Plasma-Catalyst Interactions

  • Hyun-Ha KimEmail author
  • Yoshiyuki Teramoto
  • Atsushi Ogata
Part of the Springer Series on Atomic, Optical, and Plasma Physics book series (SSAOPP, volume 106)


Low-temperature catalytic reactions induced by nonthermal plasma (NTP) have been of great interest in plasma chemistry. The presence of plasma can alter the elementary steps in catalysis. The type of catalysts also provides substantial changes in plasma properties. This chapter reviews the current progress in the experimental observations and the understanding of bilateral interactions of NTP with catalysts. Among the various types of combinations, this chapter will mostly focus on the single-stage plasma-driven catalysis. Several lines of the experimental evidence on the interaction are introduced: type of reactor, propagation of discharge streamer, key components of plasma, and catalyst durability.



The authors would like to acknowledge financial support from the JSPS KAKENHI Grant Number JP26400539.


  1. 1.
    Kim, H. H., Teramoto, Y., Ogata, A., Takagi, H., & Nanba, T. (2016). Plasma catalysis for environmental treatment and energy applications. Plasma Chemistry and Plasma Processing, 36, 45–72.CrossRefGoogle Scholar
  2. 2.
    Penetrante, B. M., & Schultheis, S. E. (1993). Non-thermal plasma techniques for pollution control: Part a: Overview, fundamentals and supporting technologies. New York: Springer.CrossRefGoogle Scholar
  3. 3.
    Penetrante, B. M., & Schultheis, S. E. (1993). Non-thermal plasma techniques for pollution control: Part B: Electron beam and electrical discharge processing. New York: Springer.CrossRefGoogle Scholar
  4. 4.
    Mizuno, A., Clements, J. S., & Davis, R. H. (1986). A method for the removal of sulfur dioxide from exhaust gas utilizing pulsed streamer corona for electron energization. IEEE Transactions on Industry Applications, 22, 516–522.CrossRefGoogle Scholar
  5. 5.
    Dinelli, G., Civitano, L., & Rea, M. (1990). Industrial experiments on pulsed corona simultaneous removal of NOx and SO2 from flue gas. IEEE Transactions on Industry Applications, 26, 535–541.CrossRefGoogle Scholar
  6. 6.
    Masuda, S., & Nakao, K. (1990). Control of NOx by positive and negative pulsed corona discharges. IEEE Transactions on Industry Applications, 26, 374–383.CrossRefGoogle Scholar
  7. 7.
    Nunez, C. M., Ramsey, G. H., Ponder, W. H., Abbott, J. H., Hamel, L. E., & Kariher, P. H. (1993). Corona destruction: An innovative control technology for VOCs and air toxics. Journal of the Air & Waste Management Association, 42, 242–247.CrossRefGoogle Scholar
  8. 8.
    Clements, J. S., Mizuno, A., Finney, W. C., & Davis, R. H. (1989). Combined removal of SO2, NOx, and fly ash from simulated flue gas using pulsed streamer corona. IEEE Transactions on Industry Applications, 25, 62–69.CrossRefGoogle Scholar
  9. 9.
    Penetrante, B. M., Bardsley, J. N., & Hsiao, M. C. (1997). Kinetic analysis of non-thermal plasmas used for pollution control. Japanese Journal of Applied Physics, 36, 5007–5017.CrossRefADSGoogle Scholar
  10. 10.
    Yamamoto, T. (1999). Optimization of nonthermal plasma for the treatment of gas streams. Journal of Hazardous Materials, B67, 165–181.CrossRefGoogle Scholar
  11. 11.
    Anderegg, F. O. (1923). Surface complications in the corona discharge. Trans. Am. Electrochemical Soc., 44, 203–214.Google Scholar
  12. 12.
    Yehia, A., & Mizuno, A. (2008). Suppression of the ozone generation in the positive and negative dc corona discharges. International Journal of Plasma Environmental Science and Technology, 2, 44–49.Google Scholar
  13. 13.
    Newsome, P. T. (1926). A study of the influence of the electrodes on the formation of ozone at low pressures in the electrical discharge. Journal of the American Chemical Society, 48, 2035–2045.CrossRefGoogle Scholar
  14. 14.
