Advertisement

From 3D to 1D and Back to 2D

  • Guillaume LangEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

We perceive the world as what mathematicians call a three-dimensional (3D) Euclidian space, providing a firm natural framework for geometry and physics until the modern times. Higher-dimensional real and abstract spaces have pervaded physics in the course of the twentieth century, through statistical physics where the number of degrees of freedom is comparable to the Avogadro number, quantum physics where huge Hilbert spaces are often involved, general relativity where in addition to a fourth spacetime dimension one considers curvature of a Riemannian manifold, or string theory where more dimensions are considered before compactification.

References

  1. 1.
    Flatland: A Romance of Many Dimensions (1884)Google Scholar
  2. 2.
    C.F. Roos, A. Alberti, D. Meschede, P. Hauke, H. Häffner, Revealing quantum statistics with a pair of distant atoms. Phys. Rev. Lett. 119, 160401 (2017)ADSCrossRefGoogle Scholar
  3. 3.
    J.M. Leinaas, J. Myrrheim, On the theory of identical particles. Il Nuovo Cimento 37, 1 (1977)CrossRefGoogle Scholar
  4. 4.
    F. Wilczek, Quantum mechanics of Fractional-Spin particles. Phys. Rev. Lett. 49, 957 (1982)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    F.D.M. Haldane, Fractional statistics in arbitrary dimensions: a generalization of the pauli principle. Phys. Rev. Lett. 67, 937 (1991)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    A. Kundu, Exact solution of double \(\delta \) function bose gas through an interacting Anyon gas. Phys. Rev. Lett. 83, 1275 (1999)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    M.T. Batchelor, X.-W. Guan, J.-S. He, The Bethe ansatz for 1D interacting anyons. J. Stat. Mech. P03007 (2007)Google Scholar
  8. 8.
    O.I. Pâţu, V.E. Korepin, D.V. Averin, Correlation functions of one-dimensional Lieb-Liniger anyons. J. Phys. A 40, 14963 (2007)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    P. Calabrese, M. Mintchev, Correlation functions of one-dimensional anyonic fluids. Phys. Rev. B 75, 233104 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    L. Piroli, P. Calabrese, Exact dynamics following an interaction quench in a one-dimensional anyonic gas. Phys. Rev. A 96, 023611 (2017)ADSCrossRefGoogle Scholar
  11. 11.
    W. Pauli, The connection between spin and statistics. Phys. Rev. 58, 716 (1940)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    C. Kollath, U. Schollwöck, W. Zwerger, Spin-charge separation in cold fermi gases: a real time analysis. Phys. Rev. Lett. 95, 176401 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    A. Kleine, C. Kollath, I.P. McCulloch, T. Giamarchi, U. Schollwöck, Spin-charge separation in two-component Bose gases. Phys. Rev. A 77, 013607 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    N.D. Mermin, H. Wagner, Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic heisenberg models. Phys. Rev. Lett. 17, 1133 (1966)ADSCrossRefGoogle Scholar
  15. 15.
    C.N. Yang, Concept of off-diagonal long-range order and the quantum phases of liquid He and of superconductors. Rev. Mod. Phys. 34, 694 (1962)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    R. Hanbury Brown, R.Q. Twiss, A Test of a new type of stellar interferometer on Sirius. Nature 178, 1046–1048 (1956)ADSCrossRefGoogle Scholar
  17. 17.
    N. Pottier, Nonequilibrium Statistical Physics, Linear irreversible processes (Oxford Graduate Texts, 2010)Google Scholar
  18. 18.
    T. Kinoshita, T. Wenger, D.S. Weiss, A quantum Newton’s cradle. Nature 440, 900–903 (2006)ADSCrossRefGoogle Scholar
  19. 19.
    P. Calabrese, J. Cardy, Time dependence of correlation functions following a quantum quench. Phys. Rev. Lett. 96, 136801 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    M. Rigol, V. Dunjko, V. Yurovsky, M. Olshanii, Relaxation in a completely integrable many-body quantum system: an Ab initio study of the dynamics of the highly excited states of 1D lattice hard-core bosons. Phys. Rev. Lett. 98, 050405 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    J.-S. Caux, F.H.L. Essler, Time evolution of local observables after quenching to an integrable model. Phys. Rev. Lett. 110, 257203 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    J. De Nardis, B. Wouters, M. Brockmann, J.-S. Caux, Solution for an interaction quench in the Lieb-Liniger Bose gas. Phys. Rev. A 89, 033601 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    Y.Y. Atas, I. Bouchoule, D.M. Gangardt, K.V. Kheruntsyan, Collective many-body bounce in the breathing-mode oscillations of a Tonks-Girardeau gas. Phys. Rev. A 96, 041605(R) (2017)ADSCrossRefGoogle Scholar
  24. 24.
    J. De Nardis, M. Panfil, Exact correlations in the Lieb-Liniger model and detailed balance out of equilibrium. SciPost Phys. 1, 015 (2016)ADSCrossRefGoogle Scholar
  25. 25.
    A. Eckardt, Colloquium: atomic quantum gases in periodically driven optical lattices. Rev. Mod. Phys. 89, 011004 (2017)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    J. Eisert, M. Cramer, M.B. Plenio, Colloquium: area laws for the entanglement entropy. Rev. Mod. Phys. 82, 277 (2010)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    D. Jérome, A. Mazaud, M. Ribault, K. Bechgaard, Superconductivity in a synthetic organic conductor (TMTSF)2PF 6. J. de Physique Lettres 41(4), 95–98 (1980)CrossRefGoogle Scholar
  28. 28.
    J.G. Bednorz, K.A.Z. Mueller, Possible high Tc superconductivity in the Ba-La-Cu-O system. Zeitschrift für Physik B 64(2), 189–193 (1986)ADSCrossRefGoogle Scholar
  29. 29.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 5696 (2004)CrossRefGoogle Scholar
  30. 30.
    J.E. Moore, L. Balents, Topological invariants of time-reversal-invariant band structures. Phys. Rev. B 75, 121306(R) (2007)ADSCrossRefGoogle Scholar
  31. 31.
    S. Sachdev, Quantum Phase Transitions (Cambridge University Press, New York, 1999)Google Scholar
  32. 32.
    M. Lewenstein, A. Sanpera, V. Ahufigar, B. Damski, A.S. De, U. Sen, Ultracold atomic gases in optical lattices: mimicking condensed matter physics and beyond. Adv. Phys. 56, 243–379 (2017)ADSCrossRefGoogle Scholar
  33. 33.
