Advantages of the Eye as a Target Organ for Cell-Based Therapy in the Central Nervous System

  • Marco A. Zarbin
Part of the Stem Cell Biology and Regenerative Medicine book series (STEMCELL)


Advantages of the eye as a target organ for cell-based therapy are as follows. The anatomy and physiology of the retina have been characterized in detail. Surgical access to the vitreous cavity and the subretinal space are well established with an excellent safety record. The eye is an immune privileged organ, particularly the subretinal space, which may reduce the need for long-term immune suppression of transplant recipients. High-resolution noninvasive imaging technology permits visualization and functional assessment of the transplanted cells in situ. These imaging and monitoring capabilities permit development of an iterative pathway to successful transplant paradigms in human patients as well as precise modulation of immunotherapy should it be needed.


Cell transplantation Retina Immune rejection Ocular imaging Retinal surgery Blindness 



Supported in part by the New Jersey Lions Eye Research Foundation, The Joseph J. and Marguerite DiSepio Research Fund, The Eng Family Fund for Excellence in Ophthalmology, and Robert and Patty Wigder.


  1. 1.
    Geller AM, Sieving PA. How many cones are required to “see?”: lessons from Stargardt’s macular dystrophy and from modeling with degenerate photoreceptor arrays. In: Hollyfield JG, et al. editors. Retinal degeneration. New York: Plenum Press; 1993. p. 25–34.Google Scholar
  2. 2.
    Zarbin M. Cell-based therapy for degenerative retinal disease. Trends Mol Med. 2016;22(2):115–34.PubMedGoogle Scholar
  3. 3.
    Sung CH, Chuang JZ. The cell biology of vision. J Cell Biol. 2010;190(6):953–63.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Mustafi D, Engel AH, Palczewski K. Structure of cone photoreceptors. Prog Retin Eye Res. 2009;28(4):289–302.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Barber AC, Hippert C, Duran Y, et al. Repair of the degenerate retina by photoreceptor transplantation. Proc Natl Acad Sci U S A. 2013;110(1):354–9.PubMedGoogle Scholar
  6. 6.
    Wang S, Lu B, Lund RD. Morphological changes in the Royal College of Surgeons rat retina during photoreceptor degeneration and after cell-based therapy. J Comp Neurol. 2005;491(4):400–17.PubMedGoogle Scholar
  7. 7.
    Gullapalli VK, Sugino IK, Van Patten Y, Shah S, Zarbin MA. Impaired RPE survival on aged submacular human Bruch’s membrane. Exp Eye Res. 2005;80(2):235–48.PubMedGoogle Scholar
  8. 8.
    Sugino IK, Sun Q, Wang J, et al. Comparison of FRPE and human embryonic stem cell-derived RPE behavior on aged human Bruch’s membrane. Invest Ophthalmol Vis Sci. 2011;52(8):4979–97.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Sugino IK, Rapista A, Sun Q, et al. A method to enhance cell survival on Bruch’s membrane in eyes affected by age and age-related macular degeneration. Invest Ophthalmol Vis Sci. 2011;52(13):9598–609.PubMedGoogle Scholar
  10. 10.
    Sugino IK, Sun Q, Springer C, et al. Two bioactive molecular weight fractions of a conditioned medium enhance RPE cell survival on age-related macular degeneration and aged Bruch’s membrane. Transl Vis Sci Technol. 2016;5(1):8.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Dhande OS, Stafford BK, Lim JA, Huberman AD. Contributions of retinal ganglion cells to subcortical visual processing and behaviors. Annu Rev Vis Sci. 2015;1:291–328.PubMedGoogle Scholar
  12. 12.