    Petrov, A. A., Amirov, R. H., & Samoylov, I. S. (2009). On the nature of copper cathode erossion in negative corona discharge. IEEE Transactions on Plasma Science, 37, 1146–1149.CrossRefADSGoogle Scholar
  15. 15.
    Dhandapani, B., & Oyama, S. T. (1997). Gas phase ozone decomposition catalysts. Applied Catalysis B: Environmental., 11, 129–166.CrossRefGoogle Scholar
  16. 16.
    Henis, J. M. (1976). Nitrogen oxide decomposition process. USA: Monsanoto Company.Google Scholar
  17. 17.
    Park, M. K., Ryu, S. G., Park, H. B., Lee, H. W., Hwang, K. C., & Lee, C. H. (2004). Decomposition of cyanogen chloride by using a packed bed plasma reactor at dry and wet air in atmospheric pressure. Plasma Chemistry and Plasma Processing, 24, 117–135.CrossRefGoogle Scholar
  18. 18.
    Chang, C. L., & Lin, T. S. (2005). Elimination of carbon monoxide in the gas streams by dielectric barrier discharge systems with Mn catalyst. Plasma Chemistry and Plasma Processing, 25, 387–401.CrossRefGoogle Scholar
  19. 19.
    Holzer, F., Kopinke, F. D., & Roland, U. (2005). Influence of ferroelectric materials and catalysts on the performance of non-thermal plasma (NTP) for the removal of air pollutants. Plasma Chemistry and Plasma Processing., 25, 595–611.CrossRefGoogle Scholar
  20. 20.
    Magureanu, M., Mandache, N. B., Parvulescu, V. I., Subrahmanyam, C., Renken, A., & Kiwi-Minsker, L. (2007). Improved performance of non-thermal plasma reactor during decomposition of trichloroethylene: Optimization of the reactor geometry and introduction of catalytic electrode. Applied catalysis. B, Environmental, 74, 270–277.CrossRefGoogle Scholar
  21. 21.
    Nozaki, T., Muto, N., Kado, S., & Okazaki, K. (2004). Dissociation of vibrationally excited methane on Ni catalyst part 1. Application to methane steam reforming. Catalysis Today, 89, 57–65.CrossRefGoogle Scholar
  22. 22.
    Kraus, M., Eliasson, B., Kogelschatz, U., & Wokaun, A. (2001). CO2 reforming of methane by the combination of dielectric-barrier discharges and catalysis. Physical Chemistry Chemical Physics, 3, 294–300.CrossRefGoogle Scholar
  23. 23.
    Wang, Q., Yan, B. H., Jin, Y., & Cheng, Y. (2009). Dry reforming of methane in a dielectric barrier discharge reactor with Ni/Al2O3 catalyst: Interaction of catalyst and plasma. Energy & Fuel, 23, 4196–4201.CrossRefGoogle Scholar
  24. 24.
    Jwa, E., Lee, S. B., Lee, H. W., & Mok, Y. S. (2013). Plasma-assisted catalytic methanation of CO and CO2 over Ni-zeolite catalysts. Fuel Processing Technology, 108, 89–93.CrossRefGoogle Scholar
  25. 25.
    Scapinello, M., Martini, L. M., & Tosi, P. (2014). CO2 hydrogenation by CH4 in a dielectric barrier discharge: Catalytic effects of nickel and Copper. Plasma Processes and Polymers, 11, 624–628.CrossRefGoogle Scholar
  26. 26.
    Hammer, T., & Broer, S. (1998). Plasma enhanced selective catalytic reduction of NOx for diesel cars. Society of Automotive Engineers: Paper No. 982428.Google Scholar
  27. 27.
    Hoard, J., & Balmer, M. L. (1998). Analysis of plasma-catalysis for diesel NOx remediation. Society of Automotive Engineers, 982429, 13–19.Google Scholar
  28. 28.
    Penetrante, B. M., Brusasco, R. M., Merritt, B. T., & Vogtlin, G. E. (1999). Environmental application of low-temperature plasmas. Pure and Applied Chemistry, 71, 1829–1835.CrossRefGoogle Scholar
  29. 29.
