Advertisement

Molecular Mechanism of Insect Olfaction: Olfactory Receptors

  • Heinz BreerEmail author
  • Jörg Fleischer
  • Pablo Pregitzer
  • Jürgen Krieger
Chapter

Abstract

Insects have a remarkable capacity to sense a wide range of volatile chemicals in their environment with high sensitivity and specificity. Chemical cues originating from various sources, including preys, host plants or conspecifics are received and processed by highly specialized chemosensory neurons that relay the information to the brain and thus elicit distinct odor-evoked behaviors. The molecular basis underlying the reception of numerous odorous compounds has intensely been explored over the last decade. The emerging picture indicates that the olfactory sensory neurons (OSNs) of insects recognize and discriminate the wealth of odorants and pheromones with a repertoire of ligand-binding membrane proteins that are encoded by large and diverse gene families. The molecular mechanisms for converting the chemical signal into an electrical response of the sensory cells are not entirely clear but seem to comprise both ionotropic as well as metabotropic contributions. In this chapter, we compile current information about the primary processes of odor sensing in insects, concentrating on the molecular identity and functional implications of olfactory receptors in the recognition and the transduction of odorant and pheromone signals.

References

  1. Abuin L, Bargeton B, Ulbrich MH, Isacoff EY, Kellenberger S, Benton R (2011) Functional architecture of olfactory ionotropic glutamate receptors. Neuron 69:44–60CrossRefPubMedPubMedCentralGoogle Scholar
  2. Adams MD et al (2000) The genome sequence of Drosophila melanogaster. Science 287:2185–2195CrossRefPubMedGoogle Scholar
  3. Andersson MN, Löfstedt C, Newcomb RD (2015) Insect olfaction and the evolution of receptor tuning. Front Ecol Evol 3:1–14Google Scholar
  4. Bengtsson JM, Trona F, Montagné N, Anfora G, Ignell R, Witzgall P, Jacquin-Joly E (2012) Putative chemosensory receptors of the codling moth, Cydia pomonella, identified by antennal transcriptome analysis. PLoS One 7:e31620Google Scholar
  5. Benton R, Sachse S, Michnick SW, Vosshall LB (2006) Atypical membrane topology and heteromeric function of Drosophila odorant receptors in vivo. PLoS Biol 4:e20CrossRefPubMedPubMedCentralGoogle Scholar
  6. Benton R, Vannice KS, Vosshall LB (2007) An essential role for a CD36-related receptor in pheromone detection in Drosophila. Nature 450:289–293CrossRefGoogle Scholar
  7. Benton R, Vannice KS, Gomez-Diaz C, Vosshal LB (2009) Variant ionotropic glutamate receptors as chemosensory receptors in Drosophila. Cell 136:149–162CrossRefPubMedPubMedCentralGoogle Scholar
  8. Boekhoff I, Strotmann J, Raming K, Tareilus E, Breer H (1990) Odorant-sensitive phospholipase C in insect antennae. Cell Signal 2:49–56CrossRefPubMedGoogle Scholar
  9. Boekhoff I, Seifert E, Göggerle S, Lindemann M, Krüger BW, Breer H (1993) Pheromone-induced second-messenger signaling in insect antennae. Insect Biochem Mol Biol 23:757–762CrossRefGoogle Scholar
  10. Boto T, Gomez-Diaz C, Alcorta E (2010) Expression analysis of the 3 G-protein subunits, Galpha, Gbeta, and Ggamma, in the olfactory receptor organs of adult Drosophila melanogaster. Chem Senses 35:183–193CrossRefPubMedGoogle Scholar
  11. Bray S, Amrein H (2003) A putative Drosophila pheromone receptor expressed in male-specific taste neurons is required for efficient courtship. Neuron 39:1019–1029CrossRefPubMedGoogle Scholar
