Advertisement

Dynamical Structure Factor of the Lieb–Liniger Model and Drag Force Due to a Potential Barrier

  • Guillaume LangEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

In this chapter, whose original results are mostly based on Refs. [1, 2], I take the next step towards the full characterization of a 1D Bose gas through its correlation functions. Going beyond static correlation functions, dynamical ones in energy-momentum space provide another possible way to understand a system, but their richer structure makes them harder to evaluate, and their theoretical study involves fairly advanced techniques. Two observables usually attract peculiar attention: the Fourier transform of Green’s function, a.k.a. the spectral function, and of the density-density correlations, known as the dynamical structure factor. The latter is quite sensitive to both interactions and dimensionality, providing an ideal observable to probe their joint effect.

References

  1. 1.
    G. Lang, F. Hekking, A. Minguzzi, Dynamic structure factor and drag force in a one-dimensional Bose gas at finite temperature. Phys. Rev. A 91, 063619 (2015)ADSCrossRefGoogle Scholar
  2. 2.
    G. Lang, F. Hekking, A. Minguzzi, Ground-state energy and excitation spectrum of the Lieb–Liniger model: accurate analytical results and conjectures about the exact solution. SciPost Phys. 3, 003 (2017)ADSCrossRefGoogle Scholar
  3. 3.
    A.J. Leggett, Superfluidity. Rev. Mod. Phys. 71, S318 (1999)CrossRefGoogle Scholar
  4. 4.
    S. Balibar, The discovery of superfluidity. J. Low Temp. Phys. 146, 441–470 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    A. Griffin, New light on the intriguing history of superfluidity in liquid \({^4}\)He. J. Phys. Condens. Matter 21, 164220 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    M. Albert, Superfluidité et localisation quantique dans les condensats de Bose-Einstein unidimensionnels. Ph.D. thesis, Paris XI University (2009)Google Scholar
  7. 7.
    J.F. Allen, H. Jones, New phenomena connected with heat flow in helium II. Nature 141, 243–244 (1938)ADSCrossRefGoogle Scholar
  8. 8.
    W.H. Keesom, A.P. Keesom, New measurements on the specific heat of liquid helium. Physica 2, 557 (1935)ADSCrossRefGoogle Scholar
  9. 9.
    P. Kapitza, Viscosity of liquid helium below the \(\lambda \)-point. Nature 141, 74 (1938)ADSCrossRefGoogle Scholar
  10. 10.
    J.F. Allen, A.D. Misener, Flow of liquid helium II. Nature 141, 75 (1938)ADSCrossRefGoogle Scholar
  11. 11.
    J. Bardeen, L.N. Cooper, J.R. Schrieffer, Microscopic theory of superconductivity. Phys. Rev. 106, 162 (1957)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    J. Bardeen, L.N. Cooper, J.R. Schrieffer, Theory of superconductivity. Phys. Rev. 108, 1175 (1957)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    D.D. Osheroff, R.C. Richardson, D.M. Lee, Evidence for a new phase of solid He\(^3\). Phys. Rev. Lett. 28, 885 (1972)ADSCrossRefGoogle Scholar
  14. 14.
    A.J. Leggett, A theoretical description of the new phases of \({^3}\)He. Rev. Mod. Phys. 47, 331 (1975)ADSCrossRefGoogle Scholar
  15. 15.
    L. Tisza, The theory of liquid helium. Phys. Rev. 72, 838 (1947)ADSCrossRefGoogle Scholar
  16. 16.
    F. London, The \(\lambda \)-phenomenon of liquid helium and the Bose–Einstein degeneracy. Nature 141, 643–644 (1938)ADSCrossRefGoogle Scholar
  17. 17.
    L. Tisza, Transport phenomena in helium II. Nature 141, 913–913 (1938)ADSCrossRefGoogle Scholar
  18. 18.