    Kim, H. H., Takashima, K., Katsura, S., & Mizuno, A. (2001). Low-temperature NOx reduction processes using combined systems of pulsed corona discharge and catalysts. Journal of Physics D: Applied Physics, 34, 604–613.CrossRefADSGoogle Scholar
  30. 30.
    Miessner, H., Francke, K.-P., Rudolph, R., & Hammer, T. (2002). NOx removal in excess oxygen by plasma-enhanced selective catalytic reduction. Catalysis Today, 75, 325–330.CrossRefGoogle Scholar
  31. 31.
    Mok, Y. S., Dors, M., & Mizerazcyk, J. (2004). Effect of reaction temperature on NOx removal and formation of ammonium nitrate in nonthermal plasma process combined with selective catalytic reduction. IEEE Transactions on Plasma Science, 32, 799–807.CrossRefADSGoogle Scholar
  32. 32.
    Patil, B., Cherkasov, N., Lang, J., Ibhadon, A., Hessel, V., & Wang, Q. (2016). Low temperature plasma catalytic NOx synthesis in a packed DBD reactor: Effect of support materials and supported active metal oxides. Applied Catalysis B: Environmental, 194, 123–133.Google Scholar
  33. 33.
    Mizushima, T., Matsumoto, K., Sugoh, J.-I., Ohkita, H., & Kakuta, N. (2004). Tubular membrane-like catalyst for reactor with dielectric-barrier discharge plasma and its performance in ammonia synthesis. Applied Catalysis A: General, 265, 53–59.CrossRefGoogle Scholar
  34. 34.
    Hong, J., Aramesh, M., Shimoni, O., Seo, D. H., Yick, S., Greig, A., Charles, C., Prawer, S., & Murphy, A. B. (2016). Plasma catalytic synthesis of ammonia using functionalized-carbon coatings in an atmospheric-pressure non-equilibrium discharge. Plasma Chemistry and Plasma Processing., 36, 917–940.CrossRefGoogle Scholar
  35. 35.
    Kim, H. H., Teramoto, Y., Ogata, A., Takagi, H., & Nanba, T. (2017). Atmospheric-pressure nonthermal plasma synthesis of ammonia over ruthenium catalysts. Plasma Processes and Polymers, 14, 1600157.CrossRefGoogle Scholar
  36. 36.
    Vandenbroucke, A. M., Morent, R., Geyter, N. D., & Leys, C. (2011). Non-thermal plasmas for non-catalytic and catalytic VOC abatement. Journal of Hazardous Materials, 195, 30–54.CrossRefGoogle Scholar
  37. 37.
    Kusic, H., Koprivanac, N., & Locke, B. R. (2005). Decomposition of phenol by hybrid gas/liquid electrical discharge reactors with zeolite catalysts. Journal of Hazardous Materials, B125, 190–200.CrossRefGoogle Scholar
  38. 38.
    Kim, H. H., Tsunoda, K., Katsura, S., & Mizuno, A. (1999). A novel plasma reactor for NOx control using photocatalyst and hydrogen peroxide injection. IEEE Transactions on Industry Applications, 35, 1306–1310.CrossRefGoogle Scholar
  39. 39.
    Yoshida, H., Marui, Z., Aoyama, M., Sugiura, J., & Mizuno, A. (1989). Removal of odor gas component utilizing plasma chemical reactions promoted by the partial discharge in a ferroelectric pellet layer. Journal of the Institute of Electrostatics Japan, 13, 425–430.Google Scholar
  40. 40.
    Harling, A. M., Glover, D. J., Whitehead, J. C., & Zhang, K. (2008). Novel method for enhancing the destruction of environmental pollutants by the combination of multiple plasmadischarges. Environmental Science & Technology, 42, 4546–4550.CrossRefADSGoogle Scholar
  41. 41.
    Park, S. Y., Deshwal, B. R., & Moon, S. H. (2008). NOx removal from the flue gas of oil-fired boiler using a multistage plasma-catalyst hybrid system. Fuel Processing Technology, 89, 540–548.CrossRefGoogle Scholar
  42. 42.
    Hübner, M., Guaitella, O., Rousseau, A., & Röpcke, J. (2013). A spectroscopic study of ethylene destruction and by-product generation using a three-stage atmospheric packed-bed plasma reactor. Journal of Applied Physics, 114, 033301.CrossRefADSGoogle Scholar
  43. 43.
