Advertisement

Plasma-Catalytic Conversion of Carbon Dioxide

  • Bryony Ashford
  • Yaolin Wang
  • Li Wang
  • Xin TuEmail author
Chapter
Part of the Springer Series on Atomic, Optical, and Plasma Physics book series (SSAOPP, volume 106)

Abstract

The emission of CO2 is a pressing concern as its release into the atmosphere is a major source of global warming. As global temperatures rise due to the greenhouse effect and current technologies, such as carbon capture and storage (CCS) and a switch to renewables, fall short, expertise must be employed to find new, viable processes for the mitigation of CO2. Focus is now on carbon dioxide utilization, as high-value chemicals and fuels can be produced, creating viable and sustainable processes. Current processes, however, such as thermal catalytic processes, require elevated temperatures and are not thermodynamically efficient, thus reducing their energy efficiency and feasibility. Plasma-catalytic processes have the potential to overcome these drawbacks due to their low-temperature operation and non-equilibrium characteristics which allow the high stability of the CO2 molecule to be overcome without the need for large energy inputs. A great number of reactions can potentially be carried out in a plasma-catalytic reactor, including CO2 decomposition, dry reforming of methane and CO2 hydrogenation; hence a great number of high-value products can be created (oxygenates, liquid hydrocarbons, syngas, etc.). This chapter describes this process in detail for a number of different reactions and discusses recent advances and challenges in this area.

Notes

Acknowledgments

The authors acknowledge financial support from the UK EPSRC SUPERGEN Hydrogen & Fuel Cell (H2FC) Hub (EP/J016454/1), EPSRC SUPERGEN Bioenergy Challenge II Programme (EP/M013162/1), and EPSRC Impact Acceleration Account (IAA). We acknowledge the funding from the European Union’s Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie Action (Grant Number 823745).

References

  1. 1.
    IPCC. (2014). Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth assessment report of the intergovernmental panel on climate change, New York.Google Scholar
  2. 2.
    Snoeckx, R., & Bogaerts, A. (2017). Plasma technology: A novel solution for CO2 conversion. Chemical Society Review, 46, 5805–5863.CrossRefGoogle Scholar
  3. 3.
    Ashford, B., & Tu, X. (2017). Non-thermal plasma technology for the conversion of CO2. Current Opinion in Green and Sustainable Chemistry, 3, 45–49.CrossRefGoogle Scholar
  4. 4.
    Tu, X., & Whitehead, J. C. (2014). Plasma dry reforming of methane in an atmospheric pressure AC gliding arc discharge: Co-generation of syngas and carbon nanomaterials. International Journal of Hydrogen Energy, 39, 9658–9669.CrossRefGoogle Scholar
  5. 5.
    Snoeckx, R., Zeng, Y. X., Tu, X., & Bogaerts, A. (2015). Plasma-based dry reforming: Improving the conversion and energy efficiency in a dielectric barrier discharge. RSC Advances., 5, 29799–29808.CrossRefGoogle Scholar
  6. 6.
    Wang, J., Xia, G., Huang, A., Suib, S. L., Hayashi, Y., & Matsumoto, H. (1999). CO2 decomposition using glow discharge plasmas. Journal of Catalysis, 185, 152–159.CrossRefGoogle Scholar
  7. 7.
    Spencer, L. F., & Gallimore, A. D. (2011). Efficiency of CO2 dissociation in a radio-frequency discharge. Plasma Chemistry and Plasma Processing, 31, 79–89.CrossRefGoogle Scholar
  8. 8.
    Tsuji, M., Tanoue, T., Nakano, K., & Nishimura, Y. (2001). Decomposition of CO2 into CO and O in a microwave-excited discharge flow of CO2/He or CO2/Ar mixtures. Chemistry Letters, 1, 22–23.CrossRefGoogle Scholar
  9. 9.
    Aerts, R. (2014). Experimental and computational study of dielectric barrier discharges for environmental applications. Belgium: University of Antwerp.Google Scholar
  10. 10.
    Paulussen, S., Verheyde, B., Tu, X., De Bie, C., Martens, T., Petrovic, D., Bogaerts, A., & Sels, B. (2010). Conversion of carbon dioxide to value-added chemicals in atmospheric pressure dielectric barrier discharges. Plasma Sources Science and Technology, 19, 034015.ADSCrossRefGoogle Scholar
  11. 11.
