tocopherol in healthy adults suggests lower intake requirements than previous estimates. J Nutr. 2012;142(12):2105–11.  https://doi.org/10.3945/jn.112.166462.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Weber P, Bendich A, Machlin LJ. Vitamin E and human health: rationale for determining recommended intake levels. Nutrition. 1997;13(5):450–60.PubMedCrossRefGoogle Scholar
  96. 96.
    Peter S, Moser U, Pilz S, Eggersdorfer M, Weber P. The challenge of setting appropriate intake recommendations for vitamin E: considerations on status and functionality to define nutrient requirements. Int J Vitam Nutr Res. 2013;83(2):129–36.  https://doi.org/10.1024/0300-9831/a000153.PubMedCrossRefGoogle Scholar
  97. 97.
    Meydani SN, Leka LS, Fine BC, Dallal GE, Keusch GT, Singh MF, et al. Vitamin E and respiratory tract infections in elderly nursing home residents: a randomized controlled trial. JAMA. 2004;292(7):828–36.  https://doi.org/10.1001/jama.292.7.828.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Milman U, Blum S, Shapira C, Aronson D, Miller-Lotan R, Anbinder Y, et al. Vitamin E supplementation reduces cardiovascular events in a subgroup of middle-aged individuals with both type 2 diabetes mellitus and the haptoglobin 2-2 genotype: a prospective double-blinded clinical trial. Arterioscler Thromb Vasc Biol. 2008;28(2):341–7.  https://doi.org/10.1161/ATVBAHA.107.153965.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Chalasani N, Younossi Z, Lavine JE, Diehl AM, Brunt EM, Cusi K, et al. The diagnosis and management of non-alcoholic fatty liver disease: practice guideline by the American Gastroenterological Association, American Association for the Study of Liver Diseases, and American College of Gastroenterology. Gastroenterology. 2012;142(7):1592–609.  https://doi.org/10.1053/j.gastro.2012.04.001.PubMedCrossRefGoogle Scholar
  100. 100.
    Dysken MW, Sano M, Asthana S, Vertrees JE, Pallaki M, Llorente M, et al. Effect of vitamin E and memantine on functional decline in Alzheimer disease: the TEAM-AD VA cooperative randomized trial. JAMA. 2014;311(1):33–44.  https://doi.org/10.1001/jama.2013.282834.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Horwitt MK. Vitamin E and lipid metabolism in man. Am J Clin Nutr. 1960;8:451–61.PubMedCrossRefGoogle Scholar
  102. 102.
    Farrell PM, Bieri JG, Fratantoni JF, Wood RE, di Sant’Agnese PA. The occurrence and effects of human vitamin E deficiency. A study in patients with cystic fibrosis. J Clin Invest. 1977;60(1):233–41.  https://doi.org/10.1172/JCI108760.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Cynamon HA, Milov DE, Valenstein E, Wagner M. Effect of vitamin E deficiency on neurologic function in patients with cystic fibrosis. J Pediatr. 1988;113(4):637–40.PubMedCrossRefGoogle Scholar
  104. 104.
    Elias E, Muller DP, Scott J. Association of spinocerebellar disorders with cystic fibrosis or chronic childhood cholestasis and very low serum vitamin E. Lancet. 1981;2(8259):1319–21.PubMedCrossRefGoogle Scholar
  105. 105.
    Sokol RJ, Reardon MC, Accurso FJ, Stall C, Narkewicz M, Abman SH, et al. Fat-soluble-vitamin status during the first year of life in infants with cystic fibrosis identified by screening of newborns. Am J Clin Nutr. 1989;50(5):1064–71.PubMedCrossRefGoogle Scholar
  106. 106.
    Stead RJ, Muller DP, Matthews S, Hodson ME, Batten JC. Effect of abnormal liver function on vitamin E status and supplementation in adults with cystic fibrosis. Gut. 1986;27(6):714–8.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Winklhofer-Roob BM, Tuchschmid PE, Molinari L, Shmerling DH. Response to a single oral dose of all-rac-alpha-tocopheryl acetate in patients with cystic fibrosis and in healthy individuals. Am J Clin Nutr. 1996;63(5):717–21.PubMedCrossRefGoogle Scholar
  108. 108.