  12. Breer H, Boekhoff I, Strotmann J, Raming K, Tareilus E (1990) Molecular elements of olfactory signal transduction in insect antennae. Nato ASI Ser H 39:77–86Google Scholar
  13. Cardé RT, Gibson G (2010) Host finding by female mosquitoes: mechanisms of orientation to host odours and other cues. In: Takken W, BGJ K (eds) Olfaction in vector-host interactions. Wageningen Academic Publishers, Wageningen, pp 115–142Google Scholar
  14. Cardé RT, Willis MA (2008) Navigational strategies used by insects to find distant, wind-borne sources of odor. J Chem Ecol 34:854–866CrossRefPubMedGoogle Scholar
  15. Carey A, Carlson JR (2011) Insect olfaction from model systems to disease control. Proc Natl Acad Sci U S A 108:14849–14854CrossRefPubMedPubMedCentralGoogle Scholar
  16. Carey AF, Wang G, Su CY, Zwiebel LJ, Carlson JR (2010) Odorant reception in the malaria mosquito Anopheles gambiae. Nature 464:66–71CrossRefPubMedPubMedCentralGoogle Scholar
  17. Chang H, Liu Y, Yang T, Pelosi P, Dong S, Wang G (2015) Pheromone binding proteins enhance the sensitivity of olfactory receptors to sex pheromones in Chilo suppressalis. Sci Rep 5:13093CrossRefPubMedPubMedCentralGoogle Scholar
  18. Clyne PJ, Warr CG, Freeman MR, Lessing D, Kim J, Carlson JR (1999) A novel family of divergent seven-transmembrane proteins: candidate odorant receptors in Drosophila. Neuron 22:327–338CrossRefGoogle Scholar
  19. Couto A, Alenius M, Dickson BJ (2005) Molecular, anatomical, and functional organization of the Drosophila olfactory system. Curr Biol 15:1535–1547CrossRefPubMedGoogle Scholar
  20. Croset V, Rytz R, Cummins SF, Budd A, Brawand D, Kaessmann H, Gibson TJ, Benton R (2010) Ancient protostome origin of chemosensory ionotropic glutamate receptors and the evolution of insect taste and olfaction. PLoS Genet 6:e1001064CrossRefPubMedPubMedCentralGoogle Scholar
  21. Dahanukar A, Lei YT, Kwon JY, Carlson JR (2007) Two Gr genes underlie sugar reception in Drosophila. Neuron 56:503–516CrossRefPubMedPubMedCentralGoogle Scholar
  22. Deng Y, Zhang W, Farhat K, Oberland S, Gisselmann G, Neuhaus EM (2011) The stimulatory Galpha(s) protein is involved in olfactory signal transduction in Drosophila. PLoS One 6:e18605CrossRefPubMedPubMedCentralGoogle Scholar
  23. Dobritsa AA, van der Goes van Naters W, Warr CG, Steinbrecht RA, Carlson JR (2003) Integrating the molecular and cellular basis of odor coding in the Drosophila antenna. Neuron 37:827–841CrossRefPubMedGoogle Scholar
  24. Dong JF, Song YQ, Li WL, Shi J, Wang ZY (2016) Identification of putative chemosensory receptor genes from the Athetis dissimilis antennal transcriptome. PLoS One 11:e0147768CrossRefPubMedPubMedCentralGoogle Scholar
  25. Ejima A, Smith BP, Lucas C, van der Goes van Naters W, Miller CJ, Carlson JR, Levine JD, Griffith LC (2007) Generalization of courtship learning in Drosophila is mediated by cis-vaccenyl acetate. Curr Biol 17:599–605CrossRefPubMedPubMedCentralGoogle Scholar
  26. Engsontia P, Sangket U, Chotigeat W, Satasook C (2014) Molecular evolution of the odorant and gustatory receptor genes in lepidopteran insects: implications for their adaptation and speciation. J Mol Evol 79:21–39CrossRefPubMedGoogle Scholar
  27. Faucher C, Forstreuter M, Hilker M, de Bruyne M (2006) Behavioral responses of Drosophila to biogenic levels of carbon dioxide depend on life-stage, sex and olfactory context. J Exp Biol 209:2739–2748CrossRefPubMedGoogle Scholar