    Duan, X., Hu, Z., Li, Y., & Wang, B. (2015). Effect of dielectric packing materials on the decomposition of carbon dioxide using DBD microplasma reactor. American Institute of Chemical Engineers, 61, 898–903.CrossRefGoogle Scholar
  12. 12.
    Aerts, R., Somers, W., & Bogaerts, A. (2015). CO2 splitting in a dielectric barrier discharge plasma: A combined experimental and computational study. ChemSusChem, 8, 702–716.CrossRefGoogle Scholar
  13. 13.
    Wang, W. Z., Berthelot, A., Kolev, S., Tu, X., & Bogaerts, A. (2016). CO2 conversion in a gliding arc plasma: 1D cylindrical discharge mode. Plasma Sources Science and Technology, 25, 065012.ADSCrossRefGoogle Scholar
  14. 14.
    Silva, T., Britun, N., Godfroid, T., & Snyders, R. (2014). Optical characterization of a microwave pulsed discharge used for dissociation of CO2. Plasma Sources Science and Technology, 23, 025009.ADSCrossRefGoogle Scholar
  15. 15.
    Pietanza, L. D., Colonna, G., D’Ammando, G., Laricchiuta, A., & Capitelli, M. (2015). Vibrational excitation and dissociation mechanisms of CO2 under non-equilibrium discharge and post-discharge conditions. Plasma Sources Science and Technology, 24, 042002.ADSCrossRefGoogle Scholar
  16. 16.
    Berthelot, A., & Bogaerts, A. (2016). Modeling of plasma-based CO2 conversion: Lumping of the vibrational levels. Plasma Sources Science and Technology, 25, 045022.ADSCrossRefGoogle Scholar
  17. 17.
    Mori, S., & Tun, L. L. (2017). Synergistic CO2 conversion by hybridization of dielectric barrier discharge and solid oxide electrolyser cell. Plasma Processes and Polymers, 14, 1600153.CrossRefGoogle Scholar
  18. 18.
    Mei, D. H., He, Y. L., Liu, S. Y., Yan, J. D., & Tu, X. (2016). Optimisation of CO2 conversion in a cylindrical dielectric barrier discharge reactor using design of experiments. Plasma Processes and Polymers, 13, 544–556.CrossRefGoogle Scholar
  19. 19.
    Van Laer, K., & Bogaerts, A. (2015). Improving the conversion and energy efficiency of carbon dioxide splitting in a zirconia-packed dielectric barrier discharge reactor. Energy Technology, 3, 1038–1044.CrossRefGoogle Scholar
  20. 20.
    Mei, D., & Tu, X. (2017). Conversion of CO2 in a cylindrical dielectric barrier discharge reactor: Effects of plasma processing parameters and reactor design. Journal of CO2 Utilization, 19, 68–78.Google Scholar
  21. 21.
    Winanti, W. S., Purwanto, W. W., & Bismo, S. (2014). Decomposition of carbon dioxide in the three-pass flow dielectric barrier discharge plasma reactor. International Journal of Technology, 1, 1–11.Google Scholar
  22. 22.
    Mei, D., Zhu, X., He, Y. L., Yan, J. D., & Tu, X. (2015). Plasma-assisted conversion of CO2 in a dielectric barrier discharge reactor: Understanding the effect of packing materials. Plasma Sources Science and Technology, 24, 015011.ADSCrossRefGoogle Scholar
  23. 23.
    Ramakers, M., Michielsen, I., Aerts, R., Meynen, V., & Bogaerts, A. (2015). Effect of argon or helium on the CO2 conversion in a dielectric barrier discharge. Plasma Processes and Polymers, 12, 755–763.CrossRefGoogle Scholar
  24. 24.
    Snoeckx, R., Heijkers, S., Wesenbeeck, K., Lenaerts, S., & Bogaerts, A. (2016). CO2 conversion in a dielectric barrier discharge plasma: N2 in the mix as helping hand or problematic impurity? Energy & Environmental Science, 9, 999–1011.CrossRefGoogle Scholar
  25. 25.