    I. Bloch, J. Dalibard, S. Nascimbène, Quantum simulations with ultracold quantum gases. Nat. Phys. 8, 267–276 (2012)CrossRefGoogle Scholar
  34. 34.
    R.P. Feynman, Simulating physics with computers. Int. J. Theor. Phys. 21(6–7), 467–488 (1982)MathSciNetCrossRefGoogle Scholar
  35. 35.
    A.N. Wenz, G. Zürn, S. Murmann, I. Brouzos, T. Lompe, S. Jochim, From few to many: observing the formation of a fermi sea one atom at a time. Science 342, 457 (2013)ADSCrossRefGoogle Scholar
  36. 36.
    P. Courteille, R. Freeland, D. Heinzen, F. van Abeelen, B. Verhaar, Observation of a Feshbach resonance in cold atom scattering. Phys. Rev. Lett. 81, 69 (1998)ADSCrossRefGoogle Scholar
  37. 37.
    C. Chin, R. Grimm, P. Julienne, E. Tiesinga, Feshbach resonances in ultracold gases. Rev. Mod. Phys. 82, 1225 (2010)ADSCrossRefGoogle Scholar
  38. 38.
    A. Griesmaier, J. Werner, S. Hensler, J. Stuhler, T. Pfau, Bose-Einstein condensation of chromium. Phys. Rev. Lett. 94, 160401 (2005)ADSCrossRefGoogle Scholar
  39. 39.
    I. Ferrier-Barbut, M. Delehaye, S. Laurent, A.T. Grier, M. Pierce, B.S. Rem, F. Chevy, C. Salomon, A mixture of Bose and Fermi superfluids. Science 345, 1035–1038 (2014)ADSCrossRefGoogle Scholar
  40. 40.
    T.-L. Ho, Spinor Bose condensates in optical traps. Phys. Rev. Lett. 81, 742 (1998)ADSCrossRefGoogle Scholar
  41. 41.
    D.M. Stamper-Kurn, M.R. Andrews, A.P. Chikkatur, S. Inouye, H.-J. Miesner, J. Stenger, W. Ketterle, Optical confinement of a Bose-Einstein condensate. Phys. Rev. Lett. 80, 2027–2030 (1998)ADSCrossRefGoogle Scholar
  42. 42.
    A.L. Gaunt, T.F. Schmidutz, I. Gotlibovych, R.P. Smith, Z. Hadzibabic, Bose-Einstein condensation of atoms in a uniform potential. Phys. Rev. Lett. 110, 200406 (2013)ADSCrossRefGoogle Scholar
  43. 43.
    C. Zipkes, S. Palzer, C. Sias, M. Köhl, A trapped single ion inside a Bose-Einstein condensate. Nature 464, 388–391 (2010)ADSCrossRefGoogle Scholar
  44. 44.
    S. Palzer, C. Zipkes, C. Sias, M. Köhl, Quantum transport through a Tonks-Girardeau gas. Phys. Rev. Lett. 103, 150601 (2009)ADSCrossRefGoogle Scholar
  45. 45.
    P.W. Anderson, Absence of diffusion in certain random lattices. Phys. Rev. 109(5), 1492–1505 (1958)ADSCrossRefGoogle Scholar
  46. 46.
    J. Billy, V. Josse, Z. Zuo, A. Bernard, B. Hambrecht, P. Lugan, D. Clément, L. Sanchez-Palencia, P. Bouyer, A. Aspect, Direct observation of Anderson localization of matter-waves in a controlled disorder. Nature 453, 891 (2008)ADSCrossRefGoogle Scholar
  47. 47.
    D.M. Basko, I.L. Aleiner, B.L. Altshuler, Metal-insulator transition in a weakly interacting many-electron system with localized single-particle states. Ann. Phys. 321, 1126 (2006)ADSzbMATHCrossRefGoogle Scholar
  48. 48.
    J.-Y. Choi, S. Hild, J. Zeiher, P. Schauss, A. Rubio-Abadal1, T. Yefsah, V. Khemani, D.A. Huse, I. Bloch, C. Gross, Exploring the many-body localization transition in two dimensions. Science 352, 1547–1552 (2016)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    S. Dettmer, D. Hellweg, P. Ryytty, J.J. Arlt, W. Ertmer, K. Sengstock, D.S. Petrov, G.V. Shlyapnikov, H. Kreutzmann, L. Santos, M. Lewenstein, Observation of Phase fluctuations in elongated Bose-Einstein condensates. Phys. Rev. Lett. 87, 160406 (2001)ADSCrossRefGoogle Scholar
  50. 50.
    J. Esteve, J.-B. Trebbia, T. Schumm, A. Aspect, C.I. Westbrook, I. Bouchoule, Observations of density fluctuations in an elongated Bose gas: ideal gas and quasicondensate regimes. Phys. Rev. Lett. 96, 130403 (2006)ADSCrossRefGoogle Scholar
  51. 51.
    Y.-J. Lin, R.L. Compton, K. Jiménez-García, J.V. Porto, I.B. Spielman, Synthetic magnetic fields for ultracold neutral atoms. Nature 462, 628–632 (2009)ADSCrossRefGoogle Scholar
  52. 52.
    J. Dalibard, F. Gerbier, G. Juzeliūnas, P. Öhberg, Colloquium: artificial gauge potentials for neutral atoms. Rev. Mod. Phys. 83, 1523 (2011)ADSCrossRefGoogle Scholar
  53. 53.
    M. Atala, M. Aidelsburger, M. Lohse, J.T. Barreiro, B. Paredes, I. Bloch, Observation of chiral currents with ultracold atoms in bosonic ladders. Nat. Phys. 10, 588–593 (2014)CrossRefGoogle Scholar
  54. 54.
    H.M. Price, O. Zilberberg, T. Ozawa, I. Carusotto, N. Goldman, Four-dimensional quantum hall effect with ultracold atoms. Phys. Rev. Lett. 115, 195303 (2015)ADSCrossRefGoogle Scholar
  55. 55.
    V. Galitski, I.B. Spielman, Spin-orbit coupling in quantum gases. Nature 494, 49–54 (2013)ADSCrossRefGoogle Scholar
  56. 56.
    M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, E.A. Cornell, Observation of Bose-Einstein condensation in a dilute atomic vapor. Science 269, 198 (1995)ADSCrossRefGoogle Scholar
  57. 57.
    K.B. Davis, M.O. Mewes, M.R. Andrews, N.J. van Druten, D.S. Durfee, D.M. Kurn, W. Ketterle, Bose-Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75, 3969 (1995)ADSCrossRefGoogle Scholar
  58. 58.