    L.D. Landau, The theory of superfluidity of helium II, J. Phys. (Moscow) 5, 71 (1941)Google Scholar
  19. 19.
    C. Raman, M. Köhl, R. Onofrio, D.S. Durfee, C.E. Kuklewicz, Z. Hadzibabic, W. Ketterle, Evidence for a critical velocity in a Bose-Einstein condensed gas. Phys. Rev. Lett. 83, 2502 (1999)ADSCrossRefGoogle Scholar
  20. 20.
    R. Onofrio, C. Raman, J.M. Vogels, J.R. Abo-Shaeer, A.P. Chikkatur, W. Ketterle, Observation of superfluid flow in a Bose-Einstein condensed gas. Phys. Rev. Lett. 85, 2228 (2000)ADSCrossRefGoogle Scholar
  21. 21.
    D.E. Miller, J.K. Chin, C.A. Stan, Y. Liu, W. Setiawan, C. Sanner, W. Ketterle, Critical velocity for superfluid flow across the BEC-BCS crossover. Phys. Rev. Lett. 99, 070402 (2007)ADSCrossRefGoogle Scholar
  22. 22.
    W. Weimer, K. Morgener, V.P. Singh, J. Siegl, K. Hueck, N. Luick, L. Mathey, H. Moritz, Critical velocity in the BEC-BCS crossover. Phys. Rev. Lett. 114, 095301 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    M. Delehaye, S. Laurent, I. Ferrier-Barbut, S. Jin, F. Chevy, C. Salomon, Critical velocity and dissipation of an ultracold Bose-Fermi counterflow. Phys. Rev. Lett. 115, 265303 (2015)ADSCrossRefGoogle Scholar
  24. 24.
    M. Greiner, O. Mandel, T. Esslinger, T.W. Hänsch, I. Bloch, Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39 (2002)ADSCrossRefGoogle Scholar
  25. 25.
    A. Amo, J. Lefrère, S. Pigeon, C. Adrados, C. Ciuti, I. Carusotto, R. Houdré, E. Giacobino, A. Bramati, Superfluidity of polaritons in semiconductor microcavities. Nat. Phys. 5, 805–810 (2009)zbMATHCrossRefGoogle Scholar
  26. 26.
    T. Boulier, E. Cancellieri, N.D. Sangouard, Q. Glorieux, A.V. Kavokin, D.M. Whittaker, E. Giacobino, A. Bramati, Injection of orbital angular momentum and storage of quantized vortices in polariton superfluids. Phys. Rev. Lett. 116, 116402 (2016)ADSCrossRefGoogle Scholar
  27. 27.
    A. Gallemí, M. Guilleumas, M. Richard, A. Minguzzi, Interaction-enhanced flow of a polariton persistent current in a ring (2017), arXiv:1707.07910 [cond-mat.quant-gas]
  28. 28.
    G. Lerario, A. Fieramosca, F. Barachati, D. Ballarini, K.S. Daskalakis, L. Dominici, M. De Giorgi, S.A. Maier, G. Gigli, S. Kéna-Cohen, D. Sanvitto, Room-temperature superfluidity in a polariton condensate. Nat. Phys. 2228 (2017)Google Scholar
  29. 29.
    J. Keeling, N.G. Berloff, Condensed-matter physics: going with the flow. Nature 457, 273–274 (2009)ADSCrossRefGoogle Scholar
  30. 30.
    G.B. Hess, W.M. Fairbank, Measurements of angular momentum in superfluid helium. Phys. Rev. Lett. 19, 216 (1967)ADSCrossRefGoogle Scholar
  31. 31.
    L. Onsager, Statistical hydrodynamics. Il Nuovo Cimento 6, 279–287 (1949)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    N. Bogoliubov, On the theory of superfluidity. J. Phys. USSR 11, 23 (1947)MathSciNetGoogle Scholar
  33. 33.