    Heijkers, S., Snoeckx, R., Kozak, T., Silva, T., Godfroid, T., Britun, N., Snyders, R., & Bogaerts, A. (2015). CO2 conversion in a microwave plasma reactor in the presence of N2: Elucidating the roles of vibrational levels. The Journal of Physical Chemistry C, 119, 12815–12828.CrossRefGoogle Scholar
  26. 26.
    Butterworth, T., Elder, R., & Allen, R. (2016). Effects of particle size on CO2 reduction and discharge characteristics in a packed bed plasma reactor. Chemical Engineering Journal, 293, 55–67.CrossRefGoogle Scholar
  27. 27.
    Tu, X., & Whitehead, J. C. (2012). Plasma-catalytic dry reforming of methane in an atmospheric dielectric barrier discharge: Understanding the synergistic effect at low temperature. Applied Catalysis B: Environmental, 125, 439–448.CrossRefGoogle Scholar
  28. 28.
    Neyts, E. C., & Bogaerts, A. (2014). Understanding plasma catalysis through modelling and simulation—A review. Journal of Physics D: Applied Physics, 47, 224010.ADSCrossRefGoogle Scholar
  29. 29.
    Mei, D., Zhu, X., Wu, C., Ashford, B., Williams, P. T., & Tu, X. (2016). Plasma-photocatalytic conversion of CO2 at low temperatures: Understanding the synergistic effect of plasma-catalysis. Applied Catalysis B: Environmental, 182, 525–532.CrossRefGoogle Scholar
  30. 30.
    Tu, X., Gallon, H. J., Twigg, M. V., Gorry, P. A., & Whitehead, J. C. (2011). Dry reforming of methane over a Ni/Al2O3 catalyst in a coaxial dielectric barrier discharge reactor. Journal of Physics D: Applied Physics, 44, 274007.ADSCrossRefGoogle Scholar
  31. 31.
    Mei, D., & Tu, X. (2017). Atmospheric pressure non-thermal plasma activation of CO2 in a packed-bed dielectric barrier discharge reactor. ChemPhysChem, 18, 3253–3259.CrossRefGoogle Scholar
  32. 32.
    Ray, D., & Subrahmanyam, C. (2016). CO2 decomposition in a packed bed DBD plasma reactor: Influence of packing materials. RSC Advances, 6, 39492.CrossRefGoogle Scholar
  33. 33.
    Bogaerts, A., Kozak, T., van Laer, K., & Snoeckx, R. (2015). Plasma-based conversion of CO2: Current status and future challenges. Faraday Discussions, 183, 217–232.ADSCrossRefGoogle Scholar
  34. 34.
    Yu, Q., Kong, M., Liu, T., Fei, J., & Zheng, X. (2012). Characteristics of the decomposition of CO2 in a dielectric packed-bed plasma reactor. Plasma Chemistry and Plasma Processing, 32, 153–163.CrossRefGoogle Scholar
  35. 35.
    Belov, I., Paulussen, S., & Bogaerts, A. (2016). Appearance of a conductive carb.onaceous coating in a CO2 dielectric barrier discharge and its influence on the electrical properties and the conversion efficiency. Plasma Sources Science and Technology, 25, 015023.ADSCrossRefGoogle Scholar
  36. 36.
    Duan, X., Li, Y., Ge, W., & Wang, B. (2015). Degradation of CO2 through dielectric barrier discharge microplasma. Greenhouse Gases: Science and Technology, 5, 131–140.CrossRefGoogle Scholar
  37. 37.
    Indarto, A., Yang, D. R., Choi, J. W., Lee, H., & Song, H. K. (2007). Gliding arc plasma processing of CO2 conversion. Journal of Hazardous Materials, 146, 309–315.CrossRefGoogle Scholar
  38. 38.
    Ozkan, A., Dufour, T., Bogaerts, A., & Reniers, F. (2016). How do the barrier thickness and dielectric material influence the filamentary mode and CO2 conversion in a flowing DBD? Plasma Sources Science and Technology, 25, 045016.ADSCrossRefGoogle Scholar
  39. 39.
    Xu, W., Li, M. W., Xu, G. H., & Tian, Y. L. (2004). Decomposition of CO2 using DC corona discharge at atmospheric pressure. Japanese Journal of Applied Physics, 43, 8310–8311.ADSCrossRefGoogle Scholar
  40. 40.
