High-Level Libraries for Emotion Recognition in Music: A Review

  • Yesid Ospitia MedinaEmail author
  • Sandra BaldassarriEmail author
  • José Ramón BeltránEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 847)


This article presents a review of high-level libraries that enable to recognize emotions in digital files of music. The main objective of the work is to study and compare different high-level content-analyzer libraries, showing their main functionalities, focused on the extraction of low and high level relevant features to classify musical pieces through an affective classification model. In addition, there has been a review of different works in which those libraries have been used to emotionally classify the musical pieces, through rhythmic and tonal features reconstruction, and the automatic annotation strategies applied, which generally incorporate machine learning techniques. For the comparative evaluation of the different high-level libraries, in addition to the common attributes in the chosen libraries, the most representative attributes in music emotion recognition field (MER) were selected. The comparative evaluation enables to identify the current development in MER regarding high-level libraries and to analyze the musical parameters that are related with emotions.


MER (Music Emotion Recognition) MIR (Music Information Retrieval) API (Application Programming Interface) Music features 



This work has been partially financed by the Spain Government through the contract TIN2015-72241-EXP.


  1. 1.
    Sloboda, J.A.: La mente musical: La psicología cognitiva de la música., Madrid (2012)Google Scholar
  2. 2.
    Cho, Y.-H., Lim, H., Kim, D.-W., Lee, I.-K.: Music emotion recognition using chord progressions. In: 2016 IEEE International Conference on Systems, Man and Cybernetics (SMC), pp. 002588–002593. IEEE, Hungary (2016).
  3. 3.
    Kim, Y.E., et al.: Music emotion recognition : a state of the art review. In: Information Retrieval, pp. 255–266 (2010)Google Scholar
  4. 4.
    Pouyanfar, S., Sameti, H.: Music emotion recognition using two level classification. Proc. Intell. Syst. 1–6 (2014).
  5. 5.
    Mckay, C.: Automatic Music Classification with jMIR, (2010)Google Scholar
  6. 6.
    Grekow, J.: Audio features dedicated to the detection of arousal and valence in music recordings. In: 2017 IEEE International Conference on Innovations in Intelligent Systems and Applications (INISTA), pp. 40–44. IEEE, Gdynia (2017).
  7. 7.
    Spotify: Spotify Developer API.
  8. 8.
    McEnnis, D., McKay, C., Fujinaga, I., Depalle, P.: JAUDIO: a feature extraction library. In: Proceedings of the International Conference on Music Information Retrieval, pp. 600–603 (2005)Google Scholar
  9. 9.
    Music Technology Group, U.P.F: AcousticBrainz.
  10. 10.
    Cabrera, D., Ferguson, S., Schubert, E.: PsySound3: software for acoustical and psychoacoustical analysis of sound recordings. In: Display, P. (ed.) Proceedings of the 13th International Conference on Auditory Display, pp. 356–363, Canada (2007)Google Scholar
  11. 11.
    Lartillot, O., Toiviainen, P., Eerola, T.: A matlab toolbox for music information retrieval. In: Preisach, C., Burkhardt, H., Schmidt-Thieme, L., Decker, R. (eds.) Data Analysis, Machine Learning and Applications, pp. 261–268. Springer, Heidelberg (2008).
  12. 12.
    Tzanetakis, G., Cook, P.: MARSYAS: a framework for audio analysis. Organised Sound 4, S1355771800003071 (2000). Scholar
  13. 13.
    Soleymani, M., Aljanaki, A., Yang, Y.-H.: DEAM: MediaEval Database for Emotional Analysis in Music, pp. 3–5 (2016)Google Scholar
  14. 14.
    Tristan, J., Brian, W.: Echonest.
  15. 15.
    Russell, J.A.: A circumplex model of affect. J. Pers. Soc. Psychol. 39, 1161–1178 (1980). Scholar
  16. 16.
    Solarte, L., Sánches, M., Chanchí, G.E., Duran, D., Arciniegas, J.L.: Dataset de contenidos musicales de video basado en emociones Dataset of music video content based on emotions (2016)Google Scholar
  17. 17.
    Chanchí, G.E.: Arquitectura basada en contexto para el soporte del servicio de vod de iptv móvil, apoyada en sistemas de recomendaciones y streaming adaptativo (2016)Google Scholar
  18. 18.
    Andjelkovic, I., Parra, D., O’Donovan, J.: Moodplay. In: Proceedings of the 2016 Conference on User Modeling Adaptation and Personalization - UMAP 2016, pp. 275–279. ACM Press, Canada (2016).
  19. 19.
    Soleymani, M., Caro, M.N., Schmidt, E.M., Sha, C.-Y., Yang, Y.-H.: 1000 songs for emotional analysis of music. In: York, A.N. (ed.) Proceedings of the 2nd ACM International Workshop on Crowdsourcing for Multimedia - CrowdMM 2013, pp. 1–6. ACM Press, Barcelona (2013).
  20. 20.
  21. 21.
    Music Technology Group U.P.F: Essentia.
  22. 22.
    Kaye, R.: Musicbrainz.
  23. 23.
    Hu, X., Downie, J.S.: Exploring mood metadata: relationships with genre, artist and usage metadata. In: Proceedings of 8th International Conference on Music Information Retrieval ISMIR 2007, pp. 67–72 (2007)Google Scholar
  24. 24.
    Laurier, C., Meyers, O., Serra, J., Blech, M., Herrera, P.: Music mood annotator design and integration. In: 2009 Seventh International Workshop on Content-Based Multimedia Indexing, pp. 156–161. IEEE (2009).
  25. 25.
    Martins de Sousa, J., Torres Pereira, E., Ribeiro Veloso, L.: A robust music genre classification approach for global and regional music datasets evaluation. In: 2016 IEEE International Conference on Digital Signal Processing (DSP), pp. 109–113. IEEE, Beijing (2016).
  26. 26.
    Grekow, J.: Audio features dedicated to the detection of four basic emotions. In: Saeed, K., Homenda, W. (eds.) Computer Information Systems and Industrial Management CISIM 2015, vol. 9339. Springer, Cham.
  27. 27.
    Yang, Y.-H., Chen, H.H.: Music Emotion Recognition. Taylor & Francis Group, Boca Raton (2011)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.ICESI UniversityCaliColombia
  2. 2.University of ZaragozaZaragozaSpain

Personalised recommendations