    R. Desbuquois, L. Chomaz, T. Yefsah, J. Léonard, J. Beugnon, C. Weitenberg, J. Dalibard, Superfluid behaviour of a two-dimensional Bose gas. Nat. Phys. 8, 645 (2012)CrossRefGoogle Scholar
  34. 34.
    V.P. Singh, C. Weitenberg, J. Dalibard, L. Mathey, Superfluidity and relaxation dynamics of a laser-stirred two-dimensional Bose gas. Phys. Rev. A 95, 043631 (2017)ADSCrossRefGoogle Scholar
  35. 35.
    Y. Castin, I. Ferrier-Barbut, C. Salomon, La vitesse critique de Landau d’une particule dans un superfluide de fermions. C.R. Phys. 16, 241–253 (2015)ADSCrossRefGoogle Scholar
  36. 36.
    R.P. Feynman, Chapter II application of quantum mechanics to liquid helium, Progress in Low Temperature Physics, vol. 1, (Elsevier, 1955), pp. 17–53Google Scholar
  37. 37.
    J.S. Stiessberger, W. Zwerger, Critical velocity of superfluid flow past large obstacles in Bose-Einstein condensates. Phys. Rev. A 62, 061601(R) (2000)ADSCrossRefGoogle Scholar
  38. 38.
    V. Hakim, Nonlinear Schrödinger flow past an obstacle in one dimension. Phys. Rev. E 55, 2835 (1997)ADSCrossRefGoogle Scholar
  39. 39.
    N. Pavloff, Breakdown of superfluidity of an atom laser past an obstacle. Phys. Rev. A 66, 013610 (2002)ADSCrossRefGoogle Scholar
  40. 40.
    P.O. Fedichev, G.V. Shlyapnikov, Critical velocity in cylindrical Bose-Einstein condensates. Phys. Rev. A 63, 045601 (2001)ADSCrossRefGoogle Scholar
  41. 41.
    G.E. Astrakharchik, L.P. Pitaevskii, Motion of a heavy impurity through a Bose-Einstein condensate. Phys. Rev. A 70, 013608 (2004)ADSCrossRefGoogle Scholar
  42. 42.
    P.-É. Larré, I. Carusotto, Optomechanical signature of a frictionless flow of superfluid light. Phys. Rev. A 91, 053809 (2015)ADSCrossRefGoogle Scholar
  43. 43.
    A.Y. Cherny, J.-S. Caux, J. Brand, Theory of superfluidity and drag force in the one-dimensional Bose gas. Front. Phys. 7(1), 54–71 (2012)CrossRefGoogle Scholar
  44. 44.
    J. Stenger, S. Inouye, A.P. Chikkatur, D.M. Stamper-Kurn, D.E. Pritchard, W. Ketterle, Bragg spectroscopy of a Bose-Einstein condensate. Phys. Rev. Lett. 82, 4569 (1999)ADSCrossRefGoogle Scholar
  45. 45.
    D.M. Stamper-Kurn, A.P. Chikkatur, A. Görlitz, S. Inouye, S. Gupta, D.E. Pritchard, W. Ketterle, Excitation of phonons in a Bose-Einstein condensate by light scattering. Phys. Rev. Lett. 83, 2876 (1999)ADSCrossRefGoogle Scholar
  46. 46.
    P. Vignolo, A. Minguzzi, M.P. Tosi, Light scattering from a degenerate quasi-one-dimensional confined gas of noninteracting fermions. Phys. Rev. A 64, 023421 (2001)ADSCrossRefGoogle Scholar
  47. 47.
    J. Brand, A.Y. Cherny, Dynamic structure factor of the one-dimensional Bose gas near the Tonks-Girardeau limit. Phys. Rev. A 72, 033619 (2005)ADSCrossRefGoogle Scholar
  48. 48.
    N.W. Ashcroft, N.D. Mermin, Solid State Physics, (Brooks/Cole, Pacific Grove, CA, 1976)Google Scholar
  49. 49.