    Chen, G. X., Georgieva, V., Godfroid, T., Snyders, R., & Delplancke-Ogletree, M.-P. (2016). Plasma assisted catalytic decomposition of CO2. Applied Catalysis B: Environmental, 190, 115–124.CrossRefGoogle Scholar
  41. 41.
    Duan, X. F., Hu, Z. Y., Li, Y. P., & Wang, B. W. (2015). Effect of dielectric packing materials on the decomposition of carbon dioxide using DBD microplasma reactor. AIChE Journal, 61, 898–903.CrossRefGoogle Scholar
  42. 42.
    Chen, G., Georgieva, V., Godfroid, T., Snyders, R., & Delplancke-Pgletree, M. P. (2016). Plasma assisted catalytic decomposition of CO2. Applied Catalysis B: Environmental, 190, 115–124.CrossRefGoogle Scholar
  43. 43.
    Martini, L. M., Dilecce, G., Guella, G., Maranzana, A., Tonachini, G., & Tosi, P. (2014). Oxidaton of CH4 by CO2 in a dielectric barrier discharge. Chemical Physics Letters, 593, 55–60.ADSCrossRefGoogle Scholar
  44. 44.
    De Bie, C., Martens, T., van Dijk, J., Paulussen, S., Verheyde, B., Corthals, S., & Bogaerts, A. (2011). Dielectric barrier discharges used for the conversion of greenhouse gases: Modeling the plasma chemistry by fluid simulations. Plasma Sources Science and Technology, 20, 024008.ADSCrossRefGoogle Scholar
  45. 45.
    De Bie, C., van Dyke, J., & Bogaerts, A. (2015). The dominant pathways for the conversion of methane into oxygenates and syngas in an atmospheric pressure dielectric barrier discharge. The Journal of Physical Chemistry C, 119, 22331–22350.CrossRefGoogle Scholar
  46. 46.
    Wang, L., Yi, Y., Wu, C., Guo, H., & Tu, X. (2017). One-step reforming of CO2 and CH4 to high-value liquid chemicals and fuels at room temperature by plasma-driven catalysis. Angewandte Chemie International Edition, 56, 13679–13683.CrossRefGoogle Scholar
  47. 47.
    Zeng, Y., Zhu, X., Mei, D., Ashford, B., & Tu, X. (2015). Plasma-catalytic dry reforming of methane over γ-Al2O3 supported metal catalysts. Catalysis Today, 256, 80–87.CrossRefGoogle Scholar
  48. 48.
    Nguyen, H. H., Nasonova, A., Nah, I. W., & Kim, K. S. (2015). Analysis on CO2 reforming of CH4 by corona discharge process for various process variables. Journal of Industrial and Engineering Chemistry, 32, 58–62.CrossRefGoogle Scholar
  49. 49.
    Wang, Q., Yan, B. H., Jin, Y., & Cheng, Y. (2009). Investigation of dry reforming of methane in a dielectric barrier discharge reactor. Plasma Chemistry and Plasma Processing, 29, 217–228.CrossRefGoogle Scholar
  50. 50.
    Bo, Z., Yan, J., Li, X., Chi, Y., & Cen, K. (2008). Plasma assisted dry methane reforming using gliding arc gas discharge: Effect of feed gases proportion. International Journal of Hydrogen Energy, 33, 5545–5553.CrossRefGoogle Scholar
  51. 51.
    Nguyen, H. H., & Kim, K. S. (2015). Combination of plasmas and catalytic reactions for CO2 reforming of CH4 by dielectric barrier discharge process. Catalysis Today, 256, 88–95.CrossRefGoogle Scholar
  52. 52.
    Scapinello, M., Martini, L. M., Dilecce, G., & Tosi, P. (2016). Conversion of CH4/CO2 by a nanosecond repetitively pulsed discharge. Journal of Physics D: Applied Physics, 49, 075602.ADSCrossRefGoogle Scholar
  53. 53.
    Kameshima, S., Tamura, K., Ishibashi, Y., & Nozaki, T. (2015). Pulsed dry methane reforming in plasma-enhanced catalytic reaction. Catalysis Today, 256, 67–75.CrossRefGoogle Scholar
  54. 54.
