Advertisement

Active Disturbance Rejection Control of Shunt Active Power Filter Based on P-Q Theory

  • Imad AboudrarEmail author
  • Soumia El Hani
  • Hamza Mediouni
  • Ahmed Aghmadi
Conference paper
Part of the Advances in Science, Technology & Innovation book series (ASTI)

Abstract

Active filtering has been known as a promising solution for the compensation of reactive currents and harmonics in the grid energy quality. The present paper introduces a novel control algorithm for the detection of reference harmonic currents applied to a Shunt Active Power Filter (SAPF), where the calculation of the references currents is achieved by the instantaneous active and reactive power theories (p-q), and the control of the DC bus voltage is achieved using the active disturbance rejection control. The MATLAB–SIMULINK environment is used to evaluate the theoretical study and to compare the results of the new control strategy with the one obtained by the classical PI controller.

Keywords

SAPF P-Q theory PI control ADRC THD Nonlinear load ESO 

References

  1. Aboudrar, I., & El Hani, S. (2017). Hybrid algorithm and active filtering dedicated to the optimization and the improvement of photovoltaic system connected to grid energy quality. International Journal of Renewable Energy Research (IJRER), 7(2), 894–900.Google Scholar
  2. Akagi, H., Kanazawa, Y., & Nabae, A. (1984). Instantaneous reactive power compensators comprising switching devices without energy storage components. IEEE Transactions on Industry Applications, 3, 625–630.CrossRefGoogle Scholar
  3. Akagi, H., Watanabe, E. H., & Aredes, M. (2017). Instantaneous power theory and applications to power conditioning (Vol. 62). Wiley.Google Scholar
  4. Carrasco, J. M., Franquelo, L. G., Bialasiewicz, J. T., Galván, E., PortilloGuisado, R. C., Prats, M. M., et al. (2006). Power-electronic systems for the grid integration of renewable energy sources: A survey. IEEE Transactions on Industrial Electronics, 53(4), 1002–1016.CrossRefGoogle Scholar
  5. Chaoui, A. (2010). Filtrage actif triphasé pour charges non linéaires. Thèse de doctorat. École nationale supérieure d’ingénieurs (Poitiers).Google Scholar
  6. Guerrero, J. M., Loh, P. C., Lee, T. L., & Chandorkar, M. (2013). Advanced control architectures for intelligent microgrids—Part II: Power quality, energy storage, and AC/DC microgrids. IEEE Transactions on Industrial Electronics, 60(4), 1263–1270.CrossRefGoogle Scholar
  7. Han, J. (2009). From PID to active disturbance rejection control. IEEE Transactions on Industrial Electronics, 56(3), 900–906.CrossRefGoogle Scholar
  8. Herbst, G. (2013). A simulative study on active disturbance rejection control (ADRC) as a control tool for practitioners. Electronics, 2(3), 246–279.MathSciNetCrossRefGoogle Scholar
  9. Imad, A., El Hani, S., Mediouni, H., & Echchaachouai, A. (2017, November). Comparative analysis on current control methods of shunt active power filter for the improvement of grid energy quality. In 2017 International Conference on Electrical and Information Technologies (ICEIT) (pp. 1–6). IEEE.Google Scholar
  10. Lam, C. S., Choi, W. H., Wong, M. C., & Han, Y. D. (2012). Adaptive DC-link voltage-controlled hybrid active power filters for reactive power compensation. IEEE Transactions on Power Electronics, 27(4), 1758–1772.CrossRefGoogle Scholar
  11. Pal, Y., Swarup, A., & Singh, B. (2008, October). A review of compensating type custom power devices for power quality improvement. In Joint International Conference on Power System Technology and IEEE Power India Conference, 2008. POWERCON 2008 (pp. 1–8). IEEE.Google Scholar
  12. Peng, F. Z., & Lai, J. S. (1996). Generalized instantaneous reactive power theory for three-phase power systems. IEEE Transactions on Instrumentation and Measurement, 45(1), 293–297.CrossRefGoogle Scholar
  13. Prabhu, Y. S., Dharme, A. A., & Talange, D. B. (2014, December). A three phase shunt active power filter based on instantaneous reactive power theory. In 2014 Annual IEEE India Conference (INDICON) (pp. 1–5). IEEE.Google Scholar
  14. Ramírez-Neria, M., Sira-Ramírez, H., Garrido-Moctezuma, R., & Luviano-Juarez, A. (2014). Linear active disturbance rejection control of underactuated systems: The case of the Furuta pendulum. ISA Transactions, 53(4), 920–928.CrossRefGoogle Scholar
  15. Strzelecki, R. M. (Ed.). (2008). Power electronics in smart electrical energy networks. Springer Science & Business Media.Google Scholar
  16. Yang, R., Sun, M., & Chen, Z. (2011). Active disturbance rejection control on first-order plant. Journal of Systems Engineering and Electronics, 22(1), 95–102.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Imad Aboudrar
    • 1
    Email author
  • Soumia El Hani
    • 1
  • Hamza Mediouni
    • 1
  • Ahmed Aghmadi
    • 1
  1. 1.Energy Optimization, Diagnosis and Control, STIS Center ENSETMohammed V UniversityRabatMorocco

Personalised recommendations