    Chang EE, Goldberg JL. Glaucoma 2.0: neuroprotection, neuroregeneration, neuroenhancement. Ophthalmology. 2012;119(5):979–86.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Otani A, Dorrell MI, Kinder K, et al. Rescue of retinal degeneration by intravitreally injected adult bone marrow-derived lineage-negative hematopoietic stem cells. J Clin Invest. 2004;114(6):765–74.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Levkovitch-Verbin H, Sadan O, Vander S, et al. Intravitreal injections of neurotrophic factors secreting mesenchymal stem cells are neuroprotective in rat eyes following optic nerve transection. Invest Ophthalmol Vis Sci. 2010;51(12):6394–400.PubMedGoogle Scholar
  15. 15.
    Siqueira RC, Messias A, Voltarelli JC, Scott IU, Jorge R. Intravitreal injection of autologous bone marrow-derived mononuclear cells for hereditary retinal dystrophy: a phase I trial. Retina. 2011;31(6):1207–14.PubMedGoogle Scholar
  16. 16.
    Klassen H. Stem cells in clinical trials for treatment of retinal degeneration. Expert Opin Biol Ther. 2016;16(1):7–14.PubMedGoogle Scholar
  17. 17.
    Park SS, Moisseiev E, Bauer G, et al. Advances in bone marrow stem cell therapy for retinal dysfunction. Prog Retin Eye Res. 2017;56:148–65.PubMedGoogle Scholar
  18. 18.
    Moisseiev E, Smit-McBride Z, Oltjen S, et al. Intravitreal administration of human bone marrow CD34+ stem cells in a murine model of retinal degeneration. Invest Ophthalmol Vis Sci. 2016;57(10):4125–35.PubMedGoogle Scholar
  19. 19.
    Binder S, Stanzel BV, Krebs I, Glittenberg C. Transplantation of the RPE in AMD. Prog Retin Eye Res. 2007;26(5):516–54.PubMedGoogle Scholar
  20. 20.
    MacLaren RE, Uppal GS, Balaggan KS, et al. Autologous transplantation of the retinal pigment epithelium and choroid in the treatment of neovascular age-related macular degeneration. Ophthalmology. 2007;114(3):561–70.PubMedGoogle Scholar
  21. 21.
    Lu B, Tai YC, Humayun MS. Microdevice-based cell therapy for age-related macular degeneration. Dev Ophthalmol. 2014;53:155–66.PubMedGoogle Scholar
  22. 22.
    Diniz B, Thomas P, Thomas B, et al. Subretinal implantation of retinal pigment epithelial cells derived from human embryonic stem cells: improved survival when implanted as a monolayer. Invest Ophthalmol Vis Sci. 2013;54(7):5087–96.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Hsiung J, Zhu D, Hinton DR. Polarized human embryonic stem cell-derived retinal pigment epithelial cell monolayers have higher resistance to oxidative stress-induced cell death than nonpolarized cultures. Stem Cells Transl Med. 2015;4(1):10–20.PubMedGoogle Scholar
  24. 24.
    Streilein JW. Ocular immune privilege: the eye takes a dim but practical view of immunity and inflammation. J Leukoc Biol. 2003;74(2):179–85.PubMedGoogle Scholar
  25. 25.
    Wenkel H, Streilein JW. Analysis of immune deviation elicited by antigens injected into the subretinal space. Invest Ophthalmol Vis Sci. 1998;39(10):1823–34.PubMedGoogle Scholar
  26. 26.
    Wenkel H, Streilein JW. Evidence that retinal pigment epithelium functions as an immune- privileged tissue. Invest Ophthalmol Vis Sci. 2000;41(11):3467–73.PubMedGoogle Scholar
  27. 27.
    Zamiri P, Masli S, Streilein JW, Taylor AW. Pigment epithelial growth factor suppresses inflammation by modulating macrophage activation. Invest Ophthalmol Vis Sci. 2006;47(9):3912–8.PubMedGoogle Scholar
  28. 28.
    Kaplan HJ, Leibole MA, Tezel T, Ferguson TA. Fas ligand (CD95 ligand) controls angiogenesis beneath the retina. Nat Med. 1999;5(3):292–7.PubMedGoogle Scholar
  29. 29.