    Abd Allah, Z., & Whitehead, J. C. (2015). Plasma-catalytic dry reforming of methane in an atmospheric pressure AC gliding arc discharge. Catalysis. Today, 256, 76–79.CrossRefGoogle Scholar
  55. 55.
    Zhang, A. J., Zhu, A. M., Guo, J., Xu, Y., & Shi, C. (2010). Conversion of greenhouse gases into syngas via combined effects of discharge activation and catalysis. Chemical Engineering Journal, 156, 601–606.CrossRefGoogle Scholar
  56. 56.
    Zheng, X. G., Tan, S. Y., Dong, L. C., Li, S. B., & Chen, H. M. (2015). Silica-coated LaNiO2 nanoparticles for non-thermal plasma assisted dry reforming of methane: Experimental and kinetic studies. Chemical Engineering Journal, 265, 147–156.CrossRefGoogle Scholar
  57. 57.
    Gallon, H. J., Tu, X., & Whitehead, J. C. (2012). Effects of reactor packing materials on H2 production by CO2 reforming of CH4 in a dielectric barrier discharge reactor. Plasma Processes and Polymers, 9, 90–97.CrossRefGoogle Scholar
  58. 58.
    Eliasson, B., Liu, C. J., & Kogelschatz, U. (2000). Direct conversion of methane and carbon dioxide to higher hydrocarbons using catalytic dielectric-barrier discharges with zeolites. Industrial & Engineering Chemistry Research, 39, 1221–1227.CrossRefGoogle Scholar
  59. 59.
    Zhang, K., Kogelschatz, U., & Eliasson, B. (2001). Conversion of greenhouse gases to synthesis gas and higher hydrocarbons. Energy Fuels, 15, 395–402.Google Scholar
  60. 60.
    Mahammadunnisa, S., Reddy, P. M. K., Ramaraju, B., & Subrahmanyam, C. (2013). Catalytic nonthermal plasma reactor for dry reforming of methane. Energy & Fuels, 27, 4441–4447.CrossRefGoogle Scholar
  61. 61.
    Mei, D. H., Liu, S. Y., & Tu, X. (2017). CO2 reforming with methane for syngas production using a dielectric barrier discharge plasma coupled with γ-Al2O3 catalysts: Process optimization through response surface methodology. Journal of CO2 Utilization, 21, 314–326.Google Scholar
  62. 62.
    Wang, Q., Cheng, Y., & Jin, Y. (2009). Dry reforming of methane in an atmospheric pressure plasma fluidized bed with Ni/γ-Al2O3 catalyst. Catalysis Today, 148, 275–282.CrossRefGoogle Scholar
  63. 63.
    Sentek, J., Krawczyk, K., Mlotek, M., Kalczewska, M., Kroker, T., Kolb, T., Schenk, A., Gericke, K. H., & Schmidt-Szalowski, K. (2010). Plasma-catalytic methane conversion with carbon dioxide in dielectric barrier discharges. Applied Catalysis B: Environmental, 94, 19–26.CrossRefGoogle Scholar
  64. 64.
    Kroker, T., Kolb, T., Schenk, A., Krawczyk, K., Mlotek, M., & Gericke, K. H. (2012). Catalytic conversion of simulated biogas mixtures to synthesis gas in a fluidized bed reactor supported by a DBD. Plasma Chemistry and Plasma Processing, 32, 565–582.CrossRefGoogle Scholar
  65. 65.
    Krawczyk, K., Mlotek, M., Ulejczyk, B., & Schmidt-Szalowski, K. (2014). Methane conversion with carbon dioxide in plasma-catalytic system. Fuel, 117, 608–617.CrossRefGoogle Scholar
  66. 66.
    Pham, M. H., Goujard, V., Tatibouet, J. M., & Batiot-Dupeyrat, C. (2011). Activation of methane and carbon dioxide in a dielectric-barrier discharge-plasma reactor to produce hydrocarbons – Influence of La2O3/γ-Al2O3 catalyst. Catalysis Today, 171, 67–71.CrossRefGoogle Scholar
  67. 67.
    Goujard, V., Tatibouet, J. M., & Batiot-Dupeyrat, C. (2011). Use of a non-thermal plasma for the production of synthesis gas from biogas. Applied Catalysis A: General, 353, 228–235.CrossRefGoogle Scholar
  68. 68.