  28. Fishilevich E, Vosshall LB (2005) Genetic and functional subdivision of the Drosophila antennal lobe. Curr Biol 15:1548–1553CrossRefPubMedGoogle Scholar
  29. Fleischer J, Pregitzer P, Breer H, Krieger J (2018) Access to the odor world: olfactory receptors and their role for signal transduction in insects. Cell Mol Life Sci 75:485–508CrossRefPubMedGoogle Scholar
  30. Forstner M, Gohl T, Gondesen I, Raming K, Breer H, Krieger J (2008) Differential expression of SNMP-1 and SNMP-2 proteins in pheromone-sensitive hairs of moths. Chem Senses 33:291–299CrossRefGoogle Scholar
  31. Forstner M, Breer H, Krieger J (2009) A receptor and binding protein interplay in the detection of a distinct pheromone component in the silkmoth Antheraea polyphemus. Int J Biol Sci 5:745–757CrossRefPubMedPubMedCentralGoogle Scholar
  32. Gadenne C, Barrozo RB, Anton S (2016) Plasticity in insect olfaction: to smell or not to smell? Annu Rev Entomol 61:317–333CrossRefPubMedGoogle Scholar
  33. Gao Q, Chess A (1999) Identification of candidate Drosophila olfactory receptors from genomic DNA sequence. Genomics 60:31–39CrossRefGoogle Scholar
  34. German PF, van der PS, Carraher C, Kralicek AV, Newcomb RD (2013) Insights into subunit interactions within the insect olfactory receptor complex using FRET. Insect Biochem Mol Biol 43:138–145CrossRefPubMedGoogle Scholar
  35. Getahun MN, Olsson SB, Lavista-Llanos S, Hansson BS, Wicher D (2013) Insect odorant response sensitivity is tuned by metabotropically autoregulated olfactory receptors. PLoS One 8:e58889CrossRefPubMedPubMedCentralGoogle Scholar
  36. Gohl T, Krieger J (2006) Immunolocalization of a candidate pheromone receptor in the antenna of the male moth, Heliothis virescens. Invertebr Neurosci 6:13–21CrossRefGoogle Scholar
  37. Goldman AL, van Naters WV, Lessing D, Warr CG, Carlson JR (2005) Coexpression of two functional odor receptors in one neuron. Neuron 45:661–666CrossRefGoogle Scholar
  38. Gomez-Diaz C, Martin F, Alcorta E (2004) The cAMP transduction cascade mediates olfactory reception in Drosophila melanogaster. Behav Genet 34:395–406CrossRefPubMedGoogle Scholar
  39. Gomez-Diaz C, Martin F, Alcorta E (2006) The inositol 1,4,5-triphosphate kinase1 gene affects olfactory reception in Drosophila melanogaster. Behav Genet 36:309–321CrossRefPubMedGoogle Scholar
  40. Gomez-Diaz C, Bargeton B, Abuin L, Bukar N, Reina JH, Bartoi T, Graf M, Ong H, Ulbrich MH, Masson JF, Benton R (2016) A CD36 ectodomain mediates insect pheromone detection via a putative tunnelling mechanism. Nat Commun 7:11866CrossRefPubMedPubMedCentralGoogle Scholar
  41. Groh-Lunow KC, Gretahun MN, Grosse-Wilde E, Hansson BS (2015) Expression of ionotropic receptors in terrestrial hermit crab’s olfactory sensory neurons. Front Cell Neurosci 8:1–12CrossRefGoogle Scholar
  42. Grosjean Y, Rytz R, Farine JP, Abuin L, Cortot J, Jefferis GS, Benton R (2011) An olfactory receptor for food-derived odours promotes male courtship in Drosophila. Nature 478:236–240CrossRefGoogle Scholar
  43. Grosse-Wilde E, Svatos A, Krieger J (2006) A pheromone-binding protein mediates the bombykol-induced activation of a pheromone receptor in vitro. Chem Senses 31:547–555CrossRefPubMedGoogle Scholar
  44. Grosse-Wilde E, Gohl T, Bouche E, Breer H, Krieger J (2007) Candidate pheromone receptors provide the basis for the response of distinct antennal neurons to pheromonal compounds. Eur J Neurosci 25:2364–2373CrossRefPubMedGoogle Scholar