    C.C. Bradley, C.A. Sackett, J.J. Tollett, R.G. Hulet, Evidence of Bose-Einstein condensation in an atomic gas with attractive interactions. Phys. Rev. Lett. 75, 1687 (1997)ADSCrossRefGoogle Scholar
  59. 59.
    A. Einstein, Quantentheorie des einatomigen idealen Gases (Sitzungsber. Kgl. Preuss. Akad. Wiss., 1924), p. 261Google Scholar
  60. 60.
    A. Einstein, Quantentheorie des einatomigen idealen Gases (Sitzungsber. Kgl. Preuss. Akad. Wiss., 1925), p. 3Google Scholar
  61. 61.
    W. Ketterle, N.J. Van Druten, Evaporative cooling of trapped atoms. Adv. At. Mol. Opt. Phys. 37, 181–236 (1996)ADSCrossRefGoogle Scholar
  62. 62.
    M. Greiner, O. Mandel, T. Esslinger, T.W. Hänsch, I. Bloch, Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39 (2002)ADSCrossRefGoogle Scholar
  63. 63.
    B. DeMarco, D.S. Jin, Onset of fermi degeneracy in a trapped atomic gas. Science 285, 1703–1706 (1999)CrossRefGoogle Scholar
  64. 64.
    C.A. Regal, M. Greiner, D.S. Jin, Observation of resonance condensation of fermionic atom pairs. Phys. Rev. Lett. 92, 040403 (2004)ADSCrossRefGoogle Scholar
  65. 65.
    M.R. Matthews, B.P. Anderson, P.C. Haljan, D.S. Hall, C.E. Wieman, E.A. Cornell, Vortices in a Bose-Einstein condensate. Phys. Rev. Lett. 83, 2498 (1999)ADSCrossRefGoogle Scholar
  66. 66.
    K.W. Madison, F. Chevy, W. Wohlleben, J. Dalibard, Vortex formation in a stirred Bose-Einstein condensate. Phys. Rev. Lett. 84, 806 (2000)ADSCrossRefGoogle Scholar
  67. 67.
    J.W. Fleischer, M. Segev, M.K. Efremidis, D.N. Christodoulides, Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices. Nature 422, 147 (2003)ADSCrossRefGoogle Scholar
  68. 68.
    Z. Hadzibabic, P. Krüger, M. Cheneau, B. Battelier, J. Dalibard, Berezinskii-Kosterlitz-Thouless crossover in a trapped atomic gas. Nature 441, 1118–1121 (2006)ADSCrossRefGoogle Scholar
  69. 69.
    J.M. Kosterlitz, D.J. Thouless, Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C: Solid State Phys. 6(7), 1181–1203 (1973)ADSCrossRefGoogle Scholar
  70. 70.
    B. Paredes, A. Widera, V. Murg, O. Mandel, S. Fölling, I. Cirac, G.V. Shlyapnikov, T.W. Hänsch, I. Bloch, Tonks-Girardeau gas of ultracold atoms in an optical lattice. Nature 429, 277 (2004)ADSCrossRefGoogle Scholar
  71. 71.
    T. Kinoshita, T. Wenger, D.S. Weiss, Observation of a one-dimensional Tonks-Girardeau gas. Science 305, 1125 (2004)ADSCrossRefGoogle Scholar
  72. 72.
    M. Girardeau, Relationship between systems of impenetrable Bosons and fermions in one dimension. J. Math. Phys. 1, 516 (1960)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  73. 73.
    M. Olshanii, Atomic scattering in the presence of an external confinement and a gas of impenetrable Bosons. Phys. Rev. Lett. 81, 938 (1998)ADSCrossRefGoogle Scholar
  74. 74.
    K. Huang, C.N. Yang, Quantum-mechanical many-body problem with hard-sphere interaction. Phys. Rev. 105, 767 (1957)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  75. 75.
    E.H. Lieb, R. Seiringer, J. Yngvason, One-dimensional behavior of dilute, trapped Bose gases. Commun. Math. Phys. 244, 347 (2004)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  76. 76.
    E.H. Lieb, J.P. Solovej, R. Seiringer, J. Yngvason, The Mathematics of the Bose Gas and its Condensation (Oberwolfach Seminars, 2005). 978-3-7643-7336-8Google Scholar
  77. 77.
    S. Lammers, I. Boettcher, C. Wetterich, Dimensional crossover of nonrelativistic bosons. Phys. Rev. A 93, 063631 (2016)ADSCrossRefGoogle Scholar
  78. 78.
    I. Bloch, Ultracold quantum gases in optical lattices. Nat. Phys. 1, 23–30 (2005)CrossRefGoogle Scholar
  79. 79.
    A.H. van Amerongen, J.J.P. van Es, P. Wicke, K.V. Kheruntsyan, N.J. van Druten, Yang-Yang thermodynamics on an atom chip. Phys. Rev. Lett. 100, 090402 (2008)CrossRefGoogle Scholar
  80. 80.
    R. Doll, M. Näbauer, Experimental proof of magnetic flux quantization in a superconducting ring. Phys. Rev. Lett. 7, 51 (1961)ADSCrossRefGoogle Scholar
  81. 81.
    R.A. Webb, S. Washburn, C.P. Umbach, R.B. Laibowitz, Observation of \(\frac{h}{e}\) Aharonov-Bohm oscillations in normal-metal rings. Phys. Rev. Lett. 54, 2696 (1985)ADSCrossRefGoogle Scholar
  82. 82.
    Y. Aharonov, D. Bohm, Significance of electromagnetic potentials in the quantum theory. Phys. Rev. 115, 485 (1959)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  83. 83.
    H. Bluhm, N.C. Koshnick, J.A. Bert, M.E. Huber, K.A. Moler, Persistent currents in normal metal rings. Phys. Rev. Lett. 102, 136802 (2009)ADSCrossRefGoogle Scholar
  84. 84.
    A.S. Arnold, C.S. Garvie, E. Riis, Large magnetic storage ring for Bose-Einstein condensates. Phys. Rev. A 73, 041606(R) (2006)ADSCrossRefGoogle Scholar
  85. 85.
    M. Cominotti, D. Rossini, M. Rizzi, F. Hekking, A. Minguzzi, Optimal persistent currents for interacting Bosons on a ring with a gauge field. Phys. Rev. Lett. 113, 025301 (2014)ADSCrossRefGoogle Scholar
  86. 86.