    P. Engels, C. Atherton, Stationary and nonstationary fluid flow of a Bose-Einstein condensate through a penetrable barrier. Phys. Rev. Lett. 99, 160405 (2007)ADSCrossRefGoogle Scholar
  50. 50.
    D. Dries, S.E. Pollack, J.M. Hitchcock, R.G. Hulet, Dissipative transport of a Bose-Einstein condensate. Phys. Rev. A 82, 033603 (2010)ADSCrossRefGoogle Scholar
  51. 51.
    V.P. Singh, W. Weimer, K. Morgener, J. Siegl, K. Hueck, N. Luick, H. Moritz, L. Mathey, Probing superfluidity of Bose-Einstein condensates via laser stirring. Phys. Rev. A 93, 023634 (2016)ADSCrossRefGoogle Scholar
  52. 52.
    F. Pinsker, Gaussian impurity moving through a Bose-Einstein superfluid. Phys. B 521, 36–42 (2017)ADSCrossRefGoogle Scholar
  53. 53.
    A.Y. Cherny, J. Brand, Polarizability and dynamic structure factor of the one-dimensional Bose gas near the Tonks-Girardeau limit at finite temperatures. Phys. Rev. A 73, 023612 (2006)ADSCrossRefGoogle Scholar
  54. 54.
    J.-S. Caux, Correlation functions of integrable models: a description of the ABACUS algorithm. J. Math. Phys. 50, 095214 (2009)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  55. 55.
    J.-S. Caux, P. Calabrese, Dynamical density-density correlations in the one-dimensional Bose gas. Phys. Rev. A 74, 031605(R) (2006)ADSCrossRefGoogle Scholar
  56. 56.
    M. Panfil, J.-S. Caux, Finite-temperature correlations in the Lieb-Liniger one-dimensional Bose gas. Phys. Rev. A 89, 033605 (2014)ADSCrossRefGoogle Scholar
  57. 57.
    M. Pustilnik, M. Khodas, A. Kamenev, L.I. Glazman, Dynamic response of one-dimensional interacting fermions. Phys. Rev. Lett. 96, 196405 (2006)ADSCrossRefGoogle Scholar
  58. 58.
    M. Khodas, M. Pustilnik, A. Kamenev, L.I. Glazman, Fermi-Luttinger liquid: spectral function of interacting one-dimensional fermions. Phys. Rev. B 76, 155402 (2007)ADSCrossRefGoogle Scholar
  59. 59.
    M. Khodas, M. Pustilnik, A. Kamenev, L.I. Glazman, Dynamics of excitations in a one-dimensional Bose liquid. Phys. Rev. Lett. 99, 110405 (2007)ADSCrossRefGoogle Scholar
  60. 60.
    A. Imambekov, L.I. Glazman, Exact exponents of edge singularities in dynamic correlation functions of 1D Bose gas. Phys. Rev. Lett. 100, 206805 (2008)ADSCrossRefGoogle Scholar
  61. 61.
    A. Imambekov, L.I. Glazman, Universal theory of nonlinear Luttinger liquids. Science 323, 228–231 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  62. 62.
    P. Calabrese, J.-S. Caux, Dynamics of the attractive 1D Bose gas: analytical treatment from integrability. J. Stat. Mech. P08032 (2007)Google Scholar
  63. 63.
    A.Y. Cherny, J. Brand, Approximate expression for the dynamic structure factor in the Lieb-Liniger model. J. Phys. Conf. Ser. 129, 012051 (2008)CrossRefGoogle Scholar
  64. 64.
    G. Bertaina, M. Motta, M. Rossi, E. Vitali, D.E. Galli, One-dimensional Liquid \({^4}\) He: dynamical properties beyond Luttinger-liquid theory. Phys. Rev. Lett. 116, 135302 (2016)Google Scholar
  65. 65.