  45. Grosse-Wilde E, Stieber R, Forstner M, Krieger J, Wicher D, Hansson BS (2010) Sex-specific odorant receptors of the tobacco hornworm Manduca sexta. Front Cell Neurosci 4. pii22Google Scholar
  46. Gu SH, Yang RN, Guo MB, Wang GR, Wu KM, Guo YY, Zhou JJ, Zhang YJ (2013) Molecular identification and differential expression of sensory neuron membrane proteins in the antennae of the black cutworm moth Agrotis ipsilon. J Insect Physiol 59:430–443CrossRefPubMedGoogle Scholar
  47. Guo S, Kim J (2010) Dissecting the molecular mechanism of Drosophila odorant receptors through activity modeling and comparative analysis. Proteins 78:381–399CrossRefPubMedGoogle Scholar
  48. Guo H, Huang LQ, Pelosi P, Wang CZ (2012) Three pheromone-binding proteins help segregation between two Helicoverpa species utilizing the same pheromone components. Insect Biochem Mol Biol 42:708–716CrossRefPubMedGoogle Scholar
  49. Guo M, Krieger J, Grosse-Wilde E, Missbach C, Zhang L, Breer H (2013) Variant ionotropic receptors are expressed in olfactory sensory neurons of coeloconic sensilla on the antenna of the desert locust (Schistocerca gregaria). Int J Biol Sci 10:1–14CrossRefPubMedPubMedCentralGoogle Scholar
  50. Hallem EA, Carlson JR (2006) Coding of odors by a receptor repertoire. Cell 125:143–160CrossRefGoogle Scholar
  51. Hallem EA, Ho MG, Carlson JR (2004) The molecular basis of odor coding in the Drosophila antenna. Cell 117:965–979CrossRefGoogle Scholar
  52. Hansson BS, Stensmyr MC (2011) Evolution of insect olfaction. Neuron 72:698–711CrossRefGoogle Scholar
  53. Hussain A, Zhang M, Ucpunar HK, Svensson T, Quillery E, Gompel N, Ignell R, Kadow ICG (2016) Ionotropic chemosensory receptors mediate the taste and smell of polyamines. PLoS Biol 14:e1002505CrossRefGoogle Scholar
  54. Jacquin-Joly E, Merlin C (2004) Insect olfactory receptors: contributions of molecular biology to chemical ecology. J Chem Ecol 30:2359–2397CrossRefPubMedGoogle Scholar
  55. Jacquin-Joly E, Francois MC, Burnet M, Lucas P, Bourrat F, Maida R (2002) Expression pattern in the antennae of a newly isolated lepidopteran Gq protein alpha subunit cDNA. Eur J Biochem 269:2133–2142CrossRefPubMedGoogle Scholar
  56. Jin X, Ha TS, Smith DP (2008) SNMP is a signaling component required for pheromone sensitivity in Drosophila. Proc Natl Acad Sci U S A 105:10996–11001CrossRefPubMedPubMedCentralGoogle Scholar
  57. Jones WD, Nguyen TAT, Kloss B, Lee KJ, Vosshall LB (2005) Functional conservation of an insect odorant receptor gene across 250 million years of evolution. Curr Biol 15:R119–R121CrossRefPubMedGoogle Scholar
  58. Jones WD, Cayirlioglu P, Kadow IG, Vosshall LB (2007) Two chemosensory receptors together mediate carbon dioxide detection in Drosophila. Nature 445:86–90CrossRefPubMedGoogle Scholar
  59. Jones PL, Pask GM, Rinker DC, Zwiebel LJ (2011) Functional agonism of insect odorant receptor ion channels. Proc Natl Acad Sci U S A 108:8821–8825CrossRefPubMedPubMedCentralGoogle Scholar
  60. Joseph RM, Carlson JR (2015) Drosophila chemoreceptors: a molecular interface between the chemical world and the brain. Trends Genet 31:683–695CrossRefPubMedPubMedCentralGoogle Scholar
  61. Justus KA, Cardé RT, French AS (2005) Dynamic properties of antennal responses to pheromone in two moth species. J Neurophysiol 93:2233–2239CrossRefPubMedGoogle Scholar
  62. Kalidas S, Smith DP (2002) Novel genomic cDNA hybrids produce effective RNA interference in adult Drosophila. Neuron 33:177–184CrossRefGoogle Scholar
