Advertisement

Improving the Tourists’ Experience

  • Frederica GonçalvesEmail author
  • João C. Ferreira
  • Pedro Campos
Conference paper
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 544)

Abstract

The Internet of Things (IoT) is part of a new paradigm where it is possible to integrate every sensor to the Internet, allowing it to be even more immersive and pervasive. Mastering these technologies, such as pervasive and smart places, is a challenge, especially when the goal is to achieve a closer interaction between citizens and applications. The rapid development and exciting innovation create an opportunity to stimulate a variety of new tools for tourists. Taking into account the versatility of IoT sensors for different applications, in this position paper we outline our perspective of ambient intelligence in smart tourism.

Keywords

BLE Beacon Mobile device Personalization Ambient intelligence Internet of Things Big data Tourism Text retrieval Social network 

References

  1. 1.
    Bardram, J.E., Doryab, A.: Activity analysis: applying activity theory to analyze complex work in hospitals. In: CSCW, Hangzhou, China (2011)Google Scholar
  2. 2.
    Cook, D., Augusto, J., Jakkula, V.: Ambient Intelligence: technologies, applications, and opportunities. Perv. Mob. Comput. 5, 277–298 (2009)CrossRefGoogle Scholar
  3. 3.
    Dibitonto, M.: New Challenges in HCI: Ambient Intelligence for Human Performance Improvement (2011)Google Scholar
  4. 4.
    Friedewald, M., Costa, O., Punie, Y., Alahuhta, P., Hienonen, S.: Perpectives of ambient intelligence in the home environment. Telemat. Inform. 22, 221–238 (2005)CrossRefGoogle Scholar
  5. 5.
    Aarts, E., Marzano, S.: The new Everyday: Views on Ambient Intelligence. 010 Publishers, Rotterdam (2003)CrossRefGoogle Scholar
  6. 6.
    Weiser, M.: The computer for the twenty-century. Sci. Am. 265, 94–104 (1991)CrossRefGoogle Scholar
  7. 7.
    Hopper, A.: Satient Computing. University of Cambridge (1999)Google Scholar
  8. 8.
    Pantic, M.: Face for ambient Intelligence. In: Cai, Y., Abascal, J. (eds.) Ambient Intelligence in Everyday Life, pp. 32–66. Springer, Heidelberg (2006).  https://doi.org/10.1007/11825890CrossRefGoogle Scholar
  9. 9.
    Nakatsu, R.: Integration of multimedia and art for new human-interaction communications. In: Proceedings of the Pacific Rim International Conference of Artificial Intelligence (2002)Google Scholar
  10. 10.
    Xu, R., et al.: Speaker identification and speech recognition using phased arrays. In: Cai, Y., Abascal, J. (eds.) Ambient Intelligence in Everyday Life. LNCS, vol. 3864, pp. 227–238. Springer, Heidelberg (2006).  https://doi.org/10.1007/11825890_11CrossRefGoogle Scholar
  11. 11.
    Ge, S., Yang, Y., Lee, T.: Hand gesture recognition and tracking based on distributed locally linear embedding. Image Vis. Comput. 26, 1607–1620 (2008)CrossRefGoogle Scholar
  12. 12.
    Boes, K., Buhalis, D., Inversini, A.: Conceptualising smart tourism destination dimensions. In: Tussyadiah, I., Inversini, A. (eds.) Information and Communication Technologies in Tourism, pp. 391–403. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-14343-9_29CrossRefGoogle Scholar
  13. 13.
    Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M.: Internet of Things (IoT): a vision, architectural elements, and future directions. Future Gen. Comput. Syst. 29, 1645–1660 (2013)CrossRefGoogle Scholar
  14. 14.
    Talari, S., Shafie-khah, P., Siano, P., Loia, V., Tommasetti, A., Catalão, P.: A review of smart cities based on the Internet of Things concept. Energies 10, 421 (2017)CrossRefGoogle Scholar
  15. 15.
  16. 16.
  17. 17.
    Nield, D.: IBeacon Technology Powers a New Smart Public Transport Project in Bucharest. http://www.gizmag.com/ibeacon-smart-public-transport-bucharest/37901/
  18. 18.
    Gomez, C., Oller, J., Paradells, J.: Overview and evaluation of bluetooth low energy: an emerging low-power wireless technology. Sensors 12, 11734–11753 (2012)CrossRefGoogle Scholar
  19. 19.
  20. 20.
    Gretzel, U., Sigala, M., Xiang, Z.: Smart tourism: foundations and developments. Electron. Mark. 25, 179–188 (2015)CrossRefGoogle Scholar
  21. 21.
    Gretzel, U., Werthner, H., Koo, C., Lamsfus, C.: Conceptual foundations for understanding smart tourism ecosystems. Comput. Hum. Behav. 50, 558–563 (2015)CrossRefGoogle Scholar
  22. 22.
    Samsonov, P., Heller, F., Schöning, J.: Autobus: selection of passenger seats based on viewing experience for touristic tours. In: MUM, Stuttgart, Germany (2017)Google Scholar
  23. 23.
    Poon, A.: Tourism, Technology and Competitive Strategies. CAB, Wallingford (1993)Google Scholar
  24. 24.
    Xiang, Z.: From digitization to the age of acceleration: on information technology and tourism. Tour. Manag. Perspect. 25, 147–150 (2018)CrossRefGoogle Scholar
  25. 25.
    Fuchs, M., Höpken, W., Lexhagen, M.: Big data analytics for knowledge generation in tourism destinations – a case from Sweden. J. Destin. Mark. Manag. 3, 198–209 (2014)Google Scholar