    B.T. Seaman, M. Krämer, D.Z. Anderson, M.J. Holland, Atomtronics: ultracold-atom analogs of electronic devices. Phys. Rev. A 75, 023615 (2007)ADSCrossRefGoogle Scholar
  87. 87.
    J.A. Sauer, M.D. Barrett, M.S. Chapman, Storage ring for neutral atoms. Phys. Rev. Lett. 87, 270401 (2001)CrossRefGoogle Scholar
  88. 88.
    S. Gupta, K.W. Murch, K.L. Moore, T.P. Purdy, D.M. Stamper-Kurn, Bose-Einstein condensation in a circular waveguide. Phys. Rev. Lett. 95, 143201 (2005)ADSCrossRefGoogle Scholar
  89. 89.
    J.D. Pritchard, A.N. Dinkelaker, A.S. Arnold, P.F. Griffin, E. Riis, Demonstration of an inductively coupled ring trap for cold atoms. New J. Phys. 14, 103047 (2012)ADSCrossRefGoogle Scholar
  90. 90.
    C. Ryu, M.F. Andersen, P. Cladé, V. Natarajan, K. Helmerson, W.D. Phillips, Observation of persistent flow of a Bose-Einstein condensate in a toroidal trap. Phys. Rev. Lett. 99, 260401 (2007)ADSCrossRefGoogle Scholar
  91. 91.
    A. Ramanathan, K.C. Wright, S.R. Muniz, M. Zelan, W.T. Hill, C.J. Lobb, K. Helmerson, W.D. Phillips, G.K. Campbell, Superflow in a Toroidal Bose-Einstein condensate: an atom circuit with a tunable weak link. Phys. Rev. Lett. 106, 130401 (2011)ADSCrossRefGoogle Scholar
  92. 92.
    C. Ryu, P.W. Blackburn, A.A. Blinova, M.G. Boshier, Experimental realization of Josephson junctions for an atom SQUID. Phys. Rev. Lett. 111, 205301 (2013)ADSCrossRefGoogle Scholar
  93. 93.
    A. Kumar, N. Anderson, W.D. Phillips, S. Eckel, G.K. Campbell, S. Stringari, Minimally destructive, doppler measurement of a quantized flow in a ring-shaped Bose-Einstein condensate. New J. Phys. 18, 025001 (2016)ADSCrossRefGoogle Scholar
  94. 94.
    S. Moulder, S. Beattie, R.P. Smith, N. Tammuz, Z. Hadzibabic, Quantized supercurrent decay in an annular Bose-Einstein condensate. Phys. Rev. A 86, 013629 (2012)ADSCrossRefGoogle Scholar
  95. 95.
    G.E. Marti, R. Olf, D.M. Stamper-Kurn, Collective excitation interferometry with a toroidal Bose-Einstein condensate. Phys. Rev. A 91, 013602 (2015)ADSCrossRefGoogle Scholar
  96. 96.
    O. Morizot, Y. Colombe, V. Lorent, H. Perrin, B.M. Garraway, Ring trap for ultracold atoms. Phys. Rev. A 74, 023617 (2006)ADSCrossRefGoogle Scholar
  97. 97.
    M. Gildemeister, E. Nugent, B.E. Sherlock, M. Kubasik, B.T. Sheard, C.J. Foot, Trapping ultracold atoms in a time-averaged adiabatic potential. Phys. Rev. A 81, 031402(R) (2010)ADSCrossRefGoogle Scholar
  98. 98.
    B.E. Sherlock, M. Gildemeister, E. Owen, E. Nugent, C.J. Foot, Time-averaged adiabatic ring potential for ultracold atoms. Phys. Rev. A 83, 043408 (2011)ADSCrossRefGoogle Scholar
  99. 99.
    T.A. Bell, J.A.P. Glidden, L. Humbert, M.W.J. Bromley, S.A. Haine, M.J. Davis, T.W. Neely, M.A. Baker, H. Rubinsztein-Dunlop, Bose-Einstein condensation in large time-averaged optical ring potentials. New J. Phys. 18, 035003 (2016)ADSMathSciNetCrossRefGoogle Scholar
  100. 100.
    A. Chakraborty, S.R. Mishra, S.P. Ram, S.K. Tiwari, H.S. Rawat, A toroidal trap for cold \({^{87}}\)Rb atoms using an rf-dressed quadrupole trap. J. Phys. B: At. Mol. Opt. Phys. 49, 075304 (2016)ADSCrossRefGoogle Scholar
  101. 101.
    P. Navez, S. Pandey, H. Mas, K. Poulios, T. Fernholz, W. von Klitzing, Matter-wave interferometers using TAAP rings. New J. Phys. 18, 075014 (2016)ADSCrossRefGoogle Scholar
  102. 102.
    L.D. Landau, The theory of a Fermi liquid. Sov. Phys. JETP 3, 920 (1957)MathSciNetzbMATHGoogle Scholar
  103. 103.
    L.D. Landau, Oscillations in a Fermi liquid. Sov. Phys. JETP 5, 101 (1957)MathSciNetzbMATHGoogle Scholar
  104. 104.
    E.M. Lifschitz, L.P. Pitaevskii, Landau and Lifschitz Course of Theoretical Physics Volume 9, Statistical Physics Part 2, Theory of Condensed Matter (Pergamon Press, 1980)Google Scholar
  105. 105.
    J. Voit, One-dimensional Fermi liquids. Rep. Prog. Phys. 58, 977 (1995)ADSCrossRefGoogle Scholar
  106. 106.
    S.R. White, Density matrix formulation for quantum renormalization groups. Phys. Rev. Lett. 69, 2863 (1992)ADSCrossRefGoogle Scholar
  107. 107.
    U. Schollwöck, The density-matrix renormalization group. Rev. Mod. Phys. 77, 259 (2005)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  108. 108.
    H.A. Bethe, Zur Theorie der Metalle I. Eigenwerte und Eigenfunktionen der linearen Atomkette. Z. Phys. 71, 205 (1931)Google Scholar
  109. 109.
    C.N. Yang, C.P. Yang, One-dimensional chain of anisotropic Spin-Spin interactions. I. Proof of Bethe’s hypothesis for ground state in a finite system. Phys. Rev. 150, 321 (1966)ADSCrossRefGoogle Scholar
  110. 110.
    C.N. Yang, C.P. Yang, One-dimensional chain of anisotropic Spin-Spin interactions. II. Properties of the ground-state energy per lattice site for an infinite system. Phys. Rev. 150, 327 (1966)ADSCrossRefGoogle Scholar
  111. 111.