    Kim, H. H., Oh, S. M., Ogata, A., & Futamura, S. (2005). Decomposition of gas-phase benzene using plasma-driven catalyst reactor: Complete oxidation of adsorbed benzene using oxygen plasma. Journal of Advanced Oxidation Technologies, 8, 226–233.Google Scholar
  44. 44.
    Kim, H. H., Ogata, A., & Futamura, S. (2008). Oxygen partial pressure-dependent behavior of various catalysts for the total oxidation of VOCs using cycled system of adsorption and oxygen plasma. Applied Catalysis. B: Environmental, 79, 356–367.CrossRefGoogle Scholar
  45. 45.
    Kim, H. H., Ogata, A., & Futamura, S. (2007). Complete oxidation of volatile organic compounds (VOCs) using plasma-driven catalysis and oxygen plasma. International Journal of Plasma Environmental Science and Technology, 1, 46–51.Google Scholar
  46. 46.
    Fan, H. Y., Shi, C. S., Li, X. S., Zhao, D. X., Xu, Y., & Zhu, A. M. (2009). High-efficiency plasma catalytic removal of dilute benzene from air. Journal of Physics D: Applied Physics, 42, 225105.CrossRefADSGoogle Scholar
  47. 47.
    Fan, H. Y., Li, X. S., Shi, C., Zhao, D. Z., Liu, J. L., Liu, Y. X., & Zhu, A. M. (2011). Plasma catalytic oxidation of stored benzene in a cycled storage-discharge (CSD) process: Catalysts, reactors and operation conditions. Plasma Chemistry and Plasma Processing, 31, 799–810.CrossRefGoogle Scholar
  48. 48.
    Mok, Y. S., & Kim, D. H. (2011). Treatment of toluene by using adsorption and nonthermal plasma oxidation process. Current Applied Physics, 11, S58–S62.CrossRefADSGoogle Scholar
  49. 49.
    Dang, X., Huang, J., Cao, L., & Zhou, Y. (2013). Plasma-catalytic oxidation of adsorbed toluene with gas circulation. Catalysis Communications, 40, 116–119.CrossRefGoogle Scholar
  50. 50.
    Wang, W., Wang, H., Zhu, T., & Fan, X. (2015). Removal of gas phase low-concentration toluene over Mn, Ag and Cemodified HZSM-5 catalysts by periodical operation of adsorption and non-thermal plasma regeneration. Journal of Hazardous Materials, 292, 70–78.CrossRefGoogle Scholar
  51. 51.
    Qin, C., Dang, X., Huang, J., Teng, J., & Huang, X. (2016). Plasma-catalytic oxidation of adsorbed toluene on Ag-Mn/γ-Al2O3: Comparison of gas flow-through and gas circulation treatment. Chemical Engineering Journal, 299, 85–92.CrossRefGoogle Scholar
  52. 52.
    Zhao, D. Z., Li, X. S., Shi, C., Fan, H. Y., & Zhu, A. M. (2011). Low-concentration formaldehyde removal from air using a cycled storage- discharge (CSD) plasma catalytic process. Chemical Engineering Science, 66, 3922–3929.CrossRefGoogle Scholar
  53. 53.
    Oh, S. M., Kim, H. H., Einaga, H., Ogata, A., Futamura, S., & Park, D. W. (2006). Zeolite-combined plasma reactor for decomposition of toluene. Thin Solid Films, 506-507, 418–422.CrossRefADSGoogle Scholar
  54. 54.
    Kuroki, T., Hirai, K., Matsuoka, S., Kim, J. Y., & Okubo, M. (2011). Oxidation system of adsorbed VOCs on adsorbent using non thermal plasma flow. IEEE Transactions on Industry Applications, 47, 1916–1921.CrossRefGoogle Scholar
  55. 55.
    Saulich, K., & Muller, S. (2013). Removal of formaldehyde by adsorption and plasma treatment of mineral adsorbent. Journal of Physics D: Applied Physics, 46, 045201.CrossRefADSGoogle Scholar
  56. 56.