  26. 26.
    Pries, K., Dunnigan, R.: Big Data Analytics: A Practical Guide for Managers. CRC Press, Boca Raton (2015)CrossRefGoogle Scholar
  27. 27.
    Song, H., Liu, H.: Predicting tourist demand using big data. In: Xiang, Z., Fesenmaier, D.R. (eds.) Analytics in Smart Tourism Design, Concepts and Methods. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-44263-1Google Scholar
  28. 28.
    Ballagas, R., et al.: REXplorer: a mobile, pervasive spell-casting game for tourists. In: CHI 2007 Extended Abstracts on Human Factors in Computing Systems (2007)Google Scholar
  29. 29.
    Schöning, J., Hecht, B., Starosielski, N.: Evaluating automatically generated location-based stories for tourists. In: CHI 2008 Extended Abstracts on Human Factors in Computing Systems (2008)Google Scholar
  30. 30.
    Marshall, P., Morris, R., Rogers, Y., Kreitmayer, S.: Rethinking ‘multi-user’: an in-the-wild study of how groups approach a walk-up-and-use tabletop interface. In: CHI 2011 Proceedings of the 29th Annual ACM Conference on Human Factors in Computing Systems (2011)Google Scholar
  31. 31.
    Zhang, L., Sun, X.: Designing a trip planner application for groups: exploring group tourists? Trip planning requirements. In: CHI 2016 Extended Abstracts on Human Factors in Computing Systems (2016)Google Scholar
  32. 32.
    Potter, L., Carter, L., Coghlan, A.: Virtual Reality and nature based tourism: an opportunity for operators and visitors. In: OzCHI 2016 Proceedings of the 28th Australian Conference on Computer-Human Interaction, Launceston, Tasmania, Australia (2016)Google Scholar
  33. 33.
    Khan, M.S., Woo, M., Nam, K., Chathoth, P.K.: Smart city and smart tourism: a case of Dubai. Sustainability 9, 2279 (2017)CrossRefGoogle Scholar
  34. 34.
    Baeta, N., Fernandes, A., Ferreira, J.: Tracking users mobility at public transportation. In: Bajo, J., et al. (eds.) PAAMS 2016. CCIS, vol. 616, pp. 224–235. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-39387-2_19CrossRefGoogle Scholar
  35. 35.
    Chiu, J.P., Nichols, E.: Named entity recognition with bidirectional LSTM-CNNs. Trans. Assoc. Comput. Linguist. 4, 357–370 (2016)Google Scholar
  36. 36.
    Ribeiro, R., Matos, D.: Revisiting centrality-as-relevance: support sets and similarity as geometric proximity. J. Artif. Intell. Res. 42, 275–308 (2011)zbMATHGoogle Scholar
  37. 37.
    Li, Q., Shah, S., Fang, R., Nourbakhsh, A., Liu, X.: Tweet sentiment analysis by incorporating sentiment-specific word embedding and weighted text features. In: Web Intelligence, 2016 IEEE/WIC/ACM International Conference, pp. 568–571. IEEE (2016)Google Scholar
  38. 38.
    Ekman, P., Friesen, W.: Constants across cultures in the face and emotion. J. Pers. Soc. Psychol. 17, 124 (1971)CrossRefGoogle Scholar
  39. 39.
    Jain, V.K., Kumar, S., Fernandes, S.L.: Extraction of emotions from multilingual text using intelligent text processing and computational linguistics. J. Comput. Sci. 21, 316–326 (2017)CrossRefGoogle Scholar
  40. 40.
  41. 41.
    Elam, J.J., Mead, M.: Can software influence creativity? Inf. Syst. Res. 1, 1–22 (1990)CrossRefGoogle Scholar
  42. 42.
    Gross, M., Yi-Luen Do, E.: Educating the new makers: cross-disciplinary creativity. Leonardo J. Int. Soc. Arts Sci. Technol. 42, 210–215 (2009)Google Scholar
  43. 43.
    Hegde, R., Walia, G.: How to enhance the creativity of software. In: Proceedings of the 26th IEEE International Conference on Software Engineering and Knowledge Engineering, Vancouver, Canada (2014)Google Scholar
  44. 44.
    Shneiderman, B.: Leonardo’s Laptop: Human Needs and the New Computing Technologies. MIT Press, Cambridge (2002)Google Scholar
  45. 45.
    Engeström, Y.: Learning by Expanding: An Activity Theoretical Approach to Development Research. Orienta-Konsultit, Helsinki (1987)Google Scholar
  46. 46.
    Jeong, J., Kim, M., Yoo, K.: A content oriented smart education system based on cloud computing. Int. J. Multimed. Ubiquit. Eng. 8, 313–328 (2013)CrossRefGoogle Scholar
  47. 47.
    Ferreira, J.C., Porfírio, F.: Towards an academic social network for Bologna Process In: Proceedings of the International Joint Conferences on Computer, Information, and Systems Sciences, and Engineering (CISSE 2009), December 2009Google Scholar
  48. 48.
    Kinshunk, S., Sutinen, E., Goh, T.: Mobile technologies in support of distance learning. Asian J. Distance Educ. 1, 60–68 (2003)Google Scholar
  49. 49.
    Revisiting Centrality-as-Relevance: Support Sets and Similarity as Geometric ProximityGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2019

Authors and Affiliations

  • Frederica Gonçalves
    • 1
    Email author
  • João C. Ferreira
    • 2
  • Pedro Campos
    • 1
  1. 1.Madeira-ITIUniversity of MadeiraFunchalPortugal
  2. 2.Information Sciences, Technologies and Architecture Research Center (ISTAR-IUL)Instituto Universitário de Lisboa (ISCTE-IUL)LisbonPortugal

Personalised recommendations