Advertisement

Exercise in Pulmonary Vascular Diseases

  • Pierantonio LavenezianaEmail author
  • Louis Laviolette
Chapter

Abstract

Pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension are the most common diseases of pulmonary vasculature. The physiological derangements of pulmonary hypertension result in characteristic abnormalities observed during dynamic exercise and often lead to dyspnoea and exercise intolerance. Impaired cardiac function results in reduced aerobic capacity, low anaerobic threshold and reduced value of the relationship between oxygen uptake and work rate (ΔV′O2/ΔWR). Both high physiologic dead space and chemosensitivity contribute to elevated ratio of minute ventilation to CO2 output (V′E/V′CO2) during exercise testing. Consequently, resting hypocapnia with low end-tidal PCO2 throughout exercise is typically observed and is related to the severity of disease. Exertional hypoxaemia is also a variable but frequent finding during exercise, which can be related to ventilation-perfusion heterogeneity, low mixed venous O2 content from impaired cardiac output and right-to-left shunting through a patent foramen ovale. Even in the absence of significant resting airflow obstruction, dynamic hyperinflation can occur in pulmonary vascular diseases, which contributes to exertional dyspnoea and exercise intolerance. Peripheral muscle dysfunction is another common component of exercise pathophysiology in these conditions.

Keywords

Exercise testing Pulmonary hypertension Chronic thromboembolic pulmonary hypertension Dyspnoea Exercise gas exchange Chemosensitivity Prognosis Ventilatory efficiency 

References

  1. 1.
    Galiè N, Humbert M, Vachiery J-L, et al. ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertension: the joint task force for the diagnosis and treatment of pulmonary hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Respir J. 2015;46:903–75.PubMedGoogle Scholar
  2. 2.
    Guignabert C, Dorfmüller P. Pathology and pathobiology of pulmonary hypertension. Semin Respir Crit Care Med. 2017;38:571–84.PubMedGoogle Scholar
  3. 3.
    Gall H, Hoeper MM, Richter MJ, Cacheris W, Hinzmann B, Mayer E. An epidemiological analysis of the burden of chronic thromboembolic pulmonary hypertension in the USA, Europe and Japan. Eur Respir Rev. 2017;26:160121.PubMedGoogle Scholar
  4. 4.
    Simonneau G, Torbicki A, Dorfmüller P, Kim N. The pathophysiology of chronic thromboembolic pulmonary hypertension. Eur Respir Rev. 2017;26:160112.PubMedGoogle Scholar
  5. 5.
    Motoji Y, Forton K, Pezzuto B, Faoro V, Naeije R. Resistive or dynamic exercise stress testing of the pulmonary circulation and the right heart. Eur Respir J. 2017;50:1700151.PubMedGoogle Scholar
  6. 6.
    Weatherald J, Farina S, Bruno N, Laveneziana P. Cardiopulmonary exercise testing in pulmonary hypertension. Ann Am Thorac Soc. 2017;14:S84–92.PubMedGoogle Scholar
  7. 7.
    Kovacs G, Olschewski A, Berghold A, Olschewski H. Pulmonary vascular resistances during exercise in normal subjects: a systematic review. Eur Respir J. 2012;39:319–28.PubMedGoogle Scholar
  8. 8.
    Lau EMT, Chemla D, Godinas L, et al. Loss of vascular Distensibility during exercise is an early hemodynamic marker of pulmonary vascular disease. Chest. 2016;149:353–61.PubMedGoogle Scholar
  9. 9.
    Lau EMT, Godinas L, Sitbon O, et al. Resting pulmonary artery pressure of 21-24 mmHg predicts abnormal exercise haemodynamics. Eur Respir J. 2016;47:1436–44.PubMedGoogle Scholar
  10. 10.
    Kovacs G, Avian A, Wutte N, et al. Changes in pulmonary exercise haemodynamics in scleroderma: a 4-year prospective study. Eur Respir J. 2017;50:1601708.PubMedGoogle Scholar
  11. 11.
    Janicki JS, Weber KT, Likoff MJ, Fishman AP. The pressure-flow response of the pulmonary circulation in patients with heart failure and pulmonary vascular disease. Circulation. 1985;72:1270–8.PubMedGoogle Scholar
  12. 12.