    Zheng, X. G., Tan, S., Dong, L., Li, S., & Chen, H. (2009). LaNiO3@SiO2 core-shell nano-particles for the dry reforming of CH4 in the dielectric barrier discharge plasma. International Journal of Hydrogen Energy, 39, 11360–11367.CrossRefGoogle Scholar
  69. 69.
    Zeng, Y. X., Wang, L., Wu, C. F., Wang, J. Q., Shen, B. X., & Tu, X. (2018). Low temperature reforming of biogas over K-, Mg- and Ce-promoted Ni/Al2O3 catalysts for the production of hydrogen rich syngas: Understanding plasma-catalytic synergy. Applied Catalysis B: Environmental, 224, 469–478.CrossRefGoogle Scholar
  70. 70.
    Chung, W. C., & Chang, M. B. (2016). Review of catalysis and plasma performance on the dry reforming of CH4 and possible synergistic effects. Renewable and Sustainable Energy Reviews, 62, 13–31.CrossRefGoogle Scholar
  71. 71.
    Zheng, X. G., Tan, S. Y., Dong, L. C., Li, S. B., Chen, H. M., & Wei, S. A. (2015). Experimental and kinetic investigation of the plasma catalytic dry reforming of methane over perovskite LaNiO3 nanoparticles. Fuel Processing Technology, 137, 250–258.CrossRefGoogle Scholar
  72. 72.
    Montoro-Damas, A. M., Brey, J. J., Rodriguez, M. A., Gonzalez-Elipe, A. R., & Cotrino, J. (2015). Plasma reforming of methane in a tunable ferroelectric packed-bed dielectric discharge reactor. Journal of Power Sources, 296, 268–275.ADSCrossRefGoogle Scholar
  73. 73.
    Mei, D., Ashford, B., He, Y. L., & Tu, X. (2017). Plasma-catalytic reforming of biogas over supported Ni catalysts in a dielectric barrier discharge reactor: Effect of catalyst supports. Plasma Processes and Polymers, 14, e1600076.CrossRefGoogle Scholar
  74. 74.
    Zeng, Y., & Tu, X. (2016). Plasma-catalytic CO2 hydrogenation at low temperatures. IEEE Transactions on Plasma Science, 44, 405–411.ADSCrossRefGoogle Scholar
  75. 75.
    Wang, L., Yi, Y., Guo, H., & Tu, X. (2017). Atmospheric pressure and room temperature synthesis of methanol through plasma-catalytic hydrogenation of CO2. ACS Catalysis, 8, 90–100.CrossRefGoogle Scholar
  76. 76.
    De Bie, C., van Dijk, J., & Bogaerts, A. (2016). CO2 hydrogenation in a dielectric barrier discharge plasma revealed. The Journal of Physical Chemistry C, 120, 25210–25224.CrossRefGoogle Scholar
  77. 77.
    Saeidi, S., Amin, N. A. S., & Rahimpour, M. R. (2014). Hydrogenation of CO2 to value-added products – A review and potential future developments. Journal of CO2 Utilization, 5, 66–81.Google Scholar
  78. 78.
    Kano, M., Satoh, G., & Iizuka, S. (2012). Reforming of carbon dioxide to methane and methanol by electric impulse low-pressure discharge with hydrogen. Plasma Chemistry and Plasma Processing, 32, 177–185.CrossRefGoogle Scholar
  79. 79.
    Mora, E. Y., Sarmiento, A., & Vera, E. (2016). Alumina and quartz as dielectrics in a dielectric barrier discharges DBD system for CO2 hydrogenation. Journal of Physics: Conference Series, 687, 012020.Google Scholar
  80. 80.
    Arita, K., & Iizuka, S. (2015). Production of CH4 in a low-pressure CO2/H2 discharge with magnetic field. Journal of Chemical Engineering and Materials Science, 3, 69–77.CrossRefGoogle Scholar
  81. 81.
    Nizio, M., Albarazi, A., Cavadias, S., Amouroux, J., Galvez, M. E., & Da Costa, P. (2016). Hybrid plasma-catalytic methanation of CO2 at low temperature over ceria zirconia supported Ni catalysts. International Journal of Hydrogen Energy, 41, 11584–11592.CrossRefGoogle Scholar
  82. 82.