  63. Karner T, Schneider I, Schultze A, Breer H, Krieger J (2015) Co-expression of six tightly clustered odorant receptor genes in the antenna of the malaria mosquito. Front Ecol Evol 3:1–8CrossRefGoogle Scholar
  64. Kent LB, Walden KKO, Robertson HM (2008) The Gr family of candidate gustatory and olfactory receptors in the yellow-fever mosquito Aedes aegypti. Chem Senses 33:79–93CrossRefPubMedGoogle Scholar
  65. Kirkness EF et al (2010) Genome sequences of the human body louse and its primary endosymbiont provide insights into the permanent parasitic lifestyle. Proc Natl Acad Sci U S A 107:12168–12173CrossRefPubMedPubMedCentralGoogle Scholar
  66. Koenig C, Hirsh A, Bucks S, Klinner C, Vogel H, Shukla A, Mansfield JH, Morton B, Hansson BS, Grosse-Wilde E (2015) A reference gene set for chemosensory receptor genes of Manduca sexta. Insect Biochem Mol Biol 66:51–63CrossRefPubMedGoogle Scholar
  67. Kohl J, Huoviala P, Jefferis GS (2015) Pheromone processing in Drosophila. Curr Opin Neurobiol 34:149–157CrossRefPubMedPubMedCentralGoogle Scholar
  68. Koutroumpa FA, Kárpáti Z, Monsempes C, Hill SR, Hansson BS, Jacquin-Joly E, Krieger J, Dekker T (2014) Shifts in sensory neuron identity parallel differences in pheromone preference in the European corn borer. Front Ecol Evol 2:65CrossRefGoogle Scholar
  69. Kreher SA, Kwon JY, Carlson JR (2005) The molecular basis of odor coding in the Drosophila larva. Neuron 46:445–456CrossRefPubMedGoogle Scholar
  70. Krieger J, Klink O, Mohl C, Raming K, Breer H (2003) A candidate olfactory receptor subtype highly conserved across different insect orders. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 189:519–526CrossRefPubMedGoogle Scholar
  71. Krieger J, Grosse-Wilde E, Gohl T, Dewer YME, Raming K, Breer H (2004) Genes encoding candidate pheromone receptors in a moth (Heliothis virescens). Proc Nat Acad Sci USA 101:11845–11850CrossRefPubMedGoogle Scholar
  72. Krieger J, Grosse-Wilde E, Gohl T, Breer H (2005) Candidate pheromone receptors of the silkmoth Bombyx mori. Eur J Neurosci 21:2167–2176CrossRefPubMedGoogle Scholar
  73. Kwon JY, Dahanukar A, Weiss LA, Carlson JR (2007) The molecular basis of CO2 reception in Drosophila. Proc Natl Acad Sci U S A 104:3574–3578CrossRefPubMedPubMedCentralGoogle Scholar
  74. Larsson MC, Domingos AI, Jones WD, Chiappe ME, Amrein H, Vosshall LB (2004) Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction. Neuron 43:703–714CrossRefGoogle Scholar
  75. Larter NK, Sun JS, Carlson JR (2016) Organization and function of Drosophila odorant binding proteins. Elife 5:e20242CrossRefPubMedPubMedCentralGoogle Scholar
  76. Laue M, Maida R, Redkozubov A (1997) G-protein activation, identification and immunolocalization in pheromone-sensitive sensilla trichodea of moths. Cell Tissue Res 288:149–158CrossRefPubMedGoogle Scholar
  77. Leal WS (2013) Odorant reception in insects: roles of receptors, binding proteins, and degrading enzymes. Annu Rev Entomol 58:373–391CrossRefPubMedGoogle Scholar
  78. Li Z, Ni JD, Huang J, Montell C (2014) Requirement for Drosophila SNMP1 for rapid activation and termination of pheromone-induced activity. PLoS Genet 10:e1004600CrossRefPubMedPubMedCentralGoogle Scholar
  79. Liang D, Zhao M, Wang T, McManus DP, Cummins SF (2016) GPCR and IR genes in Schistosoma mansoni miracidia. Parasit Vectors 9:563CrossRefPubMedPubMedCentralGoogle Scholar