    Belenkie I, Dani R, Smith ER, Tyberg JV. Ventricular interaction during experimental acute pulmonary embolism. Circulation. 1988;78:761–8.PubMedGoogle Scholar
  13. 13.
    Belenkie I, Dani R, Smith ER, Tyberg JV. Effects of volume loading during experimental acute pulmonary embolism. Circulation. 1989;80:178–88.PubMedGoogle Scholar
  14. 14.
    Nootens M, Wolfkiel CJ, Chomka EV, Rich S. Understanding right and left ventricular systolic function and interactions at rest and with exercise in primary pulmonary hypertension. Am J Cardiol. 1995;75:374–7.PubMedGoogle Scholar
  15. 15.
    Holverda S, Gan CT-J, Marcus JT, Postmus PE, Boonstra A, Vonk-Noordegraaf A. Impaired stroke volume response to exercise in pulmonary arterial hypertension. J Am Coll Cardiol. 2006;47:1732–3.PubMedGoogle Scholar
  16. 16.
    Naeije R, Badagliacca R. The overloaded right heart and ventricular interdependence. Cardiovasc Res. 2017;113:1474–85.PubMedGoogle Scholar
  17. 17.
    Chemla D, Castelain V, Hoette S, et al. Strong linear relationship between heart rate and mean pulmonary artery pressure in exercising patients with severe precapillary pulmonary hypertension. Am J Physiol Heart Circ Physiol. 2013;305:H769–77.PubMedGoogle Scholar
  18. 18.
    Groepenhoff H, Westerhof N, Jacobs W, Boonstra A, Postmus PE, Vonk-Noordegraaf A. Exercise stroke volume and heart rate response differ in right and left heart failure. Eur J Heart Fail. 2010;12:716–20.PubMedGoogle Scholar
  19. 19.
    Blumberg FC, Arzt M, Lange T, Schroll S, Pfeifer M, Wensel R. Impact of right ventricular reserve on exercise capacity and survival in patients with pulmonary hypertension. Eur J Heart Fail. 2013;15:771–5.PubMedGoogle Scholar
  20. 20.
    van Kan C, van der Plas MN, Reesink HJ, et al. Hemodynamic and ventilatory responses during exercise in chronic thromboembolic disease. J Thorac Cardiovasc Surg. 2016;152:763–71.PubMedGoogle Scholar
  21. 21.
    Sun XG, Hansen JE, Oudiz RJ, Wasserman K. Exercise pathophysiology in patients with primary pulmonary hypertension. Circulation. 2001;104:429–35.PubMedGoogle Scholar
  22. 22.
    Riley MS, Pórszász J, Engelen MP, Brundage BH, Wasserman K. Gas exchange responses to continuous incremental cycle ergometry exercise in primary pulmonary hypertension in humans. Eur J Appl Physiol. 2000;83:63–70.PubMedGoogle Scholar
  23. 23.
    Deboeck G, Niset G, Lamotte M, Vachiéry JL, Naeije R. Exercise testing in pulmonary arterial hypertension and in chronic heart failure. Eur Respir J. 2004;23:747–51.PubMedGoogle Scholar
  24. 24.
    Potus F, Malenfant S, Graydon C, et al. Impaired angiogenesis and peripheral muscle microcirculation loss contribute to exercise intolerance in pulmonary arterial hypertension. Am J Respir Crit Care Med. 2014;190:318–28.PubMedGoogle Scholar
  25. 25.
    Mainguy V, Maltais F, Saey D, et al. Peripheral muscle dysfunction in idiopathic pulmonary arterial hypertension. Thorax. 2010;65:113–7.PubMedGoogle Scholar
  26. 26.
    Wensel R, Opitz CF, Anker SD, et al. Assessment of survival in patients with primary pulmonary hypertension: importance of cardiopulmonary exercise testing. Circulation. 2002;106:319–24.PubMedGoogle Scholar
  27. 27.
    Imai K, Sato H, Hori M, et al. Vagally mediated heart rate recovery after exercise is accelerated in athletes but blunted in patients with chronic heart failure. J Am Coll Cardiol. 1994;24:1529–35.PubMedGoogle Scholar
  28. 28.
    Ramos RP, Arakaki JSO, Barbosa P, et al. Heart rate recovery in pulmonary arterial hypertension: relationship with exercise capacity and prognosis. Am Heart J. 2012;163:580–8.PubMedGoogle Scholar
  29. 29.