    Subrenat, A., Baléo, J. N., Cloirec, P. L., & Blanc, P. E. (2001). Electrical behaviour of activated carbon cloth heated by the joule effect: Desorption application. Carbon, 39, 707–716.CrossRefGoogle Scholar
  57. 57.
    Okubo, M., Inoue, M., Kuroki, T., & Yamamoto, T. (2005). NOx reduction aftertreatment system using nitrogen nonthermal plasma desorption. IEEE Transactions on Industry Applications, 41, 891–899.CrossRefGoogle Scholar
  58. 58.
    Yoshida, K., Kuwahara, T., Kuroki, T., & Okubo, M. (2012). Diesel NOx aftertreatment by combined process using temperature swing adsorption, NOx reduction by nonthermal plasma, and NOx recirculation: Improvement of the recirculation process. Journal of Hazardous Materials, 231-232, 18–25.CrossRefGoogle Scholar
  59. 59.
    Yu, Q. Q., Wang, H., Liu, T., Xiao, L. P., Jiang, X. Y., & Zheng, X. M. (2012). High-efficiency removal of NOx using a combined adsorption-discharge plasma catalytic process. Environmental Science & Technology, 46, 2337–2344.CrossRefADSGoogle Scholar
  60. 60.
    Kim, H. H., Prieto, G., Takashima, K., Katsura, S., & Mizuno, A. (2002). Performance evaluation of discharge plasma process for gaseous pollutant removal. Journal of Electrostatics, 55, 25–41.CrossRefGoogle Scholar
  61. 61.
    Kim, H. H., Teramoto, Y., Negishi, N., & Ogata, A. (2015). A multidisciplinary approach to understand the interactions of nonthermal plasma and catalyst: A review. Catalysis Today, 256, 13–22.CrossRefGoogle Scholar
  62. 62.
    Francke, K. P., Rudolph, R., & Miessner, H. (2003). Design and operation characteristics of a simple and reliable DBD reactor for use with atmospheric air. Plasma Chemistry and Plasma Processing, 23, 47–57.CrossRefGoogle Scholar
  63. 63.
    Kogelschatz, U. (2003). Dielectric-barrier discharges: Their history, discharge physics, and industrial applications. Plasma Chemistry and Plasma Processing, 23, 1–46.CrossRefGoogle Scholar
  64. 64.
    Kim, H. H., & Ogata, A. (2012). Interaction of nonthermal plasma with catalyst for the air pollution control. International Journal of Plasma Environmental Science and Technology, 6, 43–48.Google Scholar
  65. 65.
    Mizuno, A., & Ito, H. (1990). Basic performance of an electrostatically augmented filter consisting of a packed ferroelectric pellet layer. Journal of Electrostatics, 25, 97–107.CrossRefGoogle Scholar
  66. 66.
    Harling, A. M., Kim, H. H., Futamura, S., & Whitehead, J. C. (2007). Temperature dependence of plasma-catalysis using a nonthermal, atmospheric pressure packed bed; the destruction of benzene and toluene. Journal of Physical Chemistry C, 111, 5090–5095.CrossRefGoogle Scholar
  67. 67.
    Kim, H. H., Teramoto, Y., Sano, T., Negishi, N., & Ogata, A. (2015). Effects of Si/Al ratio on the interaction of nonthermal plasma and Ag/HY catalysts. Applied Catalysis B: Environmental, 166-167, 9–17.CrossRefGoogle Scholar
  68. 68.
    Kuai, P.-Y., Liu, C.-J., & Huo, P.-P. (2009). Characterization of CuO-ZnO catalyst prepared by decomposition of carbonates using dielectric-barrier discharge plasma. Catalysis Letters, 129, 493–498.CrossRefGoogle Scholar
  69. 69.
    Liu, Y., Pan, Y.-X., Kuai, P., & Liu, C.-J. (2010). Template removal from ZSM-5 zeolite using dielectric-barrier discharge plasma. Catalysis Letters, 135, 241–251.CrossRefGoogle Scholar
  70. 70.
    Tu, X., Gallon, H. J., & Whitehead, J. C. (2013). Plasma-assisted reduction of a NiO/Al2O3 catalyst in atmospheric pressure H2/Ar dielectric barrier discharge. Catalysis Today, 211, 120–125.CrossRefGoogle Scholar
  71. 71.
