Advertisement

A Half-Full Transmit-Diversity Spatial Modulation Scheme

  • Sakher AbuTayeh
  • Mohammad Alsalahat
  • Ibrahim Kaddumi
  • Yahya Alqannas
  • Saud AlthunibatEmail author
  • Raed Mesleh
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 263)

Abstract

One of the main limitations in Spatial Modulation (SM) systems is the lack of transmit diversity, which directly impacts its error rate performance. The lack of the transmit diversity refers to activating only a single transmit antenna in SM systems. In this paper, we propose a novel scheme that aims at improving the performance of SM systems by achieving half-full transmit diversity. The proposed scheme, called Half-Full Transmit-Diversity SM (HFTD-SM), divides the transmit antennas into two-antenna groups. From each group, only a single antenna is activated, and all active transmit antennas emits one modulated symbol. The proposed HFTD-SM scheme is shown to outperform the conventional SM performance in terms of spectral efficiency, error rate, and design flexibility, while maintaining the main property of SM representing by the need of only a single RF chain. Simulation results corroborate the superior performance of the proposed scheme as compared to other SM variants in the literature.

Keywords

MIMO Space modulation Spatial modulation Transmit diversity 

References

  1. 1.
    Ishikawa, N., et al.: 50 years of permutation, spatial and index modulation: from classic RF to visible light communications and data storage. IEEE Commun. Surv. Tuts. 20, 1905–1938 (2018)CrossRefGoogle Scholar
  2. 2.
    Basar, E., et al.: Index modulation techniques for next-generation wireless networks. IEEE Access 5(1), 16693–16746 (2017)CrossRefGoogle Scholar
  3. 3.
    Mesleh, R.Y., et al.: Spatial modulation. IEEE Trans. Veh. Technol. 57(4), 2228–2241 (2008)CrossRefGoogle Scholar
  4. 4.
    Yang, P., et al.: Design guidelines for spatial modulation. IEEE Commun. Surv. Tuts. 17(1), 6–26 (2015)CrossRefGoogle Scholar
  5. 5.
    Younis, A., et al.: Generalised spatial modulation. Asilomar Pacific Grove, CA, pp. 1498–1502 (2010)Google Scholar
  6. 6.
    Mesleh, R., et al.: Quadrature spatial modulation. IEEE Trans. Veh. Technol. 64(6), 2738–2742 (2015)CrossRefGoogle Scholar
  7. 7.
    Althunibat, S., Mesleh, R.: Cooperative decode-and-forward quadrature spatial modulation over correlated and imperfect \(\eta -\mu \) fading channels. Wireless Networks (2017).  https://doi.org/10.1007/s1127
  8. 8.
    Younis, A., et al.: Quadrature spatial modulation performance over nakagami- \(m\) fading channels. IEEE Trans. Veh. Technol. 65(12), 10227–10231 (2016)CrossRefGoogle Scholar
  9. 9.
    Afana, A., et al.: Performance of quadrature spatial modulation in amplify-and-forward cooperative relaying. IEEE Commun. Lett. 20(2), 240–243 (2016)CrossRefGoogle Scholar
  10. 10.
    Badarneh, O.S., Mesleh, R.: A comprehensive framework for quadrature spatial modulation in generalized fading scenarios. IEEE Trans. Commun. 64(7), 2961–2970 (2016)CrossRefGoogle Scholar
  11. 11.
    Xiao, L., et al.: Low-complexity signal detection for large-scale quadrature spatial modulation systems. IEEE Commun. Lett. 20(11), 2173–2176 (2016)CrossRefGoogle Scholar
  12. 12.
    Mesleh, R., et al.: Generalized space modulation techniques: Hardware design and considerations. Phys. Commun. 26, 87–95 (2018)CrossRefGoogle Scholar
  13. 13.
    Althunibat, S.: A mapping technique for Space Shift Keying with arbitrary number of transmit antennas. IEEE CAMAD, Lund (2017)Google Scholar
  14. 14.
    Serafimovski, N., et al.: Fractional bit encoded spatial modulation (FBE-SM). IEEE Commun. Lett. 14(5), 429–431 (2010)CrossRefGoogle Scholar
  15. 15.
    Yang, Y., Aissa, S.: Information guided channel hopping with an arbitrary number of transmit antennas. IEEE Commun. Lett. 16(10), 1552–1555 (2012)CrossRefGoogle Scholar
  16. 16.
    Al Sukkar, G., Althunibat, S.: Gray codes for Spatial Modulation systems: an open research issue. IEEE CAMAD, Lund, pp. 1–6 (2017)Google Scholar
  17. 17.
    Yang, P., et al.: Hybrid bit-to-symbol mapping for spatial modulation. IEEE Trans. Veh. Technol. 65, 5804–5810 (2015)CrossRefGoogle Scholar
  18. 18.
