Advertisement

Application of Artificial Intelligence Techniques on Double-Squirrel Cage Induction Motor for an Electric Vehicle Motorization

  • Hamza MediouniEmail author
  • Soumia El Hani
  • Ilias Ouachtouk
  • Mustapha Ouadghiri
  • Imad Aboudrar
Conference paper
Part of the Advances in Science, Technology & Innovation book series (ASTI)

Abstract

Electric Vehicles (EVs) are complex electromechanical systems described by nonlinear models and therefore, their control design and analysis is not an easy task. Double-Squirrel Cage Induction Motor (DSCIM) has the advantages of driving complex loads which require high starting torque and low starting current. This paper presents a speed control comparison between the PI controller and the advanced techniques of control based on the Artificial Neural Networks (ANN) and Fuzzy Logic (FL) in order to be applied for an electric vehicle motorization. The simulation results are numerically validated by using the MATLAB/Simulink universe; they highlight the robustness properties of the different control strategies based on field-oriented control technique.

Keywords

Electric vehicles (EVs) Double-squirrel cage induction motor (DSCIM) Artificial neural networks (ANN) Fuzzy logic (FL) Robustness properties 

References

  1. 1.
    Makrygiorgou, J. J., & Alexandridis, A. T. (2017). Fuzzy logic control of electric vehicles: Design and analysis concepts. In: 2017 twelfth international conference on ecological vehicles and renewable energies (EVER) (pp. 1–6). IEEE.Google Scholar
  2. 2.
    Arancibia, A., & Strunz, K. (March 2012). Modeling of an electric vehicle charging station for fast dc charging. In: The IEEE proceedings on industrial electronics vehicle conference (IEVC) (pp. 1–6).Google Scholar
  3. 3.
    Mediouni, H., El hani, S., & Ouachtouk, I. et al. (2017). Artificial neural networks applied on double squirrel cage induction motor for an electric vehicle motorisation. In: 2017 international conference on electrical and information technologies (ICEIT) (pp. 1–6). IEEE.Google Scholar
  4. 4.
    Antonino-Daviu, J., Riera-Guasp, M., Pons-Llinares, J., Park, J., Lee, S. B., Yoo, J., et al. (2012). Detection of broken outer-cage bars for double-cage induction motors under the startup transient. IEEE Transactions on Industry Applications, 48(5), 1539–1548.CrossRefGoogle Scholar
  5. 5.
    Gritli, Y., Lee, S. B., Filippetti, F., & Zarri, L. (2014). Advanced diagnosis of outer cage damage in double-squirrel-cage induction motors under time-varying conditions based on wavelet analysis. IEEE Transactions on Industry Applications, 50(3), 1791–1800.CrossRefGoogle Scholar
  6. 6.
    Levi, E. (1997). General method of magnetising flux saturation modelling in d–q axis models of double-cage induction machines. IEE Proceedings-Electric Power Applications, 144(2), 101–109.CrossRefGoogle Scholar
  7. 7.
    Menghal, P. M., & Laxmi, A. J. (Sept 2013). Application of artificial intelligence controller for dynamic simulation of induction motor drives. Asian Power Electronics Journal, 7(1).Google Scholar
  8. 8.
    Chan, T. F., & Shi, K. (2011). Applied intelligent control of induction motor drives (1st edn.). IEEE Willey Press.Google Scholar
  9. 9.
    Menghal, P. M., & Laxmi, A. J. (Sept 2013). Application of artificial intelligence controller for dynamic simulation of induction motor drives. Asian Power Electronics Journal, 7(1).Google Scholar
  10. 10.
    Khammar, F., Debbache, N. E. (2016). Application of artificial intelligence techniques for the control of the asynchronous machine. Journal of Electrical and Computer Engineering, Article ID 8052027, Algeria.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Hamza Mediouni
    • 1
    Email author
  • Soumia El Hani
    • 1
  • Ilias Ouachtouk
    • 1
  • Mustapha Ouadghiri
    • 1
  • Imad Aboudrar
    • 1
  1. 1.Energy Optimization, Diagnosis and Control, STIS Center ENSETMohammed V UniversityRabatMorocco

Personalised recommendations