    Jwa, E., Lee, S. B., Lee, H. W., & Mok, Y. S. (2013). Plasma-assisted catalytic methanation of CO and CO2 over Ni-zeolite catalysts. Fuel Processing Technology, 108, 89–93.CrossRefGoogle Scholar
  83. 83.
    Nizio, M., Benrabbah, R., Krzak, M., Debek, R., Motak, M., Cavadias, S., Galvez, M. E., & Da Costa, P. (2016). Low temperature hybrid plasma-catalytic methanation over Ni-Ce-Zr hydrotalcite-derived catalysts. Catalysis Communications, 83, 14–17.CrossRefGoogle Scholar
  84. 84.
    Ponduri, S. (2016). Understanding CO2 containing non-equilibrium plasma: Modelling and experiments. PhD Thesis, Eindhoven: Technische Universiteit Eindhoven, Netherlands.Google Scholar
  85. 85.
    Wang, W., Wang, S. P., Ma, X. B., & Gong, J. L. (2011). Recent advances in catalytic hydrogenation of carbon dioxide. Chemical Society Reviews, 40, 3703–3727.CrossRefGoogle Scholar
  86. 86.
    Porosoff, M. D., Yan, B., & Chen, J. G. (2016). Catalytic reduction of CO2 by H2 for synthesis of CO, methanol and hydrocarbons: Challenges and opportunities. Energy & Environmental Science, 9, 62–73.CrossRefGoogle Scholar
  87. 87.
    Liu, P., Yang, Y. X., & White, M. G. (2013). Theoretical perspective of alcohol decomposition and synthesis from CO2 hydrogenation. Surface Science Reports, 68, 233–272.ADSCrossRefGoogle Scholar
  88. 88.
    Zou, J. J., & Liu, C. J. (2010). Utilization of carbon dioxide through nonthermal plasma approaches. Carbon Dioxide as Chemical Feedstock, M. Aresta (Ed.), pp 267–290. Wiley VCH.Google Scholar
  89. 89.
    Amouroux, J., Cavadias, S., & Doubla, A. (2011). Carbon dioxide reduction by non-equilibrium electrocatalysis plasma reactor. IOP Conference Series: Materials Science and Engineering, 19, 012005.CrossRefGoogle Scholar
  90. 90.
    Zeng, Y. X., & Tu, X. (2017). Plasma-catalytic hydrogenation of CO2 for the cogeneration of CO and CH4 in a dielectric barrier discharge reactor: Effect of argon addition. Journal of Physics D: Applied Physics, 50, 184004.ADSCrossRefGoogle Scholar
  91. 91.
    Hayashi, N., Yamakawa, T., & Baba, S. (2016). Effect of additive gases on synthesis of organic compounds from carbon dioxide using non-thermal plasma produced by atmospheric surface discharges. Vacuum, 80, 1299–1304.ADSCrossRefGoogle Scholar
  92. 92.
    Eliasson, B., Kogelschatz, U., Xue, B., & Zhou, L. M. (1998). Hydrogenation of carbon dioxide to methanol with a discharge-activated catalyst. Industrial & Engineering Chemistry Research, 37, 3350–3357.CrossRefGoogle Scholar
  93. 93.
    Chen, G., Silva, T., Georgieva, V., Godfroid, T., Britun, N., Snyders, R., & Delplancke-Ogletree, M. P. (2015). Simultaneous dissociation of CO2 and H2O to syngas in a surface-wave microwave discharge. International Journal of Hydrogen Energy, 40, 3789–3796.CrossRefGoogle Scholar
  94. 94.
    Mahammadunnisa, S., Reddy, E. L., Ray, D., Subrahmanyam, C., & Whitehead, J. C. (2013). CO2 reduction to syngas and carbon nanofibres by plasma-assisted in situ decomposition of water. International Journal of Greenhouse Gas Control, 16, 361–363.CrossRefGoogle Scholar
  95. 95.
    Hoeben, W. F. L. M., van Heesch, E. J. M., Beckers, F. J. C. M., Boekhoven, W., & Pemen, A. J. M. (2015). Plasma-driven water assisted CO2 methanation. IEEE Transactions on Plasma Science, 43, 1954–1958.ADSCrossRefGoogle Scholar
  96. 96.