    Lars Onsager, Crystal statistics. I. A two-dimensional model with an order-disorder transition. Phys. Rev. 65, 117 (1944)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  112. 112.
    T.D. Schultz, D.C. Mattis, E.H. Lieb, Two-dimensional ising model as a soluble problem of many fermions. Rev. Mod. Phys. 36, 856 (1964)ADSMathSciNetCrossRefGoogle Scholar
  113. 113.
    E.H. Lieb, T.D. Schultz, D.C. Mattis, Two soluble models of an antiferromagnetic chain. Ann. Phys. 16, 407–466 (1961)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  114. 114.
    E.H. Lieb, W. Liniger, Exact analysis of an interacting Bose Gas. I. the general solution and the ground state. Phys. Rev. 130, 1605 (1963)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  115. 115.
    F. Calogero, Solution of a three-body problem in one dimension. J. Math. Phys. 10, 2191 (1969)ADSCrossRefGoogle Scholar
  116. 116.
    F. Calogero, Solution of the one-dimensional N-Body problems with quadratic and/or inversely quadratic pair potentials. J. Math. Phys. 12, 419 (1971)ADSMathSciNetCrossRefGoogle Scholar
  117. 117.
    J.B. McGuire, Study of exactly soluble one-dimensional N-Body problems. J. Math. Phys. 5, 622 (1964)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  118. 118.
    F.A. Berezin, G.P. Phil, V.M. Finkelberg, Schroedinger equation for the system of one-dimensional particles with point interaction. Vestnik Moskovskogo Universiteta 1, 21 (1964)Google Scholar
  119. 119.
    J. B. McGuire, Interacting fermions in one dimension. I. repulsive potential. J. Math. Phys. 6, 432 (1965)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  120. 120.
    M. Flicker, E.H. Lieb, Delta-function Fermi gas with Two-Spin deviates. Phys. Rev. 161, 179 (1967)ADSCrossRefGoogle Scholar
  121. 121.
    M. Gaudin, Un système à une dimension de fermions en interaction. Phys. Lett. A 24, 55 (1967)ADSCrossRefGoogle Scholar
  122. 122.
    C.N. Yang, Some exact results for the many-body problem in one dimension with repulsive delta-function interaction. Phys. Rev. Lett. 19, 1312 (1967)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  123. 123.
    C.N. Yang, S-matrix for the one-dimensional N-Body problem with repulsive or attractive \(\delta \)-Function interaction. Phys. Rev. 168, 1920 (1968)ADSCrossRefGoogle Scholar
  124. 124.
    B. Sutherland, Further results for the many-body problem in one dimension. Phys. Rev. Lett. 20, 98 (1968)ADSCrossRefGoogle Scholar
  125. 125.
    H. Bergknoff, H.B. Thacker, Structure and solution of the massive Thirring model. Phys. Rev. D 19, 3666 (1979)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  126. 126.
    S. Coleman, Quantum sine-Gordon equation as the massive Thirring model. Phys. Rev. D 11, 2088 (1975)ADSCrossRefGoogle Scholar
  127. 127.
    N. Andrei, J.H. Lowenstein, Diagonalization of the Chiral-Invariant Gross-Neveu hamiltonian. Phys. Rev. Lett. 43, 1698 (1979)ADSCrossRefGoogle Scholar
  128. 128.
    A.A. Belavin, Exact solution of the two-dimensional model with asymptotic freedom. Phys. Lett. B 87, 117–121 (1979)ADSCrossRefGoogle Scholar
  129. 129.
    A. Bastianello, A. De Luca, G. Mussardo, Non-relativistic limit of integrable QFT and Lieb-Liniger models. J. Stat. Mech. 123104 (2016)Google Scholar
  130. 130.
    A. Bastianello, A. De Luca, G. Mussardo, Non relativistic limit of integrable QFT with fermionic excitations. J. Phys. A: Math. Theor. 50, 234002 (2017)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  131. 131.
    E.H. Lieb, Residual entropy of square ice. Phys. Rev. 162, 162 (1967)ADSCrossRefGoogle Scholar
  132. 132.
    C.P. Yang, Exact solution of a model of two-dimensional ferroelectrics in an arbitrary external electric field. Phys. Rev. Lett. 19, 586 (1967)ADSCrossRefGoogle Scholar
  133. 133.
    R.J. Baxter, Eight-vertex model in lattice statistics. Phys. Rev. Lett. 26, 832 (1971)ADSCrossRefGoogle Scholar
  134. 134.
    M. Suzuki, Relationship between d-Dimensional quantal spin systems and (d+1)-Dimensional ising systems. Prog. Theor. Phys. 56, 5 (1976)MathSciNetGoogle Scholar
  135. 135.
    V.E. Korepin, N.M. Bogoliubov, A.G. Izergin, Quantum Inverse Scattering Method and Correlation Functions (Cambridge University Press, New York, 1993)Google Scholar
  136. 136.
    E.K. Sklyanin, Quantum version of the method of inverse scattering problem. J. Sov. Math. 19, 1546 (1982)zbMATHCrossRefGoogle Scholar
  137. 137.
    A. Torrielli, Classical integrability. J. Phys. A 49, 323001 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  138. 138.
    T. Dauxois, Physics of Solitons (Cambridge University Press, New York, 2006)Google Scholar
  139. 139.
    C.S. Gardner, J.M. Greene, M.D. Kruskal, R.M. Miura, Method for solving the Korteweg-de Vries equation. Phys. Rev. Lett. 19, 1095 (1967)ADSzbMATHCrossRefGoogle Scholar
  140. 140.
    V.E. Zakharov, A.B. Shabat, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Zh. Eksp. Teor. Fiz. 61, 118–134 (1971)Google Scholar
  141. 141.
    M.J. Ablowitz, D.J. Kaup, A.C. Newell, H. Segur, Method for solving the Sine-Gordon equation. Phys. Rev. Lett. 30, 1262 (1973)ADSMathSciNetCrossRefGoogle Scholar
  142. 142.
    F.Y. Wu, Knot theory and statistical mechanics. Rev. Mod. Phys. 64, 1099 (1992)ADSMathSciNetCrossRefGoogle Scholar
  143. 143.
    V.G. Drinfeld, Quantum groups. J. Sov. Math. 41, 898 (1988)CrossRefGoogle Scholar
  144. 144.
    E. Witten, Integrable Lattice Models From Gauge Theory. arXiv:1611.00592v1 [hep-th] 2 Nov 2016
  145. 145.
    J.-S. Caux, J. Mossel, Remarks on the notion of quantum integrability. J. Stat. Mech. P02023 (2011)Google Scholar
  146. 146.