    Riley MS, Pórszász J, Engelen MP, Shapiro SM, Brundage BH, Wasserman K. Responses to constant work rate bicycle ergometry exercise in primary pulmonary hypertension: the effect of inhaled nitric oxide. J Am Coll Cardiol. 2000;36:547–56.PubMedGoogle Scholar
  30. 30.
    Theodore J, Robin ED, Morris AJ, et al. Augmented ventilatory response to exercise in pulmonary hypertension. Chest. 1986;89:39–44.PubMedGoogle Scholar
  31. 31.
    D’Alonzo GE, Gianotti LA, Pohil RL, et al. Comparison of progressive exercise performance of normal subjects and patients with primary pulmonary hypertension. Chest. 1987;92:57–62.PubMedGoogle Scholar
  32. 32.
    Sun X-G, Hansen JE, Oudiz RJ, Wasserman K. Pulmonary function in primary pulmonary hypertension. J Am Coll Cardiol. 2003;41:1028–35.PubMedGoogle Scholar
  33. 33.
    Laveneziana P, Garcia G, Joureau B, et al. Dynamic respiratory mechanics and exertional dyspnoea in pulmonary arterial hypertension. Eur Respir J. 2013;41:578–87.PubMedGoogle Scholar
  34. 34.
    Meyer FJ, Ewert R, Hoeper MM, et al. Peripheral airway obstruction in primary pulmonary hypertension. Thorax. 2002;57:473–6.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Richter MJ, Voswinckel R, Tiede H, et al. Dynamic hyperinflation during exercise in patients with precapillary pulmonary hypertension. Respir Med. 2012;106:308–13.PubMedGoogle Scholar
  36. 36.
    de Man FS, van Hees HWH, Handoko ML, et al. Diaphragm muscle fiber weakness in pulmonary hypertension. Am J Respir Crit Care Med. 2011;183:1411–8.PubMedGoogle Scholar
  37. 37.
    Manders E, Bonta PI, Kloek JJ, et al. Reduced force of diaphragm muscle fibers in patients with chronic thromboembolic pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol. 2016;311:L20–8.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Meyer FJ, Lossnitzer D, Kristen AV, et al. Respiratory muscle dysfunction in idiopathic pulmonary arterial hypertension. Eur Respir J. 2005;25:125–30.PubMedGoogle Scholar
  39. 39.
    Laveneziana P, Humbert M, Godinas L, et al. Inspiratory muscle function, dynamic hyperinflation and exertional dyspnoea in pulmonary arterial hypertension. Eur Respir J. 2015;45:1495–8.PubMedGoogle Scholar
  40. 40.
    Sun X-G, Hansen JE, Garatachea N, Storer TW, Wasserman K. Ventilatory efficiency during exercise in healthy subjects. Am J Respir Crit Care Med. 2002;166:1443–8.PubMedGoogle Scholar
  41. 41.
    Vicenzi M, Deboeck G, Faoro V, Loison J, Vachiery J-L, Naeije R. Exercise oscillatory ventilation in heart failure and in pulmonary arterial hypertension. Int J Cardiol. 2016;202:736–40.PubMedGoogle Scholar
  42. 42.
    Reybrouck T, Mertens L, Schulze-Neick I, et al. Ventilatory inefficiency for carbon dioxide during exercise in patients with pulmonary hypertension. Clin Physiol. 1998;18:337–44.PubMedGoogle Scholar
  43. 43.
    Liu W-H, Luo Q, Liu Z-H, et al. Pulmonary function differences in patients with chronic right heart failure secondary to pulmonary arterial hypertension and chronic left heart failure. Med Sci Monit. 2014;20:960–6.PubMedPubMedCentralGoogle Scholar
  44. 44.
    McCabe C, Deboeck G, Harvey I, et al. Inefficient exercise gas exchange identifies pulmonary hypertension in chronic thromboembolic obstruction following pulmonary embolism. Thromb Res. 2013;132:659–65.PubMedGoogle Scholar
  45. 45.
    Xi Q, Zhao Z, Liu Z, Ma X, Luo Q, Liu W. The lowest VE/VCO2 ratio best identifies chronic thromboembolic pulmonary hypertension. Thromb Res. 2014;134:1208–13.PubMedGoogle Scholar
  46. 46.