    Zamiri P, Zhang Q, Streilein JW. Vulnerability of allogeneic retinal pigment epithelium to immune T-cell-mediated damage in vivo and in vitro. Invest Ophthalmol Vis Sci. 2004;45(1):177–84.PubMedGoogle Scholar
  30. 30.
    Enzmann VSM, Wiedemann P, Kohen L. Down-regulation of MHC class II expression on bovine retinal pigment epithelial cells by cytokines. Ophthalmic Res. 1999;31:256–66.PubMedGoogle Scholar
  31. 31.
    Radtke ND, Aramant RB, Petry HM, Green PT, Pidwell DJ, Seiler MJ. Vision improvement in retinal degeneration patients by implantation of retina together with retinal pigment epithelium. Am J Ophthalmol. 2008;146(2):172–82.PubMedGoogle Scholar
  32. 32.
    Tezel TH, Del Priore LV, Berger AS, Kaplan HJ. Adult retinal pigment epithelial transplantation in exudative age-related macular degeneration. Am J Ophthalmol. 2007;143(4):584–95.PubMedGoogle Scholar
  33. 33.
    Schwartz SD, Hubschman JP, Heilwell G, et al. Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet. 2012;379(9817):713–20.PubMedGoogle Scholar
  34. 34.
    Schwartz SD, Regillo CD, Lam BL, et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet. 2015;385(9967):509–16.PubMedPubMedCentralGoogle Scholar
  35. 35.
    West EL, Pearson RA, Barker SE, et al. Long-term survival of photoreceptors transplanted into the adult murine neural retina requires immune modulation. Stem Cells. 2010;28(11):1997–2007.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Boyd AS, Wood KJ. Variation in MHC expression between undifferentiated mouse ES cells and ES cell-derived insulin-producing cell clusters. Transplantation. 2009;87(9):1300–4.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Tian L, Catt JW, O’Neill C, King NJ. Expression of immunoglobulin superfamily cell adhesion molecules on murine embryonic stem cells. Biol Reprod. 1997;57(3):561–8.PubMedGoogle Scholar
  38. 38.
    Wakayama T, Tabar V, Rodriguez I, Perry AC, Studer L, Mombaerts P. Differentiation of embryonic stem cell lines generated from adult somatic cells by nuclear transfer. Science. 2001;292(5517):740–3.PubMedGoogle Scholar
  39. 39.
    Fairchild PJ, Nolan KF, Cartland S, Waldmann H. Embryonic stem cells: a novel source of dendritic cells for clinical applications. Int Immunopharmacol. 2005;5(1):13–21.PubMedGoogle Scholar
  40. 40.
    Robertson NJ, Brook FA, Gardner RL, Cobbold SP, Waldmann H, Fairchild PJ. Embryonic stem cell-derived tissues are immunogenic but their inherent immune privilege promotes the induction of tolerance. Proc Natl Acad Sci U S A. 2007;104(52):20920–5.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Fairchild PJ. The challenge of immunogenicity in the quest for induced pluripotency. Nat Rev Immunol. 2010;10(12):868–75.PubMedGoogle Scholar
  42. 42.
    Boyd AS, Fairchild PJ. Approaches for immunological tolerance induction to stem cell-derived cell replacement therapies. Expert Rev Clin Immunol. 2010;6(3):435–48.PubMedGoogle Scholar
  43. 43.
    Nakatsuji N, Nakajima F, Tokunaga K. HLA-haplotype banking and iPS cells. Nat Biotechnol. 2008;26(7):739–40.PubMedGoogle Scholar
  44. 44.
    Zimmermann A, Preynat-Seauve O, Tiercy JM, Krause KH, Villard J. Haplotype-based banking of human pluripotent stem cells for transplantation: potential and limitations. Stem Cells Dev. 2012;21(13):2364–73.PubMedGoogle Scholar
  45. 45.