    L. Tonks, The complete equation of state of one, two and three-dimensional gases of hard elastic spheres. Phys. Rev. 50, 955 (1936)ADSzbMATHCrossRefGoogle Scholar
  147. 147.
    J. Brand, A density-functional approach to fermionization in the 1D Bose gas. J. Phys. B: At. Mol. Opt. Phys. 37, S287–S300 (2004)ADSCrossRefGoogle Scholar
  148. 148.
    G.C. Wick, The evaluation of the collision matrix. Phys. Rev. 80, 268 (1950)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  149. 149.
    V.I. Yukalov, M.D. Girardeau, Fermi-Bose mapping for one-dimensional Bose gases. Laser Phys. Lett. 2(8), 375–382 (2005)ADSCrossRefGoogle Scholar
  150. 150.
    A. Minguzzi, D.M. Gangardt, Exact coherent states of a harmonically confined Tonks-Girardeau gas. Phys. Rev. Lett. 94, 240404 (2005)ADSCrossRefGoogle Scholar
  151. 151.
    M.D. Girardeau, Tonks-Girardeau and super-Tonks-Girardeau states of a trapped one-dimensional spinor Bose gas. Phys. Rev. A 83, 011601(R) (2011)ADSCrossRefGoogle Scholar
  152. 152.
    M.D. Girardeau, A. Minguzzi, Soluble models of strongly interacting ultracold gas mixtures in tight waveguides. Phys. Rev. Lett. 99, 230402 (2007)ADSCrossRefGoogle Scholar
  153. 153.
    T. Cheon, T. Shigehara, Fermion-Boson duality of one-dimensional quantum particles with generalized contact interaction. Phys. Rev. Lett. 82, 2536–2539 (1999)ADSCrossRefGoogle Scholar
  154. 154.
    M.D. Girardeau, Anyon-Fermion mapping and applications to ultracold gases in tight waveguides. Phys. Rev. Lett. 97, 100402 (2006)ADSCrossRefGoogle Scholar
  155. 155.
    I.E. Dzyaloshinskii, A.I. Larkin, Correlation functions for a one-dimensional Fermi system with long-range interaction (Tomonaga model). Zh. Eksp. Teor. Fiz. 65, 411 (1973)Google Scholar
  156. 156.
    R. Shankar, Renormalization-group approach to interacting fermions. Rev. Mod. Phys. 66, 129 (1994)ADSCrossRefGoogle Scholar
  157. 157.
    A. Luther, I. Peschel, Single-particle states, Kohn anomaly, and pairing fluctuations in one dimension. Phys. Rev. B 9, 2911 (1974)ADSCrossRefGoogle Scholar
  158. 158.
    S. Mandelstam, Soliton operators for the quantized sine-Gordon equation. Phys. Rev. D 11, 3026 (1975)ADSMathSciNetCrossRefGoogle Scholar
  159. 159.
    A.O. Gogolin, A.A. Nersesyan, A.M. Tsvelik, Bosonization and Strongly Correlated Systems (Cambridge University Press, New York, 1998)Google Scholar
  160. 160.
    S.-I. Tomonaga, Remarks on Bloch’s Method of sound waves applied to many-fermion problems. Prog. Theor. Phys. 5, 544 (1950)ADSMathSciNetCrossRefGoogle Scholar
  161. 161.
    D.C. Mattis, E.H. Lieb, Exact Solution of a Many-Fermion System and Its Associated Boson Field. J. Math. Phys. 6(2), 304–312 (1965)ADSMathSciNetCrossRefGoogle Scholar
  162. 162.
    J.M. Luttinger, An exactly soluble model of Many-Fermion system. J. Math. Phys. 4, 1154 (1963)ADSMathSciNetCrossRefGoogle Scholar
  163. 163.
    F.D.M. Haldane, Luttinger liquid theory’ of one-dimensional quantum fluids. I. Properties of the Luttinger model and their extension to the general 1D interacting spinless Fermi gas. J. Phys. C: Solid State Phys. 14, 2585 (1981)ADSCrossRefGoogle Scholar
  164. 164.
    A. Schwartz, M. Dressel, G. Grüner, V. Vescoli, L. Degiorgi, T. Giamarchi, On-chain electrodynamics of metallic \((TMTSF)_2X\) salts: observation of Tomonaga-Luttinger liquid response. Phys. Rev. B 58, 1261 (1998)ADSCrossRefGoogle Scholar
  165. 165.
    M. Klanjšek, H. Mayaffre, C. Berthier, M. Horvatić, B. Chiari, O. Piovesana, P. Bouillot, C. Kollath, E. Orignac, R. Citro, T. Giamarchi, Controlling Luttinger liquid physics in spin ladders under a magnetic field. Phys. Rev. Lett. 101, 137207 (2008)ADSCrossRefGoogle Scholar
  166. 166.
    P. Bouillot, C. Kollath, A.M. Läuchli, M. Zvonarev, B. Thielemann, C. Rüegg, E. Orignac, R. Citro, M. Klanjšek, C. Berthier, M. Horvatić, T. Giamarchi, Statics and dynamics of weakly coupled antiferromagnetic spin-\(1/2\) ladders in a magnetic field. Phys. Rev. B 83, 054407 (2011)ADSCrossRefGoogle Scholar
  167. 167.
    M. Jeong, D. Schmidiger, H. Mayaffre, M. Klanjšek, C. Berthier, W. Knafo, G. Ballon, B. Vignolle, S. Krämer, A. Zheludev, M. Horvatić, Dichotomy between attractive and repulsive tomonaga-luttinger liquids in spin ladders. Phys. Rev. Lett. 117, 106402 (2016)ADSCrossRefGoogle Scholar
  168. 168.
    X.G. Wen, Chiral Luttinger liquid and the edge excitations in the fractional quantum Hall states. Phys. Rev. B 41, 12838 (1990)ADSCrossRefGoogle Scholar
  169. 169.
    F.P. Milliken, C.P. Umbach, R.A. Webb, Indications of a Luttinger liquid in the fractional quantum Hall regime. Solid State Commun. 97, 309–313 (1996)ADSCrossRefGoogle Scholar
  170. 170.
    M. Bockrath, D.H. Cobden, J. Lu, A.G. Rinzler, R.E. Smalley, L. Balents, P.L. McEuen, Luttinger-liquid behaviour in carbon nanotubes. Nature 397, 598–601 (1999)ADSCrossRefGoogle Scholar
  171. 171.