    Zhai Z, Murphy K, Tighe H, et al. Differences in ventilatory inefficiency between pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension. Chest. 2011;140:1284–91.PubMedGoogle Scholar
  47. 47.
    Godinas L, Sattler C, Lau EM, et al. Dead-space ventilation is linked to exercise capacity and survival in distal chronic thromboembolic pulmonary hypertension. J Heart Lung Transplant. 2017;36:1234–42.PubMedGoogle Scholar
  48. 48.
    Yasunobu Y, Oudiz RJ, Sun X-G, Hansen JE, Wasserman K. End-tidal PCO2 abnormality and exercise limitation in patients with primary pulmonary hypertension. Chest. 2005;127:1637–46.PubMedGoogle Scholar
  49. 49.
    Markowitz DH, Systrom DM. Diagnosis of pulmonary vascular limit to exercise by cardiopulmonary exercise testing. J Heart Lung Transplant. 2004;23:88–95.PubMedGoogle Scholar
  50. 50.
    Weatherald J, Sattler C, Garcia G, Laveneziana P. Ventilatory response to exercise in cardiopulmonary disease: the role of Chemosensitivity and dead space. Eur Respir J. 2018;51:1700860.PubMedGoogle Scholar
  51. 51.
    Velez-Roa S, Ciarka A, Najem B, Vachiery J-L, Naeije R, van de Borne P. Increased sympathetic nerve activity in pulmonary artery hypertension. Circulation. 2004;110:1308–12.PubMedGoogle Scholar
  52. 52.
    Naeije R, van de Borne P. Clinical relevance of autonomic nervous system disturbances in pulmonary arterial hypertension. Eur Respir J. 2009;34:792–4.PubMedGoogle Scholar
  53. 53.
    Wensel R, Jilek C, Dörr M, et al. Impaired cardiac autonomic control relates to disease severity in pulmonary hypertension. Eur Respir J. 2009;34:895–901.PubMedGoogle Scholar
  54. 54.
    Hoeper MM, Pletz MW, Golpon H, Welte T. Prognostic value of blood gas analyses in patients with idiopathic pulmonary arterial hypertension. Eur Respir J. 2007;29:944–50.PubMedGoogle Scholar
  55. 55.
    Weatherald J, Sattler C, Boucly A, et al. Chemosensitivity and ventilatory inefficiency in pulmonary vascular diseases. Eur Respir J. 2017;50:1966.Google Scholar
  56. 56.
    Jones PW, Huszczuk A, Wasserman K. Cardiac output as a controller of ventilation through changes in right ventricular load. J Appl Physiol. 1982;53:218–24.PubMedGoogle Scholar
  57. 57.
    Ciarka A, Doan V, Velez-Roa S, Naeije R, van de Borne P. Prognostic significance of sympathetic nervous system activation in pulmonary arterial hypertension. Am J Respir Crit Care Med. 2010;181:1269–75.PubMedGoogle Scholar
  58. 58.
    Dimopoulos S, Anastasiou-Nana M, Katsaros F, et al. Impairment of autonomic nervous system activity in patients with pulmonary arterial hypertension: a case control study. J Card Fail. 2009;15:882–9.PubMedGoogle Scholar
  59. 59.
    Ponikowski PP, Chua TP, Francis DP, Capucci A, Coats AJ, Piepoli MF. Muscle ergoreceptor overactivity reflects deterioration in clinical status and cardiorespiratory reflex control in chronic heart failure. Circulation. 2001;104:2324–30.PubMedGoogle Scholar
  60. 60.
    Sun X-G, Hansen JE, Oudiz RJ, Wasserman K. Gas exchange detection of exercise-induced right-to-left shunt in patients with primary pulmonary hypertension. Circulation. 2002;105:54–60.PubMedGoogle Scholar
  61. 61.
    Chua TP, Clark AL, Amadi AA, Coats AJ. Relation between chemosensitivity and the ventilatory response to exercise in chronic heart failure. J Am Coll Cardiol. 1996;27:650–7.PubMedGoogle Scholar
  62. 62.
    Scott AC, Wensel R, Davos CH, et al. Skeletal muscle reflex in heart failure patients: role of hydrogen. Circulation. 2003;107:300–6.PubMedGoogle Scholar
  63. 63.
    Ciarka A, Vachièry J-L, Houssière A, et al. Atrial septostomy decreases sympathetic overactivity in pulmonary arterial hypertension. Chest. 2007;131:1831–7.PubMedGoogle Scholar
  64. 64.