    Taylor CJ, Peacock S, Chaudhry AN, Bradley JA, Bolton EM. Generating an iPSC bank for HLA-matched tissue transplantation based on known donor and recipient HLA types. Cell Stem Cell. 2012;11(2):147–52.PubMedGoogle Scholar
  46. 46.
    Turner M, Leslie S, Martin NG, et al. Toward the development of a global induced pluripotent stem cell library. Cell Stem Cell. 2013;13(4):382–4.PubMedGoogle Scholar
  47. 47.
    Tena A, Sachs DH. Stem cells: immunology and immunomodulation. Dev Ophthalmol. 2014;53:122–32.PubMedGoogle Scholar
  48. 48.
    Vincenti F, Blancho G, Durrbach A, et al. Five-year safety and efficacy of belatacept in renal transplantation. J Am Soc Nephrol. 2010;21(9):1587–96.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Webber A, Hirose R, Vincenti F. Novel strategies in immunosuppression: issues in perspective. Transplantation. 2011;91(10):1057–64.PubMedGoogle Scholar
  50. 50.
    Murphy SP, Porrett PM, Turka LA. Innate immunity in transplant tolerance and rejection. Immunol Rev. 2011;241(1):39–48.PubMedGoogle Scholar
  51. 51.
    Zhang X, Bok D. Transplantation of retinal pigment epithelial cells and immune response in the subretinal space. Invest Ophthalmol Vis Sci. 1998;39(6):1021–7.PubMedGoogle Scholar
  52. 52.
    Zarbin MA, Casaroli-Marano RP, Rosenfeld PJ. Age-related macular degeneration: clinical findings, histopathology, imaging techniques. In: Casaroli-Marano RP, Zarbin MA, editors. Cell-based therapy for retinal degenerative disease. Basel: Karger Medical and Scientific Publishers; 2014. p. 1–32.Google Scholar
  53. 53.
    Menghini M, Duncan JL. Diagnosis and complementary examinations. Dev Ophthalmol. 2014;53:53–69.PubMedGoogle Scholar
  54. 54.
    Scoles D, Flatter JA, Cooper RF, et al. Assessing photoreceptor structure associated with ellipsoid zone disruptions visualized with optical coherence tomography. Retina. 2016;36(1):91–103.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Talcott KE, Ratnam K, Sundquist SM, et al. Longitudinal study of cone photoreceptors during retinal degeneration and in response to ciliary neurotrophic factor treatment. Invest Ophthalmol Vis Sci. 2011;52(5):2219–26.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Roorda A, Zhang Y, Duncan JL. High-resolution in vivo imaging of the RPE mosaic in eyes with retinal disease. Invest Ophthalmol Vis Sci. 2007;48(5):2297–303.PubMedGoogle Scholar
  57. 57.
    Gao SS, Jia Y, Zhang M, et al. Optical coherence tomography angiography. Invest Ophthalmol Vis Sci. 2016;57(9):OCT27–36.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Schwartz DM, Fingler J, Kim DY, et al. Phase-variance optical coherence tomography. Ophthalmology. 2014;121:180–7.PubMedGoogle Scholar
  59. 59.
    Kim DY, Fingler J, Zawadzki RJ, et al. Optical imaging of the chorioretinal vasculature in the living human eye. Proc Natl Acad Sci U S A. 2013;110(35):14354–9.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Pearson RA, Barber AC, Rizzi M, et al. Restoration of vision after transplantation of photoreceptors. Nature. 2012;485(7396):99–103.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Ramsden CM, Powner MB, Carr AJ, Smart MJ, da Cruz L, Coffey PJ. Neural retinal regeneration with pluripotent stem cells. Dev Ophthalmol. 2014;53:97–110.PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Marco A. Zarbin
    • 1
  1. 1.Institute of Ophthalmology and Visual ScienceRutgers New Jersey Medical SchoolNewarkUSA

Personalised recommendations