    Kim, T., Lee, D. H., Jo, S. K., Pyun, S. H., Kim, K. T., & Song, Y. H. (2016). Mechanism of the accelerated reduction of an oxidized metal catalyst under electric discharge. ChemCatChem, 8, 685–689.CrossRefGoogle Scholar
  72. 72.
    Liu, X., Mou, C. Y., Lee, S., Li, Y., Secrest, J., & Jang, B. W. L. (2012). Room temperature O2 plasma treatment of SiO2 supported Au catalysts for selective hydrogenation of acetylene in the presence of large excess of ethylene. Journal of Catalysis, 285, 152–159.CrossRefGoogle Scholar
  73. 73.
    Liu, C. J., Zhao, Y., Li, Y., Zhang, D. S., Chang, Z., & Bu, W. H. (2013). Perspectives on electron-assisted reduction for preparation of highly dispersed noble metal catalysts. ACS Sustainable Chemistry & Engineering, 2, 3–13.CrossRefGoogle Scholar
  74. 74.
    Menard, L. D., Xu, F., Nuzzo, R. G., & Yang, J. C. (2006). Preparation of TiO2-supported Au nanoparticle catalysts from a Au13 cluster precursor: Ligand removal using ozone exposure versus a rapid thermal treatment. Journal of Catalysis, 243, 64–73.CrossRefGoogle Scholar
  75. 75.
    Khan, M. A., & Al-Jalal, A. A. (2004). Enhanced decoking of a coked zeolite catalyst using a glow discharge in Ar-O2 gas mixture. Applied Catalysis A: General, 272, 141–149.CrossRefGoogle Scholar
  76. 76.
    Al-Jalal, A. M., & Khan, M. A. (2010). Optical emission and raman spectroscopy studies of reactivity of low-pressure glow discharges in Ar-O2 and He-O2 gas mixtures with coked catalysts. Plasma Chemistry and Plasma Processing, 30, 173–182.CrossRefGoogle Scholar
  77. 77.
    Kim, H. H., Tsubota, S., Daté, M., Ogata, A., & Futamura, S. (2007). Catalyst regeneration and activity enhancement of Au/TiO2 by atmospheric pressure nonthermal plasma. Applied Catalysis A: General, 329, 93–98.CrossRefGoogle Scholar
  78. 78.
    Fan, H. Y., Shi, C. A., Li, X. S., Zhang, S., Liu, J. L., & Zhu, A. M. (2012). In-situ plasma regeneration of deactivated Au/TiO2 nanocatalysts during CO oxidation and effect of N2 content. Applied Catalysis B: Environmental, 119, 49–55.CrossRefADSGoogle Scholar
  79. 79.
    Yoshida, H., Kuwauchi, Y., Jinschek, J. R., Sun, K., Tanaka, S., Kohyama, M., Shimada, S., Haruta, M., & Takeda, S. (2012). Visualizing gas molecules interacting with supported nanoparticulate catalysts at reaction conditions. Science, 335, 317–320.CrossRefADSGoogle Scholar
  80. 80.
    Somorjai, G. A. (1992). The experimental evidence of the role of surface restructuring during catalytic reactions. Catalysis Letters, 12, 17–34.CrossRefGoogle Scholar
  81. 81.
    Sano, T., Negishi, N., Sakai, E., & Matsuzawa, S. (2006). Contributions of photocatalytic/catalytic activities of TiO2 and γ-Al2O3 in nonthermal plasma on oxidation of acetaldehyde and CO. Journal of Molecular Catalysis A: Chemical, 245, 235–241.CrossRefGoogle Scholar
  82. 82.
    Rajasekaran, P., Mertmann, P., Bibinov, N., Wandke, D., Viol, W., & Awakovicz, P. (2010). Filamentary and homogeneous modes of dielectric barrier discharge (DBD) in air: Investigation through plasma characterization and simulation of surface irradiation. Plasma Processes and Polymers, 7, 665–675.CrossRefGoogle Scholar
  83. 83.
    Ochiai, T., Nakata, K., Murakami, T., Morito, Y., Hosokawa, S., & Fusishima, A. (2011). Development of an air-purification unit using a photocatalysis-plasma hybrid reactor. Electrochemistry, 79, 838–841.CrossRefGoogle Scholar
  84. 84.