    Deboeck G, Scoditti C, Huez S, et al. Exercise testing to predict outcome in idiopathic versus associated pulmonary arterial hypertension. Eur Respir J. 2012;40:1410–9.PubMedGoogle Scholar
  65. 65.
    Schwaiblmair M, Faul C, von Scheidt W, Berghaus TM. Ventilatory efficiency testing as prognostic value in patients with pulmonary hypertension. BMC Pulm Med. 2012;12:23.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Scheidl SJ, Englisch C, Kovacs G, et al. Diagnosis of CTEPH versus IPAH using capillary to end-tidal carbon dioxide gradients. Eur Respir J. 2012;39:119–24.PubMedGoogle Scholar
  67. 67.
    Held M, Grün M, Holl R, et al. Cardiopulmonary exercise testing to detect chronic thromboembolic pulmonary hypertension in patients with normal echocardiography. Respiration. 2014;87:379–87.PubMedGoogle Scholar
  68. 68.
    Laveneziana P, Montani D, Dorfmüller P, et al. Mechanisms of exertional dyspnoea in pulmonary veno-occlusive disease with EIF2AK4 mutations. Eur Respir J. 2014;44:1069–72.PubMedGoogle Scholar
  69. 69.
    Wasserman K, Zhang YY, Gitt A, et al. Lung function and exercise gas exchange in chronic heart failure. Circulation. 1997;96:2221–7.PubMedGoogle Scholar
  70. 70.
    Houstis NE, Eisman AS, Pappagianopoulos PP, et al. Exercise intolerance in HFpEF: diagnosing and ranking its causes using personalized O2 pathway analysis. Circulation. 2018;137:148–61.PubMedGoogle Scholar
  71. 71.
    Van Iterson EH, Johnson BD, Borlaug BA, Olson TP. Physiological dead space and arterial carbon dioxide contributions to exercise ventilatory inefficiency in patients with reduced or preserved ejection fraction heart failure. Eur J Heart Fail. 2017;19:1675–85.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Dantzker DR, D’Alonzo GE, Bower JS, Popat K, Crevey BJ. Pulmonary gas exchange during exercise in patients with chronic obliterative pulmonary hypertension. Am Rev Respir Dis. 1984;130:412–6.PubMedGoogle Scholar
  73. 73.
    Wagner PD. The physiological basis of pulmonary gas exchange: implications for clinical interpretation of arterial blood gases. Eur Respir J. 2015;45:227–43.PubMedGoogle Scholar
  74. 74.
    Oudiz RJ, Midde R, Hovenesyan A, et al. Usefulness of right-to-left shunting and poor exercise gas exchange for predicting prognosis in patients with pulmonary arterial hypertension. Am J Cardiol. 2010;105:1186–91.PubMedPubMedCentralGoogle Scholar
  75. 75.
    Jones NL, Robertson DG, Kane JW. Difference between end-tidal and arterial PCO2 in exercise. J Appl Physiol. 1979;47:954–60.PubMedGoogle Scholar
  76. 76.
    Liu Z, Vargas F, Stansbury D, Sasse SA, Light RW. Comparison of the end-tidal arterial PCO2 gradient during exercise in normal subjects and in patients with severe COPD. Chest. 1995;107:1218–24.PubMedGoogle Scholar
  77. 77.
    Esposito F, Mathieu-Costello O, Shabetai R, Wagner PD, Richardson RS. Limited maximal exercise capacity in patients with chronic heart failure: partitioning the contributors. J Am Coll Cardiol. 2010;55:1945–54.PubMedPubMedCentralGoogle Scholar
  78. 78.
    Dimopoulos S, Tzanis G, Manetos C, et al. Peripheral muscle microcirculatory alterations in patients with pulmonary arterial hypertension: a pilot study. Respir Care. 2013;58:2134–41.PubMedGoogle Scholar
  79. 79.
    Tolle J, Waxman A, Systrom D. Impaired systemic oxygen extraction at maximum exercise in pulmonary hypertension. Med Sci Sports Exerc. 2008;40:3–8.PubMedGoogle Scholar
  80. 80.
    Bauer R, Dehnert C, Schoene P, et al. Skeletal muscle dysfunction in patients with idiopathic pulmonary arterial hypertension. Respir Med. 2007;101:2366–9.PubMedGoogle Scholar
  81. 81.