    Keets, K., Morris, A., Zeitler, E., Lakkaraju, P., & Bocarsly, A. (2010). Catalytic conversion of carbon dioxide to methanol and higher order alcohols at a photoelectrochemical interface. Proceedings in Solar Hydrogen and Nanotechnology V. SPIE Solar Energy + Technology, San Diego (Vol. 7770, article ID: 77700R).Google Scholar
  97. 97.
    Zbudniewek, K., Goralski, J., & Rynkowski, J. (2012). Studies on TiO2/SiO2 and Pd/TiO2/SiO2 catalysts in photoreduction of CO2 with H2O to methanol. Russian Journal of Physical Chemistry A, 86, 2057–2062.ADSCrossRefGoogle Scholar
  98. 98.
    Aerts, R., Somers, W., & Bogaerts, A. (2014). CO2 splitting in a dielectric barrier discharge plasma: A combined experimental and computational study. ChemSusChem, 8, 702–716.CrossRefGoogle Scholar
  99. 99.
    Bogaerts, A., Wang, W., Berthelot, A., & Guerra, V. (2016). Modeling plasma-based CO2 conversion: crucial role of the dissociation cross section. Plasma Sources Science and Technology, 25, 055016.ADSCrossRefGoogle Scholar
  100. 100.
    Gómez-Ramírez, A., Rico, V. J., Cotrino, J., González-Elipe, A. R., & Lambert, R. M. (2014). Low temperature production of formaldehyde from carbon dioxide and ethane by plasma-assisted catalysis in a ferroelectrically moderated dielectric barrier discharge reactor. ACS Catalysis, 4, 402–408.CrossRefGoogle Scholar
  101. 101.
    Pham, M. H., Goujard, V., Tatibouët, J. M., & Batiot-Dupeyrat, C. (2011). Activation of methane and carbon dioxide in a dielectric-barrier discharge-plasma reactor to produce hydrocarbons—Influence of La2O3/γ-Al2O3 catalyst. Catalysis Today, 171, 67–71.CrossRefGoogle Scholar
  102. 102.
    Frusteri, F., Bonura, G., Cannilla, C., Drago Ferrante, G., Aloise, A., Catizzone, E., Migliori, M., & Giordano, G. (2015). Stepwise tuning of metal-oxide and acid sites of CuZnZr-MFI hybrid catalysts for the direct DME synthesis by CO2 hydrogenation. Applied Catalysis B: Environmental, 176–177, 522–531.CrossRefGoogle Scholar
  103. 103.
    Witoon, T., Permsirivanich, T., Kanjanasoontorn, N., Akkaraphataworn, C., Seubsai, A., Faungnawakij, K., Warakulwit, C., Chareonpanich, M., & Limtrakul, J. (2015). Direct synthesis of dimethyl ether from CO2 hydrogenation over Cu–ZnO–ZrO2 hybrid catalysts: effects of sulfur-to-zirconia ratios. Catalysis Science & Technology, 5, 2347–2357.CrossRefGoogle Scholar
  104. 104.
    Zhang, Y., Li, D., Zhang, Y., Cao, Y., Zhang, S., Wang, K., Ding, F., & Wu, J. (2014). V-modified CuO–ZnO–ZrO2/HZSM-5 catalyst for efficient direct synthesis of DME from CO2 hydrogenation. Catalysis Communications, 55, 49–52.ADSCrossRefGoogle Scholar
  105. 105.
    Centi, G., & Perathoner, S. (2009). Opportunities and prospects in the chemical recycling of carbon dioxide to fuels. Catalysis Today, 148, 191–205.CrossRefGoogle Scholar
  106. 106.
    Chen, G., Georgieva, V., Godfriod, T., Snyders, R., & Delplancke-Ogletree, M. P. (2016). Plasma assisted catalytic decomposition of CO2. Applied Catalysis B: Environmental, 190, 115–124.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Bryony Ashford
    • 1
  • Yaolin Wang
    • 1
  • Li Wang
    • 2
    • 3
    • 1
  • Xin Tu
    • 1
    Email author
  1. 1.Department of Electrical Engineering and ElectronicsUniversity of LiverpoolLiverpoolUK
  2. 2.State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of TechnologyDalianChina
  3. 3.College of Environmental Sciences and Engineering, Dalian Maritime UniversityDalianChina

Personalised recommendations