    Huang, H. B., Ye, D. Q., Fu, M. L., & Feng, F. D. (2007). Contribution of UV light to the decomposition of toluene in dielectric barrier discharge plasma/photocatalysis system. Plasma Chemistry and Plasma Processing, 27, 577–588.CrossRefGoogle Scholar
  85. 85.
    Maciuca, A., Batiot-Dupeyrat, C., & Tatibouet, J. M. (2012). Synergetic effect by coupling photocatalysis with plasma for low VOCs concentration removal from air. Applied Catalysis B: Environmental, 125, 432–438.CrossRefGoogle Scholar
  86. 86.
    Ono, R. (2016). Optical diagnostics of reactive species in atmospheric-pressure nonthermal plasma. Journal of Physics D: Applied Physics, 49, 083001.CrossRefADSGoogle Scholar
  87. 87.
    Guaitella, O., Lazzaroni, C., Marinov, D., & Rousseau, A. (2010). Evidence of atomic adsorption on TiO2 under plasma exposure and related C2H2 surface reactivity. Applied Physics Letters, 97, 011502.CrossRefADSGoogle Scholar
  88. 88.
    Marinov, D., Guaitella, O., Rousseau, A., & Ionikh, Y. (2010). Production of molecules on a surface under plasma exposure: Example of NO on pyrex. Journal of Physics D: Applied Physics, 43, 115203.CrossRefADSGoogle Scholar
  89. 89.
    Kim, H. H., Ogata, A., Schiorlin, M., Marotta, E., & Paradisi, C. (2011). Oxygen isotope (18O2) evidence on the role of oxygen in the plasma-driven catalysis of VOC oxidation. Catalysis Letters, 141, 277–282.CrossRefGoogle Scholar
  90. 90.
    Teramoto, Y., Kim, H. H., Ogata, A., & Negishi, N. (2013). Study of plasma-induced surface active oxygen on zeolite-supported silver nanoparticles. Catalysis Letters, 143, 1374–1378.CrossRefGoogle Scholar
  91. 91.
    Guaitella, O., Hubner, M., Welzel, S., Marinov, D., Ropcke, J., & Rousseau, A. (2010). Evidence for surface oxidation on pyrex of NO into NO2 by adsorbed O atoms. Plasma Sources Science and Technology, 19, 045206.CrossRefGoogle Scholar
  92. 92.
    Biener, J., Wittstock, A., Zepeda-Ruiz, L. A., Biener, M. M., Zielasek, V., Kramer, D., Viswanath, R. N., Weissmüller, J., Bäumer, M., & Hamza, A. V. (2009). Surface-chemistry-driven actuation in nanoporous gold. Nature Materials, 8, 47–51.CrossRefADSGoogle Scholar
  93. 93.
    Utz, A. L. (2009). Mode selective chemistry at surfaces. Current Opinion in Solid State & Materials Science, 13, 4–12.CrossRefADSGoogle Scholar
  94. 94.
    Nozaki, T., Muto, N., Kadio, S., & Okazaki, K. (2004). Dissociation of vibrationally excited methane on Ni catalyst part 2. Process diagnostics by emission spectroscopy. Catalysis Today, 89, 67–74.CrossRefGoogle Scholar
  95. 95.
    Haruta, M., Yamada, N., Kobayashi, T., & Iijima, S. (1989). Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. Journal of Catalysis, 115, 301–309.CrossRefGoogle Scholar
  96. 96.
    Jiang, C., Hara, K., & Fukuoka, A. (2013). Low-temperature oxidation of ethylene over platinum nanoparticles supported on mesoporous silica. Angewandte Chemie, International Edition, 52, 6265–6268.CrossRefGoogle Scholar
  97. 97.
    Stere, C. E., Adress, W., Burch, R., Chansai, S., Goguet, A., Graham, W. G., & Hardacre, C. (2015). Probing a non-thermal plasma activated heterogeneously catalyzed reaction using in situ DRIFTS-MS. ACS Catalysis, 5, 956–964.CrossRefGoogle Scholar
  98. 98.