    Althunibat, S., Mesleh, R.: A bit-to-symbol mapping scheme for spatial modulation with partial channel state information. IEEE Commun. Lett. 21(5), 995–998 (2017)CrossRefGoogle Scholar
  19. 19.
    Mesleh, R., et al.: Performance analysis of spatial modulation and space-shift keying with imperfect channel estimation over generalized \(eta{-}mu\) fading channels. IEEE Trans. Veh. Technol. 64(1), 88–96 (2015)CrossRefGoogle Scholar
  20. 20.
    Jeganathan, J., et al.: Spatial modulation: optimal detection and performance analysis. IEEE Commun. Lett. 12(8), 545–547 (2008)CrossRefGoogle Scholar
  21. 21.
    Mesleh, R., et al.: Transmitter design and hardware considerations for different space modulation techniques. IEEE Trans. Wirel. Commun. 16(11), 7512–7522 (2017)CrossRefGoogle Scholar
  22. 22.
    Afana, A., et al.: Quadrature Spatial Modulation for Cooperative MIMO 5G Wireless Networks, pp. 1–5. IEEE Globecom Workshops, Washington, DC (2016)Google Scholar
  23. 23.
    Althunibat, S., Mesleh, R.: Performance analysis of quadrature spatial modulation in two-way relaying cooperative networks. IET Commun. 12(4), 466–472 (2018)CrossRefGoogle Scholar
  24. 24.
    Yu, X., et al.: Power allocation and performance analysis of cooperative spatial modulation in wireless relay networks. IEEE Access 6, 12145–12155 (2018)CrossRefGoogle Scholar
  25. 25.
    Ustunbas, S., et al.: Performance analysis of cooperative spectrum sharing for cognitive radio networks using spatial modulation at secondary users. IEEE VTC Spring, Nanjing, pp. 1–5 (2016)Google Scholar
  26. 26.
    Bouida, Z., et al.: Adaptive spatial modulation for spectrum sharing systems with limited feedback. IEEE Trans. Commun. 63(6), 2001–2014 (2015)CrossRefGoogle Scholar
  27. 27.
    Althunibat, S., et al.: On the performance of wireless sensor networks with QSSK modulation in the presence of co-channel interference. Telecommun. Syst. 68(1), 105–113 (2018)CrossRefGoogle Scholar
  28. 28.
    Althunibat, S., Mesleh, R.: Index modulation for cluster-based wireless sensor networks. IEEE Trans. Veh. Technol. PP(99), 1.  https://doi.org/10.1109/TVT.2018.2820602CrossRefGoogle Scholar
  29. 29.
    Bian, Y., et al.: Differential spatial modulation. IEEE Trans. Veh. Technol. 64(7), 3262–3268 (2015)Google Scholar
  30. 30.
    Mesleh, R., et al.: Differential quadrature spatial modulation. IEEE Trans. Commun. 65(9), 3810–3817 (2017)CrossRefGoogle Scholar
  31. 31.
    Nguyen, T.D., et al.: A spatial modulation scheme with full diversity for four transmit antennas. In: ATC Conference, Ho Chi Minh City, pp. 16–19 (2015)Google Scholar
  32. 32.
    Masouros, C.: Improving the diversity of spatial modulation in MISO channels by phase alignment. IEEE Commun. Lett. 18(5), 729–732 (2014)CrossRefGoogle Scholar
  33. 33.
    Renzo, M.D., Haas, H.: On transmit diversity for spatial modulation MIMO: impact of spatial constellation diagram and shaping filters at the transmitter. IEEE Trans. Veh. Technol. 62(6), 2507–2531 (2013)CrossRefGoogle Scholar
  34. 34.
    Wang, L., et al.: Diversity-achieving quadrature spatial modulation. IEEE Trans. Veh. Technol. 66(12), 10764–10775 (2017)CrossRefGoogle Scholar
  35. 35.
    Althunibat, S., Mesleh, R.: Enhancing spatial modulation system performance through signal space diversity. IEEE Commun. Lett. 22(6), 1136–1139 (2018).  https://doi.org/10.1109/LCOMM.2018.2817621CrossRefGoogle Scholar
  36. 36.
    Simon, M.K., et al.: Digital Communication Techniques: Signal Design and Detection. Prentice Hall PTR, Englewood Cliffs (1995)Google Scholar
  37. 37.
    Abramnowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. US Dept. of Commerce, National Bureau of Standards, Washington, DC (1972)Google Scholar

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Authors and Affiliations

  • Sakher AbuTayeh
    • 1
  • Mohammad Alsalahat
    • 1
  • Ibrahim Kaddumi
    • 1
  • Yahya Alqannas
    • 1
  • Saud Althunibat
    • 1
    Email author
  • Raed Mesleh
    • 2
  1. 1.Department of Communications EngineeringAl-Hussein Bin Talal UniversityMaanJordan
  2. 2.School of Electrical Engineering and Information TechnologyGerman Jordanian UniversityAmmanJordan

Personalised recommendations