    N. Fabbri, M. Panfil, D. Clément, L. Fallani, M. Inguscio, C. Fort, J.-S. Caux, Dynamical structure factor of one-dimensional Bose gases: experimental signatures of beyond-Luttinger-liquid physics. Phys. Rev. A 91, 043617 (2015)Google Scholar
  66. 66.
    F. Meinert, M. Panfil, M.J. Mark, K. Lauber, J.-S. Caux, H.-C. Nägerl, Probing the excitations of a Lieb-Liniger gas from weak to strong coupling. Phys. Rev. Lett. 115, 085301 (2015)ADSCrossRefGoogle Scholar
  67. 67.
    A.Y. Cherny, J.-S. Caux, J. Brand, Decay of superfluid currents in the interacting one-dimensional Bose gas. Phys. Rev. A 80, 043604 (2009)ADSCrossRefGoogle Scholar
  68. 68.
    A.Y. Cherny, J. Brand, Dynamic and static density-density correlations in the one-dimensional Bose gas: exact results and approximations. Phys. Rev. A 79, 043607 (2009)ADSCrossRefGoogle Scholar
  69. 69.
    M.A. Cazalilla, Bosonizing one-dimensional cold atomic gases. J. Phys. B Atomic, Mol. Opt. Phys. 37, 7 S1 (2004)ADSCrossRefGoogle Scholar
  70. 70.
    M. Zvonarev, Correlations in 1D boson and fermion systems: exact results, Ph.D. Thesis, Copenhagen University, Denmark (2005)Google Scholar
  71. 71.
    Z. Ristivojevic, Excitation spectrum of the Lieb-Liniger model. Phys. Rev. Lett. 113, 015301 (2014)ADSCrossRefGoogle Scholar
  72. 72.
    M. Wadati, Solutions of the Lieb-Liniger integral equation. J. Phys. Soc. Jpn. 71, 2657 (2002)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  73. 73.
    V.E. Korepin, N.M. Bogoliubov, A.G. Izergin, Quantum Inverse Scattering Method and Correlation Functions, (Cambridge University Press, Cambridge, 1993)Google Scholar
  74. 74.
    A. Shashi, L.I. Glazman, J.-S. Caux, A. Imambekov, Nonuniversal prefactors in the correlation functions of one-dimensional quantum liquids. Phys. Rev. B 84, 045408 (2011)ADSCrossRefGoogle Scholar
  75. 75.
    A. Shashi, M. Panfil, J.-S. Caux, A. Imambekov, Exact prefactors in static and dynamic correlation functions of one-dimensional quantum integrable models: applications to the Calogero-Sutherland, Lieb-Liniger, and XXZ models. Phys. Rev. B 85, 155136 (2012)ADSCrossRefGoogle Scholar
  76. 76.
    E.H. Lieb, Exact analysis of an interacting Bose gas. II. the excitation spectrum. Phys. Rev. 130, 1616 (1963)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  77. 77.
    P.P. Kulish, S.V. Manakov, L.D. Fadeev, Comparison of the exact quantum and quasiclassical results for the nonlinear Schrödinger equation. Theor. Math. Phys. 28, 615–620 (1976)CrossRefGoogle Scholar
  78. 78.
    M. Khodas, A. Kamenev, L.I. Glazman, Photosolitonic effect. Phys. Rev. A 78, 053630 (2008)ADSCrossRefGoogle Scholar
  79. 79.
    T. Karpiuk, P. Deuar, P. Bienias, E. Witkowska, K. Pawłowski, M. Gajda, K. Rza̧\({\dot{z}}\)ewski, M. Brewczyk, Spontaneous solitons in the thermal equilibrium of a quasi-1D Bose gas. Phys. Rev. Lett. 109, 205302 (2012)Google Scholar
  80. 80.
    A. Syrwid, K. Sacha, Lieb-Liniger model: emergence of dark solitons in the course of measurements of particle positions. Phys. Rev. A 92, 032110 (2015)ADSCrossRefGoogle Scholar
  81. 81.
