Perspectives for 5G Network Sharing for Mobile Small Cells

  • Fatma MarzoukEmail author
  • Rui Alheiro
  • Jonathan Rodriguez
  • Ayman Radwan
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 263)


Ensuring enough network resources for all emerging 5G mobile services, with the advent of 5G will be vital. Network sharing is seen as one of the adopted technologies of 5G, to enhance resource utilization by optimizing resource usage among different operators. A key enabler for network sharing is virtualization. While virtualization of the core network has already been implemented in nowadays mobile networks, the virtualization of the Radio Access Network (RAN) is still an emerging research topic that is currently investigated with the aim of exploiting a fully virtualized mobile network. In this paper, we examine a 5G RAN perspective architecture that has the merit of being a Multi-RAT, Multi band V-RAN and using end user equipment as mobile small cells. We highlight its advantages, and identify how virtualization of RAN can lead to efficient RAN resource sharing. Finally, we anticipate how some virtualization functionalities should be extended to manage the particularity of the perspective RAN architecture.





The research leading to these results has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement H2020-MSCA-ITN-2016 SECRET-722424.


  1. 1.
    Olwal, T.O., Djouani, K., Kurien, A.M.: A survey of resource management toward 5G radio access networks. IEEE Commun. Surv. Tutor. 18(3), 1656–1686 (2016)CrossRefGoogle Scholar
  2. 2.
    Liang, C., Yu, F.R.: Wireless network virtualization: a survey, some research issues and challenges. IEEE Commun. Surv. Tutor. 17(1), 358–380 (2015)CrossRefGoogle Scholar
  3. 3.
    Bhushan, N., et al.: Network densification: the dominant theme for wireless evolution into 5G. IEEE Commun. Mag. 52(2), 82–89 (2014)CrossRefGoogle Scholar
  4. 4.
  5. 5.
    Series, M.: IMT vision-framework and overall objectives of the future development of IMT for 2020 and beyond (2015)Google Scholar
  6. 6.
    Demestichas, P., et al.: 5G on the horizon: key challenges for the radio-access network. IEEE Veh. Technol. Mag. 8(3), 47–53 (2013)CrossRefGoogle Scholar
  7. 7.
    Chen, S., Zhao, J.: The requirements, challenges, and technologies for 5G of terrestrial mobile telecommunication. IEEE Commun. Mag. 52(5), 36–43 (2014)CrossRefGoogle Scholar
  8. 8.
    Andrews, J.G., et al.: What will 5G be? IEEE J. Select. Areas Commun. 32(6), 1065–1082 (2014)CrossRefGoogle Scholar
  9. 9.
    Mogensen, P., et al.: 5G small cell optimized radio design. In: 2013 IEEE Globecom Workshops (GC Wkshps), pp. 111–116. IEEE (2013)Google Scholar
  10. 10.
    Zhang, H., Chu, X., Guo, W., Wang, S.: Coexistence of WI-FI and heterogeneous small cell networks sharing unlicensed spectrum. IEEE Commun. Mag. 53(3), 158–164 (2015)CrossRefGoogle Scholar
  11. 11.
    Hoydis, J., Ten Brink, S., Debbah, M.: Massive mimo in the UL/DL of cellular networks: How many antennas do we need? IEEE J. Select. Areas Commun. 31(2), 160–171 (2013)CrossRefGoogle Scholar
  12. 12.
    Larsson, E.G., Edfors, O., Tufvesson, F., Marzetta, T.L.: Massive mimo for next generation wireless systems. IEEE communications Mag. 52(2), 186–195 (2014)CrossRefGoogle Scholar
  13. 13.
    Dehos, C., González, J.L., De Domenico, A., Ktenas, D., Dussopt, L.: Millimeter-wave access and backhauling: the solution to the exponential data traffic increase in 5G mobile communications systems? IEEE Commun. Mag. 52(9), 88–95 (2014)CrossRefGoogle Scholar
