Hardware Implementation of Space Shift Keying on a Xilinx Zynq Platform

  • Omar HiariEmail author
  • Faris Shahin
  • Samer Alshaer
  • Raed Mesleh
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 263)


The recent definition of hardware system models for space modulation techniques has provided a pathway to physical implementation of such systems. Space Shift Keying (SSK), being at the forefront of all these definitions, implements a pure form of space modulation that does not require a traditional RF chain that generates baseband symbols. On the other hand, compact, SDR-enabled, platforms powered by computationally powerful SoCs, are also becoming increasingly popular in prototyping wireless systems. In this work, we leverage commercially available SDR-enabled platforms, based on the Xilinx Zynq SoC and the Analog Devices AD9361 analog front end, to implement an entry level SSK system.


SDR Space modulation Zynq 


  1. 1.
  2. 2.
    Z7020: Xilinx Zynq-7000 All Programmable SoCGoogle Scholar
  3. 3.
    Zynq-7000 All Programmable SoC/AD9361 Software-Defined Radio Evaluation Kit.
  4. 4.
    Analog Devices Inc.: AD9361: RF Agile TransceiverGoogle Scholar
  5. 5.
    Drozdenko, B., Zimmermann, M., Dao, T., Chowdhury, K., Leeser, M.: Hardware-software codesign of wireless transceivers on zynq heterogeneous systems. IEEE Trans. Emerg. Topics Comput. (2017)Google Scholar
  6. 6.
    Hiari, O., Mesleh, R.: Single RF chain transmitter implementing space modulation (2018)Google Scholar
  7. 7.
    Jeganathan, J., Ghrayeb, A., Szczecinski, L.: Spatial modulation: optimal detection and performance analysis. IEEE Commun. Lett. 12(8) (2008)CrossRefGoogle Scholar
  8. 8.
    Junior, S.B., de Oliveira, V.C., Junior, G.B.: Software defined radio implementation of a QPSK modulator/demodulator in an extensive hardware platform based on FPGAs Xilinx ZYNQ. J. Comput. Sci. 11(4), 598 (2015). Scholar
  9. 9.
  10. 10.
    Mesleh, R., Hiari, O., Younis, A.: Generalized space modulation techniques: Hardware design and considerations. Phys. Commun. 26, 87–95 (2018)CrossRefGoogle Scholar
  11. 11.
    Mesleh, R., Hiari, O., Younis, A., Alouneh, S.: Transmitter design and hardware considerations for different space modulation techniques. IEEE Trans. Wirel. Commun. 16(11), 7512–7522 (2017)CrossRefGoogle Scholar
  12. 12.
    Mesleh, R., Ikki, S.S., Aggoune, H.M.: Quadrature spatial modulation. IEEE Trans. Veh. Technol. 64(6), 2738–2742 (2015)CrossRefGoogle Scholar
  13. 13.
    Paulraj, A., Nabar, R., Gore, D.: Introduction to Space-Time Wireless Communications. Cambridge University Press, Cambridge (2003)Google Scholar
  14. 14.
    Pu, D., Cozma, A., Hill, T.: Four quick steps to production: Using model-based design for software-defined radio. Analog Dialogue 49 (2015)Google Scholar
  15. 15.
    Shreejith, S., Banarjee, B., Vipin, K., Fahmy, S.A.: Dynamic cognitive radios on the Xilinx Zynq Hybrid FPGA. In: Weichold, M., Hamdi, M., Shakir, M.Z., Abdallah, M., Karagiannidis, G.K., Ismail, M. (eds.) CrownCom 2015. LNICST, vol. 156, pp. 427–437. Springer, Cham (2015). Scholar

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Authors and Affiliations

  1. 1.German Jordanian UniversityAmmanJordan

Personalised recommendations