    B. Gao, A. Komnik, R. Egger, D.C. Glattli, A. Bachtold, Evidence for Luttinger-liquid behavior in crossed metallic single-wall nanotubes. Phys. Rev. Lett. 92, 216804 (2004)ADSCrossRefGoogle Scholar
  172. 172.
    E. Levy, I. Sternfeld, M. Eshkol, M. Karpovski, B. Dwir, A. Rudra, E. Kapon, Y. Oreg, A. Palevski, Experimental evidence for Luttinger liquid behavior in sufficiently long GaAs V-groove quantum wires. Phys. Rev. B 85, 045315 (2012)ADSCrossRefGoogle Scholar
  173. 173.
    B. Dardel, D. Malterre, M. Grioni, P. Weibel, Y. Baer, J. Voit, D. Jérôme, Possible observation of a luttinger-liquid behaviour from photoemission spectroscopy of one-dimensional organic conductors. Europhys. Lett. 24(8), 687–692 (1993)ADSCrossRefGoogle Scholar
  174. 174.
    A. Lebed, The Physics of Organic Superconductors and Conductors (Springer, Heidelberg, 2008)CrossRefGoogle Scholar
  175. 175.
    B. Lake, D.A. Tennant, C.D. Frost, S.E. Nagler, Quantum criticality and universal scaling of a quantum antiferromagnet. Nat. Mater. 4, 329–334 (2005)ADSCrossRefGoogle Scholar
  176. 176.
    M.A. Cazalilla, Bosonizing one-dimensional cold atomic gases. J. Phys. B: At. Mol. Opt. Phys. 37, 7S1 (2004)ADSCrossRefGoogle Scholar
  177. 177.
    K.D. Schotte, U. Schotte, Tomonaga’s Model and the Threshold Singularity of X-Ray spectra of metals. Phys. Rev. 182, 479 (1969)ADSMathSciNetCrossRefGoogle Scholar
  178. 178.
    K.B. Efetov, A.I. Larkin, Correlation functions in one-dimensional systems with a strong interaction. Sov. Phys. JETP 42, 390 (1976)ADSGoogle Scholar
  179. 179.
    F.D.M. Haldane, Effective harmonic-fluid approach to low-energy properties of one-dimensional quantum fluids. Phys. Rev. Lett. 47, 1840 (1981)ADSCrossRefGoogle Scholar
  180. 180.
    A. Shashi, L.I. Glazman, J.-S. Caux, A. Imambekov, Nonuniversal prefactors in the correlation functions of one-dimensional quantum liquids. Phys. Rev. B 84, 045408 (2011)ADSCrossRefGoogle Scholar
  181. 181.
    A. Shashi, M. Panfil, J.-S. Caux, A. Imambekov, Exact prefactors in static and dynamic correlation functions of one-dimensional quantum integrable models: applications to the Calogero-Sutherland, Lieb-Liniger, and XXZ models. Phys. Rev. B 85, 155136 (2012)ADSCrossRefGoogle Scholar
  182. 182.
    J. Sólyom, The Fermi gas model of one-dimensional conductors. Adv. Phys. 28, 201–303 (1979)ADSCrossRefGoogle Scholar
  183. 183.
    F. Bovo, Nonlinear Bosonization and Refermionization in One Dimension with the Keldysh Functional Integral. 25 Oct 2016. arXiv:1610.08110v1
  184. 184.
    A.R. Its, A.G. Izergin, V.E. Korepin, N.A. Slavnov, Differential equations for quantum correlation functions. Int. J. Mod. Phys. B 04, 1003 (1990)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  185. 185.
    D.N. Aristov, Luttinger liquids with curvature: Density correlations and Coulomb drag effect. Phys. Rev. B 76, 085327 (2007)ADSCrossRefGoogle Scholar
  186. 186.
    R.G. Pereira, Long time correlations of nonlinear Luttinger liquids. Int. J. Mod. Phys. B 26, 1244008 (2012)ADSzbMATHCrossRefGoogle Scholar
  187. 187.
    K.K. Kozlowski, V. Terras, Long-time and large-distance asymptotic behavior of the current-current correlators in the non-linear Schrödinger model. J. Stat. Mech. P09013 (2011)Google Scholar
  188. 188.
    A.J. Schofield, Non-Fermi liquids. Contemp. Phys. 40(2), 95–115 (1999)ADSCrossRefGoogle Scholar
  189. 189.
    A. Imambekov, T.L. Schmidt, L.I. Glazman, One-dimensional quantum liquids: beyond the luttinger liquid paradigm. Rev. Mod. Phys. 84, 1253 (2012)ADSCrossRefGoogle Scholar
  190. 190.
    E. Witten, Non-Abelian Bosonization in two dimensions. Commun. Math. Phys. 92, 455–472 (1984)ADSzbMATHCrossRefGoogle Scholar
  191. 191.
    X.G. Wen, Metallic non-Fermi-liquid fixed point in two and higher dimensions. Phys. Rev. B 42, 6623 (1990)ADSCrossRefGoogle Scholar
  192. 192.
    L. Bartosch, P. Kopietz, Correlation functions of higher-dimensional Luttinger liquids. Phys. Rev. B 59, 5377 (1999)ADSCrossRefGoogle Scholar
  193. 193.
    P. Francesco, P. Mathieu, D. Sénéchal, Conformal Field theory (Springer, Graduate Textbooks in Contemporary Physics, 1997)Google Scholar
  194. 194.
    A.A. Belavin, A.M. Polyakov, A.B. Zamolodchikov, Infinite conformal symmetry in two-dimensional quantum field theory. Nucl. Phys. B 241, 333–380 (1984)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  195. 195.
    V.S. Dotsenko, V.A. Fateev, Conformal algebra and multipoint correlation functions in 2D statistical models. Nucl. Phys. B 240, 312 (1984)ADSCrossRefGoogle Scholar
  196. 196.
    A.M. Polyakov, Conformal symmetry of critical fluctuations. JETP Lett. 12, 381 (1970)ADSGoogle Scholar
  197. 197.
    J.L. Cardy, Conformal invariance and universality in finite-size scaling. J. Phys. A 17, 385–961 (1984)ADSMathSciNetCrossRefGoogle Scholar
  198. 198.
    H.W.J. Blöte, J.L. Cardy, M.P. Nightingale, Conformal invariance, the central charge, and universal finite-size amplitudes at criticality. Phys. Rev. Lett. 56, 742 (1986)ADSCrossRefGoogle Scholar
  199. 199.