    Duscha BD, Robbins JL, Jones WS, et al. Angiogenesis in skeletal muscle precede improvements in peak oxygen uptake in peripheral artery disease patients. Arterioscler Thromb Vasc Biol. 2011;31:2742–8.PubMedPubMedCentralGoogle Scholar
  82. 82.
    Esposito F, Reese V, Shabetai R, Wagner PD, Richardson RS. Isolated quadriceps training increases maximal exercise capacity in chronic heart failure: the role of skeletal muscle convective and diffusive oxygen transport. J Am Coll Cardiol. 2011;58:1353–62.PubMedPubMedCentralGoogle Scholar
  83. 83.
    Mereles D, Ehlken N, Kreuscher S, et al. Exercise and respiratory training improve exercise capacity and quality of life in patients with severe chronic pulmonary hypertension. Circulation. 2006;114:1482–9.PubMedGoogle Scholar
  84. 84.
    Ehlken N, Lichtblau M, Klose H, et al. Exercise training improves peak oxygen consumption and haemodynamics in patients with severe pulmonary arterial hypertension and inoperable chronic thrombo-embolic pulmonary hypertension: a prospective, randomized, controlled trial. Eur Heart J. 2016;37:35–44.PubMedGoogle Scholar
  85. 85.
    Puente-Maestu L, Palange P, Casaburi R, et al. Use of exercise testing in the evaluation of interventional efficacy: an official ERS statement. Eur Respir J. 2016;47:429–60.PubMedGoogle Scholar
  86. 86.
    Groepenhoff H, Vonk-Noordegraaf A, van de Veerdonk MC, Boonstra A, Westerhof N, Bogaard HJ. Prognostic relevance of changes in exercise test variables in pulmonary arterial hypertension. PLoS One. 2013;8:e72013.PubMedPubMedCentralGoogle Scholar
  87. 87.
    Wensel R, Francis DP, Meyer FJ, et al. Incremental prognostic value of cardiopulmonary exercise testing and resting haemodynamics in pulmonary arterial hypertension. Int J Cardiol. 2013;167:1193–8.PubMedGoogle Scholar
  88. 88.
    Badagliacca R, Papa S, Valli G, et al. Echocardiography combined with cardiopulmonary exercise testing for the prediction of outcome in idiopathic pulmonary arterial hypertension. Chest. 2016;150:1313–22.PubMedGoogle Scholar
  89. 89.
    Barst RJ, McGoon M, McLaughlin V, et al. Beraprost therapy for pulmonary arterial hypertension. J Am Coll Cardiol. 2003;41:2119–25.PubMedGoogle Scholar
  90. 90.
    Barst RJ, Langleben D, Frost A, et al. Sitaxsentan therapy for pulmonary arterial hypertension. Am J Respir Crit Care Med. 2004;169:441–7.PubMedGoogle Scholar
  91. 91.
    Tang Y, Yao L, Liu Z, et al. Effect of calcium channel blockers evaluated by cardiopulmonary exercise testing in idiopathic pulmonary arterial hypertension responding to acute pulmonary vasoreactivity testing. Pulm Pharmacol Ther. 2017;43:26–31.PubMedGoogle Scholar
  92. 92.
    Oudiz RJ, Roveran G, Hansen JE, Sun X-G, Wasserman K. Effect of sildenafil on ventilatory efficiency and exercise tolerance in pulmonary hypertension. Eur J Heart Fail. 2007;9:917–21.PubMedPubMedCentralGoogle Scholar
  93. 93.
    Wax D, Garofano R, Barst RJ. Effects of long-term infusion of prostacyclin on exercise performance in patients with primary pulmonary hypertension. Chest. 1999;116:914–20.PubMedGoogle Scholar
  94. 94.
    Weatherald J, Boucly A, Chemla D, et al. The prognostic value of follow-up hemodynamic variables after initial management in pulmonary arterial hypertension. Circulation. 2018;137:693–704.PubMedGoogle Scholar
  95. 95.
    Surie S, van der Plas MN, Marcus JT, et al. Effect of pulmonary endarterectomy for chronic thromboembolic pulmonary hypertension on stroke volume response to exercise. Am J Cardiol. 2014;114:136–40.PubMedGoogle Scholar
  96. 96.
