Advertisement

Flatness-Based Control of DC Machine-Serial Multicellular Power Converter Association

  • M. AourirEmail author
  • A. Abouloifa
  • C. Aouadi
  • I. Lachkar
  • F. El Otmani
Conference paper
Part of the Advances in Science, Technology & Innovation book series (ASTI)

Abstract

This chapter considers the control of serial multicellular power converter feeding DC motor. For this purpose, a new control strategy based on flatness approach is developed. The main aim consists on regulating the DC motor velocity to a desired level, keeping in mind the necessity of ensuring an equitable distribution of the supply voltage on the power switches of serial multicellular power converter. To this end, the regulation of the voltage at the terminals of the flying capacitors is necessary. The synthetized controller was verified by computer simulation using Matlab/SimPowerSystems, and the obtained results prove the effectiveness of the designed controller and show that the entire objectives are achieved.

Keywords

DC motor Multicellular power converter Speed regulation Flying capacitor Nonlinear control Flatness approach Routh–Hurwitz criteria 

References

  1. Aouadi, C., Abouloifa, A., Aourir, M., Boussairi, Y., Hamdoun, A., & Lachkar, I. (2017). State-feedback nonlinear control of three-phase grid connected to the photovoltaic system. In 2017 IEEE International Conference on Environment and Electrical Engineering and 2017 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe) (pp. 1–6). IEEE.Google Scholar
  2. Aouadi, C., Abouloifa, A., Hamdoun, A., & Boussairi, Y. (2014). Backstepping based control of PV system connected to the grid. International Journal of Computer & Information Technology, 3.Google Scholar
  3. Benmansour, K., Benalia, A., Djemaï, M., & de Leon, J. (2007). Hybrid control of a multicellular converter. Nonlinear Analysis: Hybrid Systems, 1, 16–29.  https://doi.org/10.1016/j.nahs.2006.06.001.MathSciNetCrossRefzbMATHGoogle Scholar
  4. Benmiloud, M., & Benalia, A. (2013). Hybrid control scheme for multicellular converter. In 2013 International Conference on Control, Decision and Information Technologies (CoDIT) (pp. 476–482). IEEE.Google Scholar
  5. Benmiloud, M., Benalia, A., Defoort, M., & Djemai, M. (2016). On the limit cycle stabilization of a DC/DC three-cell converter. Control Engineering Practice, 49, 29–41.  https://doi.org/10.1016/j.conengprac.2016.01.010.CrossRefGoogle Scholar
  6. Bethoux, O., & Barbot, J.-P. (2006). Commande permettant le contrôle du convertisseur multicellulaire série à nombre non premier de cellules. In Conférence Internationale Francophone En Automatique.Google Scholar
  7. Cormerais, H., Buisson, J., Richard, P. Y., & Morvan, C. (2008). Modelling and passivity based control of switched systems from bond graph formalism: Application to multicellular converters. Journal of the Franklin Institute, 345, 468–488.  https://doi.org/10.1016/j.jfranklin.2008.01.001.MathSciNetCrossRefzbMATHGoogle Scholar
  8. Djemaï, M., Busawon, K., Benmansour, K., & Marouf, A. (2011). High-order sliding mode control of a DC motor drive via a switched controlled multi-cellular converter. International Journal of Systems Science, 42, 1869–1882.  https://doi.org/10.1080/00207721.2010.545492.MathSciNetCrossRefzbMATHGoogle Scholar
  9. Fliess, M., Lévine, J., Martin, P., & Rouchon, P. (1995). Flatness and defect of non-linear systems: Introductory theory and examples. International Journal of Control, 61, 1327–1361.MathSciNetCrossRefGoogle Scholar
  10. Gateau, G., Fadel, M., Maussion, P., Bensaid, R., & Meynard, T. A. (2002). Multicell converters: Active control and observation of flying-capacitor voltages. IEEE Transactions on Industrial Electronics, 49, 998–1008.  https://doi.org/10.1109/TIE.2002.803200.CrossRefGoogle Scholar
  11. Li, C. (n.d.). A modified neutral-point balancing space vector modulation for three-level neutral point clamped converters in high speed drives. IEEE Transactions on Industrial Electronics, 13.Google Scholar
  12. Meynard, T. A., Foch, H., Thomas, P., Courault, J., Jakob, R., & Nahrstaedt, M. (2002). Multicell converters: Basic concepts and industry applications. IEEE Transactions on Industrial Electronics, 49, 955–964.  https://doi.org/10.1109/TIE.2002.803174.CrossRefGoogle Scholar
  13. Patin, N. (2015). Introduction to multi-level converters. In Power electronics applied to industrial systems and transports (Vol. 2, pp. 193–213). Elsevier.  https://doi.org/10.1016/B978-1-78548-001-0.50005-8.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • M. Aourir
    • 1
    Email author
  • A. Abouloifa
    • 1
  • C. Aouadi
    • 1
  • I. Lachkar
    • 2
  • F. El Otmani
    • 1
  1. 1.TI Lab, Faculty of Sciences Ben M’sikHassan II-Casablanca UniversityCasablancaMorocco
  2. 2.RI LabENSEM Casablanca, Hassan II-Casablanca UniversityCasablancaMorocco

Personalised recommendations