    T. Karpiuk, T. Sowiński, M. Gajda, K. Rza̧\({\dot{z}}\)ewski, M. Brewczyk, Correspondence between dark solitons and the type II excitations of the Lieb-Liniger model. Phys. Rev. A 91, 013621 (2015)Google Scholar
  82. 82.
    J. Sato, R. Kanamoto, E. Kaminishi, T. Deguchi, Quantum states of dark solitons in the 1D Bose gas. New J. Phys. 18, 075008 (2016)ADSCrossRefGoogle Scholar
  83. 83.
    M. Pustilnik, K.A. Matveev, Low-energy excitations of a one-dimensional Bose gas with weak contact repulsion. Phys. Rev. B 89, 100504(R) (2014)ADSCrossRefGoogle Scholar
  84. 84.
    J.C. Cooke, A solution of Tranter’s dual integral equations problem. Q. J. Mech. Appl. Math. 9, 103–110 (1956)MathSciNetzbMATHCrossRefGoogle Scholar
  85. 85.
    L. Farina, Water wave radiation by a heaving submerged horizontal disk very near the free surface. Phys. Fluids 22, 057102 (2010)ADSzbMATHCrossRefGoogle Scholar
  86. 86.
    K.A. Matveev, A. Furusaki, Decay of fermionic quasiparticles in one-dimensional quantum liquids. Phys. Rev. Lett. 111, 256401 (2013)ADSCrossRefGoogle Scholar
  87. 87.
    Z. Ristivojevic, K.A. Matveev, Decay of Bogoliubov excitations in one-dimensional Bose gases. Phys. Rev. B 94, 024506 (2016)ADSCrossRefGoogle Scholar
  88. 88.
    K.A. Matveev, M. Pustilnik, Effective mass of elementary excitations in Galilean-invariant integrable models. Phys. Rev. B 94, 115436 (2016)ADSCrossRefGoogle Scholar
  89. 89.
    S.S. Shamailov, J. Brand, Dark-soliton-like excitations in the Yang-Gaudin gas of attractively interacting fermions. New J. Phys. 18, 075004 (2016)ADSCrossRefGoogle Scholar
  90. 90.
    M. Motta, E. Vitali, M. Rossi, D.E. Galli, G. Bertaina, Dynamical structure factor of one-dimensional hard rods. Phys. Rev. A 94, 043627 (2016)ADSCrossRefGoogle Scholar
  91. 91.
    A. Petković, Z. Ristivojevic, Spectrum of elementary excitations in Galilean-invariant integrable models. Phys. Rev. Lett. 120, 165302 (2018)ADSCrossRefGoogle Scholar
  92. 92.
    P.-S. He, Y.-H. Zhu, W.-M. Liu, Drag force on a moving impurity in a spin-orbit-coupled Bose-Einstein condensate. Phys. Rev. A 89, 053615 (2014)ADSCrossRefGoogle Scholar
  93. 93.
    R. Liao, O. Fialko, J. Brand, U. Zülicke, Noncollinear drag force in Bose-Einstein condensates with Weyl spin-orbit coupling. Phys. Rev. A 93, 023625 (2016)ADSCrossRefGoogle Scholar
  94. 94.
    M. Albert, T. Paul, N. Pavloff, P. Leboeuf, Breakdown of the superfluidity of a matter wave in a random environment. Phys. Rev. A 82, 011602(R) (2010)ADSCrossRefGoogle Scholar
  95. 95.
    A.Y. Cherny, J.-S. Caux, J. Brand, Landau instability and mobility edges of the interacting one-dimensional Bose gas in weak random potentials. J. Phys. B Atomic Mol. Opt. Phys. 51, 015301 (2018)ADSCrossRefGoogle Scholar
  96. 96.
    D.C. Roberts, Y. Pomeau, Casimir-like force arising from quantum fluctuations in a slowly moving dilute Bose-Einstein condensate. Phys. Rev. Lett. 95, 145303 (2005)ADSCrossRefGoogle Scholar
  97. 97.