  14. 14.
    Guo, W., Wang, S., Chu, X., Zhang, J., Chen, J., Song, H.: Automated small-cell deployment for heterogeneous cellular networks. IEEE Commun. Mag. 51(5), 46–53 (2013)CrossRefGoogle Scholar
  15. 15.
    Cheng, H.T., Callard, A., Senarath, G., Zhang, H., Zhu, P.: Step-wise optimal low power node deployment in LTE heterogeneous networks. In: 2012 IEEE Vehicular Technology Conference (VTC Fall), pp. 1–4. IEEE (2012)Google Scholar
  16. 16.
    Sui, Y., Vihriala, J., Papadogiannis, A., Sternad, M., Yang, W., Svensson, T.: Moving cells: a promising solution to boost performance for vehicular users. IEEE Commun. Mag. 51(6), 62–68 (2013)CrossRefGoogle Scholar
  17. 17.
    Feteiha, M.F., Qutqut, M.H., Hassanein, H.S.: Outage probability analysis of mobile small cells over LTE-a networks. In: 2014 International Wireless Communications and Mobile Computing Conference (IWCMC), pp. 1045–1050. IEEE (2014)Google Scholar
  18. 18.
    Feteiha, M.F., Qutqut, M.H., Hassanein, H.S.: Pairwise error probability evaluation of cooperative mobile femtocells. In: 2013 IEEE Globecom Workshops (GC Wkshps), pp. 4705–4710. IEEE (2013)Google Scholar
  19. 19.
    Jaziri, A., Nasri, R., Chahed, T.: Offloading traffic hotspots using moving small cells. In: 2016 IEEE International Conference on Communications (ICC), pp. 1–6. IEEE (2016)Google Scholar
  20. 20.
    Chou, S.F., Chiu, T.C., Yu, Y.J., Pang, A.C.: Mobile small cell deployment for next generation cellular networks. In: Global Communications Conference (GLOBECOM), pp. 4852–4857. IEEE (2014)Google Scholar
  21. 21.
    Kwon, Y.M., Shah, S.T., Shin, J., Park, A.S., Chung, M.Y.: Performance evaluation of moving small-cell network with proactive cache. Mobile Information Systems 2016 (2016)Google Scholar
  22. 22.
    Jangsher, S., Li, V.O.: Resource allocation in cellular networks with moving small cells with probabilistic mobility. In: 2014 IEEE 25th Annual International Symposium on Personal, Indoor, and Mobile Radio Communication (PIMRC), pp. 1701–1705. IEEE (2014)Google Scholar
  23. 23.
    Jaziri, A., Nasri, R., Chahed, T.: Traffic hotspot localization in 3G and 4G wireless networks using OMC metrics. In: 2014 IEEE 25th Annual International Symposium on Personal, Indoor, and Mobile Radio Communication (PIMRC), pp. 270–274. IEEE (2014)Google Scholar
  24. 24.
    Yassin, A., Awad, M., Nasser, Y.: On the hybrid localization in heterogeneous networks with lack of hearability. In: 2013 20th International Conference on Telecommunications (ICT), pp. 1–5. IEEE (2013)Google Scholar
  25. 25.
    Radwan, A., Huq, K.M.S., Mumtaz, S., Tsang, K.F., Rodriguez, J.: Low-cost on-demand C-RAN based mobile small-cells. IEEE Access 4, 2331–2339 (2016)CrossRefGoogle Scholar
  26. 26.
    3GPP: TR 22.852, 3GPP System Architecture Working Group 1 (SA1) RAN Sharing Enhancements Study Item Overall DescriptionGoogle Scholar
  27. 27.
    Checko, A., et al.: Cloud RAN for mobile networks–a technology overview. IEEE Commun. Surv. Tutor. 17(1), 405–426 (2015)CrossRefGoogle Scholar
  28. 28.
    Carvalho, M.A., Vieira, P.: Simulating long term evolution self-optimizing based networks. i-ETC: ISEL Acad. J. Electron. Telecommun. Comput. 2(1), 8 (2013)Google Scholar

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Authors and Affiliations

  • Fatma Marzouk
    • 1
    Email author
  • Rui Alheiro
    • 1
  • Jonathan Rodriguez
    • 2
  • Ayman Radwan
    • 2
  1. 1.ProefPortoPortugal
  2. 2.Instituto de TelecomunicaçõesAveiroPortugal

Personalised recommendations