    D. Friedan, Z. Qiu, S. Shenker, Conformal invariance, unitarity, and critical exponents in two dimensions. Phys. Rev. Lett. 52, 1575 (1984)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  200. 200.
    T. Giamarchi, Quantum Physics in One Dimension (Oxford University Press, New York, 2004)Google Scholar
  201. 201.
    G. Lang, F. Hekking, A. Minguzzi, Dynamic structure factor and drag force in a one-dimensional Bose gas at finite temperature. Phys. Rev. A 91, 063619 (2015)ADSCrossRefGoogle Scholar
  202. 202.
    A. Del Maestro, M. Boninsegni, I. Affleck, \({^4}\)He Luttinger liquid in nanopores. Phys. Rev. Lett. 106, 105303 (2011)ADSCrossRefGoogle Scholar
  203. 203.
    S. El-Showk, M.F. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin, A. Vichi, Solving the 3d Ising model with the conformal bootstrap II. c-minimization and precise critical exponents. J. Stat. Phys. 157, 869–914 (2014)Google Scholar
  204. 204.
    J.M. Maldacena, The Large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2, 231–252 (1998)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  205. 205.
    E. Witten, Anti De sitter space and holography. Adv. Theor. Math. Phys. 2, 253–291 (1998)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  206. 206.
    J. Zaanen, Y. Liu, Y.-S. Sun, K. Schalm, Holographic Duality in Condensed Matter Physics (Cambridge, 2005)Google Scholar
  207. 207.
    A. Vogler, R. Labouvie, G. Barontini, S. Eggert, V. Guarrera, H. Ott, Dimensional phase transition from an array of 1D Luttinger liquids to a 3D Bose-Einstein condensate. Phys. Rev. Lett. 113, 215301 (2014)ADSCrossRefGoogle Scholar
  208. 208.
    B. Irsigler, A. Pelster, Dimensionally induced one-dimensional to three-dimensional phase transition of the weakly interacting ultracold Bose gas. Phys. Rev. A 95, 043610 (2017)ADSCrossRefGoogle Scholar
  209. 209.
    C. Castellani, C. Di Castro, W. Metzner, Dimensional crossover from Fermi to Luttinger liquid. Phys. Rev. Lett. 72, 316 (1994)ADSCrossRefGoogle Scholar
  210. 210.
    S. Bellucci, J. González, Crossover from marginal Fermi liquid to Luttinger liquid behavior in carbon nanotubes. Phys. Rev. B 64, 201106(R) (2001)ADSCrossRefGoogle Scholar
  211. 211.
    D.I. Tsomokos, S. Ashhab, F. Nori, Using superconducting qubit circuits to engineer exotic lattice systems. Phys. Rev. A 82, 052311 (2010)ADSCrossRefGoogle Scholar
  212. 212.
    M. Aidelsburger, M. Atala, M. Lohse, J.T. Barreiro, B. Paredes, I. Bloch, Realization of the Hofstadter hamiltonian with ultracold atoms in optical lattices. Phys. Rev. Lett. 111, 185301 (2013)ADSCrossRefGoogle Scholar
  213. 213.
    F. Guinea, G. Zimanyi, Luttinger liquids in higher dimensions. Phys. Rev. B 47, 501 (1993)ADSCrossRefGoogle Scholar
  214. 214.
    E. Arrigoni, Crossover from Luttinger- to Fermi-Liquid behavior in strongly anisotropic systems in large dimensions. Phys. Rev. Lett. 83, 128 (1999)ADSCrossRefGoogle Scholar
  215. 215.
    S. Biermann, A. Georges, A. Lichtenstein, T. Giamarchi, Deconfinement transition and Luttinger to Fermi liquid crossover in quasi-one-dimensional systems. Phys. Rev. Lett. 87, 276405 (2001)ADSCrossRefGoogle Scholar
  216. 216.
    J. Armijo, T. Jacqmin, K. Kheruntsyan, I. Bouchoule, Mapping out the quasicondensate transition through the dimensional crossover from one to three dimensions. Phys. Rev. A 83, 021605(R) (2011)ADSCrossRefGoogle Scholar
  217. 217.
    M.C. Revelle, J.A. Fry, B.A. Olsen, R.G. Hulet, 1D to 3D crossover of a spin-imbalanced fermi gas. Phys. Rev. Lett. 117, 235301 (2016)ADSCrossRefGoogle Scholar
  218. 218.
    O. Boada, A. Celi, J.I. Latorre, M. Lewenstein, Quantum simulation of an extra dimension. Phys. Rev. Lett. 108, 133001 (2012)ADSCrossRefGoogle Scholar
  219. 219.
    A. Celi, P. Massignan, J. Ruseckas, N. Goldman, I.B. Spielman, G. Juzeliunas, M. Lewenstein, Synthetic Gauge Fields in synthetic dimensions. Phys. Rev. Lett. 112, 043001 (2014)ADSCrossRefGoogle Scholar
  220. 220.
    T.-S. Zeng, C. Wang, H. Zhai, Charge pumping of interacting fermion atoms in the synthetic dimension. Phys. Rev. Lett. 115, 095302 (2015)ADSCrossRefGoogle Scholar
  221. 221.
    X.-W. Luo, X. Zhou, C.-F. Li, J.-S. Xu, G.-C. Guo, Z.-W. Zhou, Quantum simulation of 2D topological physics in a 1D array of optical cavities. Nat. Commun. 6, 7704 (2015)CrossRefGoogle Scholar
  222. 222.
    S. Barbarino, L. Taddia, D. Rossini, L. Mazza, R. Fazio, Synthetic gauge fields in synthetic dimensions: interactions and chiral edge modes. New J. Phys. 18, 035010 (2016)ADSMathSciNetCrossRefGoogle Scholar
  223. 223.
    H.M. Price, T. Ozawa, N. Goldman, Synthetic dimensions for cold atoms from shaking a harmonic trap. Phys. Rev. A 95, 023607 (2017)ADSCrossRefGoogle Scholar
  224. 224.
    C. Cheng, J. Kangara, I. Arakelyan, J.E. Thomas, Fermi gases in the two-dimensional to quasi-two-dimensional crossover. Phys. Rev. A 94, 031606(R) (2016)ADSCrossRefGoogle Scholar
  225. 225.
    G. Lang, F. Hekking, A. Minguzzi, Dimensional crossover in a Fermi gas and a cross-dimensional Tomonaga-Luttinger model. Phys. Rev. A 93, 013603 (2016)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Laboratoire de Physique et de Modélisation des Milieux Condensés (LPMMC)GrenobleFrance

Personalised recommendations