    A.G. Sykes, M.J. Davis, D.C. Roberts, Drag force on an impurity below the superfluid critical velocity in a quasi-one-dimensional Bose-Einstein condensate. Phys. Rev. Lett. 103, 085302 (2009)ADSCrossRefGoogle Scholar
  98. 98.
    M. Schecter, A. Kamenev, D.M. Gangardt, A. Lamacraft, Critical velocity of a mobile impurity in one-dimensional quantum liquids. Phys. Rev. Lett. 108, 207001 (2012)ADSCrossRefGoogle Scholar
  99. 99.
    O. Lychkovskiy, Perpetual motion of a mobile impurity in a one-dimensional quantum gas. Phys. Rev. A 89, 033619 (2014)ADSCrossRefGoogle Scholar
  100. 100.
    O. Lychkovskiy, Perpetual motion and driven dynamics of a mobile impurity in a quantum fluid. Phys. Rev. A 91, 040101(R) (2015)ADSCrossRefGoogle Scholar
  101. 101.
    C. Schenke, A. Minguzzi, F.W.J. Hekking, Probing superfluidity of a mesoscopic Tonks-Girardeau gas. Phys. Rev. A 85, 053627 (2012)ADSCrossRefGoogle Scholar
  102. 102.
    O. Gamayun, O. Lychkovskiy, E. Burovski, M. Malcomson, V.V. Cheianov, M.B. Zvonarev, Impact of the injection protocol on an impurity’s stationary state. Phys. Rev. Lett. 120, 220605 (2018)ADSCrossRefGoogle Scholar
  103. 103.
    E. Orignac, R. Citro, S. De Palo, M.-L. Chiofalo, Light scattering in inhomogeneous Tomonaga-Luttinger liquids. Phys. Rev. A 85, 013634 (2012)ADSCrossRefGoogle Scholar
  104. 104.
    C. Castelnovo, J.-S. Caux, S.H. Simon, Driven impurity in an ultracold one-dimensional Bose gas with intermediate interaction strength. Phys. Rev. A 93, 013613 (2016)ADSCrossRefGoogle Scholar
  105. 105.
    N.J. Robinson, J.-S. Caux, R.M. Konik, Motion of a distinguishable impurity in the Bose gas: arrested expansion without a lattice and impurity snaking. Phys. Rev. Lett. 116, 145302 (2016)ADSCrossRefGoogle Scholar
  106. 106.
    O. Gamayun, Quantum Boltzmann equation for a mobile impurity in a degenerate Tonks-Girardeau gas. Phys. Rev. A 89, 063627 (2014)ADSCrossRefGoogle Scholar
  107. 107.
    O. Gamayun, O. Lychkovskiy, V. Cheianov, Kinetic theory for a mobile impurity in a degenerate Tonks-Girardeau gas. Phys. Rev. E 90, 032132 (2014)ADSCrossRefGoogle Scholar
  108. 108.
    A.C. Berceanu, E. Cancellieri, F.M. Marchetti, Drag in a resonantly driven polariton fluid. J. Phys. Condens. Matter 24, 235802 (2012)ADSGoogle Scholar
  109. 109.
    A.B. Migdal, Superfluidity and the moments of inertia of nuclei. JETP 10(1), 176 (1960)MathSciNetzbMATHGoogle Scholar
  110. 110.
    D. Page, M. Prakash, J.M. Lattimer, A.W. Steiner, Rapid cooling of the neutron star in cassiopeia a triggered by neutron superfluidity in dense matter. Phys. Rev. Lett. 106, 081101 (2011)ADSCrossRefGoogle Scholar
  111. 111.
    G.E. Volovik, Superfluid analogies of cosmological phenomena. Phys. Rep. 351, 195–348 (2001)ADSMathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Laboratoire de Physique et de Modélisation des Milieux Condensés (LPMMC)GrenobleFrance

Personalised recommendations