    Winklhofer-Roob BM, van’t Hof MA, Shmerling DH. Long-term oral vitamin E supplementation in cystic fibrosis patients: RRR-alpha-tocopherol compared with all-rac-alpha-tocopheryl acetate preparations. Am J Clin Nutr. 1996;63(5):722–8.PubMedCrossRefGoogle Scholar
  109. 109.
    Biesalski HK, Bohles H, Esterbauer H, Furst P, Gey F, Hundsdorfer G, et al. Antioxidant vitamins in prevention. Clin Nutr. 1997;16(3):151–5.PubMedCrossRefGoogle Scholar
  110. 110.
    Gey KF. Prospects for the prevention of free radical disease, regarding cancer and cardiovascular disease. Br Med Bull. 1993;49(3):679–99.PubMedCrossRefGoogle Scholar
  111. 111.
    Gey KF. Cardiovascular disease and vitamins. Concurrent correction of ‘suboptimal’ plasma antioxidant levels may, as important part of ‘optimal’ nutrition, help to prevent early stages of cardiovascular disease and cancer, respectively. Bibl Nutr Dieta. 1995;52:75–91.Google Scholar
  112. 112.
    Weinstein SJ, Wright ME, Lawson KA, Snyder K, Mannisto S, Taylor PR, et al. Serum and dietary vitamin E in relation to prostate cancer risk. Cancer Epidemiol Biomark Prev. 2007;16(6):1253–9.  https://doi.org/10.1158/1055-9965.EPI-06-1084.CrossRefGoogle Scholar
  113. 113.
    Goyal A, Terry MB, Siegel AB. Serum antioxidant nutrients, vitamin A, and mortality in U.S. Adults. Cancer Epidemiol Biomark Prev. 2013;22(12):2202–11.  https://doi.org/10.1158/1055-9965.EPI-13-0381.CrossRefGoogle Scholar
  114. 114.
    Boaz M, Smetana S, Weinstein T, Matas Z, Gafter U, Iaina A, et al. Secondary prevention with antioxidants of cardiovascular disease in endstage renal disease (SPACE): randomised placebo-controlled trial. Lancet. 2000;356(9237):1213–8.PubMedCrossRefGoogle Scholar
  115. 115.
    Lopes da Silva S, Vellas B, Elemans S, Luchsinger J, Kamphuis P, Yaffe K, et al. Plasma nutrient status of patients with Alzheimer’s disease: systematic review and meta-analysis. Alzheimers Dement. 2014;10(4):485–502.  https://doi.org/10.1016/j.jalz.2013.05.1771.PubMedCrossRefGoogle Scholar
  116. 116.
    Meydani SN. Vitamin E supplementation and in vivo immune response in healthy elderly subjects. JAMA. 1997;277(17):1380.  https://doi.org/10.1001/jama.1997.03540410058031.PubMedCrossRefGoogle Scholar
  117. 117.
    Stephens NG, Parsons A, Schofield PM, Kelly F, Cheeseman K, Mitchinson MJ. Randomised controlled trial of vitamin E in patients with coronary disease: Cambridge Heart Antioxidant Study (CHAOS). Lancet. 1996;347(9004):781–6.PubMedCrossRefGoogle Scholar
  118. 118.
    Lavine JE, Schwimmer JB, Van Natta ML, Molleston JP, Murray KF, Rosenthal P, et al. Effect of vitamin E or metformin for treatment of nonalcoholic fatty liver disease in children and adolescents: the TONIC randomized controlled trial. JAMA. 2011;305(16):1659–68.  https://doi.org/10.1001/jama.2011.520.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Sano M, Ernesto C, Thomas RG, Klauber MR, Schafer K, Grundman M, et al. A controlled trial of selegiline, alpha-tocopherol, or both as treatment for Alzheimer’s disease. The Alzheimer’s disease cooperative study. N Engl J Med. 1997;336(17):1216–22.  https://doi.org/10.1056/NEJM199704243361704.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Szabolcs Péter
    • 1
    Email author
  • Manfred Eggersdorfer
    • 2
  • Peter Weber
    • 3
  1. 1.DSM Nutritional Products Ltd.KaiseraugstSwitzerland
  2. 2.University Medical Center GroningenHanzeplain 1GroningenThe Netherlands
  3. 3.Institute of Nutritional SciencesUniversity of HohenheimStuttgartGermany

Personalised recommendations