    Rodrigues, A., Tatibouet, J. M., & Fourre, E. (2016). Operando DRIFT spectroscopy characterization of intermediate cpecies on catalysts surface in VOC removal from air by non-thermal plasma assisted catalysis. Plasma Chemistry and Plasma Processing, 36, 901–915.CrossRefGoogle Scholar
  99. 99.
    Su, H., & Yeung, E. S. (2000). High-throughput screening of heterogeneous catalysts by laser-induced fluorescence imaging. Journal of the American Chemical Society, 122, 7422–7423.CrossRefGoogle Scholar
  100. 100.
    Su, H., Hou, Y., Houk, R. S., Schrader, G. L., & Yeung, E. S. (2001). Combinatiorial screening of heterogeneous catalysts in selective oxidation of naphthalene by laser-induced fluorescence imaging. Analytical Chemistry, 73, 4434–4440.CrossRefGoogle Scholar
  101. 101.
    Kim, H. H., Kim, J. H., & Ogata, A. (2009). Microscopic observation of discharge plasma on the surface of zeolites supported metal nanoparticles. Journal of Physics D: Applied Physics, 42, 135210.CrossRefADSGoogle Scholar
  102. 102.
    Kim, H. H., & Ogata, A. (2011). Nonthermal plasma activates catalyst: From current understanding and future prospects. European Physical Journal Applied Physics, 55, 13806.CrossRefADSGoogle Scholar
  103. 103.
    Mizuno, A., Yamazaki, Y., Ito, H., & Yoshida, H. (1992). Ac energized ferroelectric pellet bed gas cleaner. IEEE Transactions on Industry Applications, 28, 535–540.CrossRefGoogle Scholar
  104. 104.
    Mizuno, A., Yamazaki, Y., Obama, S., Suzuki, E., & Okazaki, K. (1993). Effect of voltage waveform on partial discharge in ferroelectric pellet layer for gas cleaning. IEEE Transactions on Industry Applications, 29, 262–267.CrossRefGoogle Scholar
  105. 105.
    Takaki, K., Chang, J. S., & Kostov, K. G. (2004). Atmospheric pressure of nitrogen plasmas in a ferro-electric packed bed barrier discharge reactor part I: Modeling. IEEE Transactions on Dielectrics and Electrical Insulation, 11, 481–490.CrossRefGoogle Scholar
  106. 106.
    Nozaki, T., Unno, Y., Miyazaki, Y., & Okazaki, K. (2001). Optical diagnostics for determining gas temperature of reactive microdischarges in a methane-fed dielectric barrier discharge. Journal of Physics D: Applied Physics, 34, 2504–2511.CrossRefADSGoogle Scholar
  107. 107.
    Hoft, H., Kettlitz, M., Weltmann, K.-D., & Brandenburg, R. (2014). The bidirectional character of O2 concentration in pulsed dielectric barrier discharges in O2/N2 gas mixtures. Journal of Physics D: Applied Physics, 47, 455202.CrossRefGoogle Scholar
  108. 108.
    Kim, H. H., Teramoto, Y., & Ogata, A. (2016). Time-resolved imaging of positive pulsed corona-induced surface streamers on TiO2 and γ-Al2O3-supported Ag catalysts. Journal of Physics D: Applied Physics, 49, 415204.CrossRefGoogle Scholar
  109. 109.
    Marode, E. (1975). The mechanism of spark breakdown in air at atmospheric pressure between a positive point and a plane. 1. Experimental: Nature of the streamer track. Journal of Applied Physics, 46, 2005–2015.CrossRefADSGoogle Scholar
  110. 110.
    Namihira, T., Wang, D., Katsuki, S., Hackam, R., & Akiyama, H. (2003). Propagation velocity of pulsed streamer discharges in atmospheric air. IEEE Transactions on Plasma Science, 31, 1091–1094.CrossRefADSGoogle Scholar
  111. 111.
    Huiskamp, T., Pemen, A. J. M., Hoeben, W. F. L. M., Beckers, F. J. C. M., & Heesch, E. J. M. V. (2013). Temperature and pressure effects on positive streamers in air. Journal of Physics D: Applied Physics, 46, 165202.CrossRefADSGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Hyun-Ha Kim
    • 1
    Email author
  • Yoshiyuki Teramoto
    • 1
  • Atsushi Ogata
    • 1
  1. 1.National Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan

Personalised recommendations