    Taboada D, Pepke-Zaba J, Jenkins DP, et al. Outcome of pulmonary endarterectomy in symptomatic chronic thromboembolic disease. Eur Respir J. 2014;44:1635–45.PubMedGoogle Scholar
  97. 97.
    Claessen G, La Gerche A, Dymarkowski S, Claus P, Delcroix M, Heidbuchel H. Pulmonary vascular and right ventricular reserve in patients with normalized resting hemodynamics after pulmonary endarterectomy. J Am Heart Assoc. 2015;4:e001602.PubMedPubMedCentralGoogle Scholar
  98. 98.
    Richter MJ, Sommer N, Gall H, et al. Pulmonary hemodynamic response to exercise in chronic thromboembolic pulmonary hypertension before and after pulmonary endarterectomy. Respiration. 2015;90:63–73.PubMedGoogle Scholar
  99. 99.
    Bonderman D, Martischnig AM, Vonbank K, et al. Right ventricular load at exercise is a cause of persistent exercise limitation in patients with normal resting pulmonary vascular resistance after pulmonary endarterectomy. Chest. 2011;139:122–7.PubMedGoogle Scholar
  100. 100.
    Delcroix M, Lang I, Pepke-Zaba J, et al. Long-term outcome of patients with chronic thromboembolic pulmonary hypertension: results from an international prospective registry. Circulation. 2016;133:859–71.PubMedGoogle Scholar
  101. 101.
    Iwase T, Nagaya N, Ando M, et al. Acute and chronic effects of surgical thromboendarterectomy on exercise capacity and ventilatory efficiency in patients with chronic thromboembolic pulmonary hypertension. Heart. 2001;86:188–92.PubMedPubMedCentralGoogle Scholar
  102. 102.
    Charalampopoulos A, Gibbs JSR, Davies RJ, et al. Exercise physiological responses to drug treatments in chronic thromboembolic pulmonary hypertension. J Appl Physiol (1985). 2016;121:623–8.Google Scholar
  103. 103.
    Lang I, Meyer BC, Ogo T, et al. Balloon pulmonary angioplasty in chronic thromboembolic pulmonary hypertension. Eur Respir Rev. 2017;26:160119.PubMedGoogle Scholar
  104. 104.
    Inami T, Kataoka M, Yanagisawa R, et al. Long-term outcomes after percutaneous transluminal pulmonary angioplasty for chronic thromboembolic pulmonary hypertension. Circulation. 2016;134:2030–2.PubMedGoogle Scholar
  105. 105.
    Fukui S, Ogo T, Goto Y, et al. Exercise intolerance and ventilatory inefficiency improve early after balloon pulmonary angioplasty in patients with inoperable chronic thromboembolic pulmonary hypertension. Int J Cardiol. 2015;180:66–8.PubMedGoogle Scholar
  106. 106.
    Fukui S, Ogo T, Morita Y, et al. Right ventricular reverse remodelling after balloon pulmonary angioplasty. Eur Respir J. 2014;43:1394–402.PubMedGoogle Scholar
  107. 107.
    Andreassen AK, Ragnarsson A, Gude E, Geiran O, Andersen R. Balloon pulmonary angioplasty in patients with inoperable chronic thromboembolic pulmonary hypertension. Heart. 2013;99:1415–20.PubMedGoogle Scholar
  108. 108.
    Akizuki M, Serizawa N, Ueno A, Adachi T, Hagiwara N. Effect of balloon pulmonary angioplasty on respiratory function in patients with chronic thromboembolic pulmonary hypertension. Chest. 2017;151:643–9.PubMedGoogle Scholar
  109. 109.
    Ulrich S, Hasler ED, Saxer S, et al. Effect of breathing oxygen-enriched air on exercise performance in patients with precapillary pulmonary hypertension: randomized, sham-controlled cross-over trial. Eur Heart J. 2017;38:1159–68.PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Sorbonne Université, INSERM, UMRS1158 Neurophysiologie respiratoire expérimentale et cliniqueParisFrance
  2. 2.AP-HP, Groupe Hospitalier Pitié-Salpêtrière Charles Foix, Service des Explorations Fonctionnelles de la Respiration, de l’Exercice et de la Dyspnée du Département “R3S”ParisFrance
  3. 3.Faculté de médecineUniversité LavalQCCanada
  4. 4.Centre de recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ)QCCanada

Personalised recommendations