  80. Liu C, Zhang J, Liu Y, Wang G, Dong S (2014) Expression of SNMP1 and SNMP2 genes in antennal sensilla of Spodoptera exigua (Hubner). Arch Insect Biochem Physiol 85:114–126CrossRefPubMedGoogle Scholar
  81. Lu T, Qiu YT, Wang G, Kwon JY, Rutzler M, Kwon HW, Pitts RJ, van Loon JJ, Takken W, Carlson JR, Zwiebel LJ (2007) Odor coding in the maxillary palp of the malaria vector mosquito Anopheles gambiae. Curr Biol 17:1533–1544CrossRefPubMedPubMedCentralGoogle Scholar
  82. Lundin C, Kall L, Kreher SA, Kapp K, Sonnhammer EL, Carlson JR, Heijne G, Nilsson I (2007) Membrane topology of the Drosophila OR83b odorant receptor. FEBS Lett 581:5601–5604CrossRefPubMedPubMedCentralGoogle Scholar
  83. Mayer ML (2011) Emerging models of glutamate receptor ion channel structure and function. Structure 19:1370–1380CrossRefPubMedPubMedCentralGoogle Scholar
  84. McMeniman CJ, Corfas RA, Matthews BJ, Ritchie SA, Vosshall LB (2014) Multimodal integration of carbon dioxide and other sensory cues drives mosquito attraction to humans. Cell 156:1060–1071CrossRefPubMedPubMedCentralGoogle Scholar
  85. Missbach C, Dweck HK, Vogel H, Vilcinskas A, Stensmyr MC, Hansson BS, Grosse-Wilde E (2014) Evolution of insect olfactory receptors. Elife 3:e02115CrossRefPubMedPubMedCentralGoogle Scholar
  86. Miura N, Atsumi S, Tabunoki H, Sato R (2005) Expression and localization of three G protein alpha subunits, Go, Gq, and Gs, in adult antennae of the silkmoth (Bombyx mori). J Comp Neurol 485:143–152CrossRefPubMedGoogle Scholar
  87. Miyamoto T, Amrein H (2008) Suppression of male courtship by a Drosophila pheromone receptor. Nat Neurosci 11:874–876CrossRefPubMedPubMedCentralGoogle Scholar
  88. Montagné N, de Fouchier A, Newcomb RD, Jacquin-Joly E (2015) Advances in the identification and characterization of olfactory receptors in insects. Prog Mol Biol Transl Sci 130:55–80Google Scholar
  89. Moon SJ, Lee Y, Jiao Y, Montell C (2009) A Drosophila gustatory receptor essential for aversive taste and inhibiting male-to-male courtship. Curr Biol 19:1623–1627CrossRefPubMedPubMedCentralGoogle Scholar
  90. Nakagawa T, Vosshall LB (2009) Controversy and consensus: noncanonical signaling mechanisms in the insect olfactory system. Curr Opin Neurobiol 19:284–292CrossRefPubMedPubMedCentralGoogle Scholar
  91. Nakagawa T, Sakurai T, Nishioka T, Touhara K (2005) Insect sex-pheromone signals mediated by specific combinations of olfactory receptors. Science 307:1638–1642CrossRefGoogle Scholar
  92. Neuhaus EM, Gisselmann G, Zhang WY, Dooley R, Stortkuhl K, Hatt H (2005) Odorant receptor heterodimerization in the olfactory system of Drosophila melanogaster. Nat Neurosci 8:15–17CrossRefGoogle Scholar
  93. Nichols Z, Vogt RG (2008) The SNMP/CD36 gene family in Diptera, Hymenoptera and Coleoptera: Drosophila melanogaster, D. pseudoobscura, Anopheles gambiae, Aedes aegypti, Apis mellifera, and Tribolium castaneum. Insect Biochem Mol Biol 38:398–415CrossRefGoogle Scholar
  94. Ning C, Yang K, Xu M, Huang LQ, Wang CZ (2016) Functional validation of the carbon dioxide receptor in labial palps of Helicoverpa armigera moths. Insect Biochem Mol Biol 73:12–19CrossRefPubMedGoogle Scholar
  95. Nolte A, Funk NW, Mukunda L, Gawalek P, Werckenthin A, Hansson BS, Wicher D, Stengl M (2013) In situ tip-recordings found no evidence for an Orco-based ionotropic mechanism of pheromone-transduction in Manduca sexta. PLoS One 8:e62648CrossRefPubMedPubMedCentralGoogle Scholar
  96. Nolte A, Gawalek P, Koerte S, Wei H, Schumann R, Werckenthin A, Krieger J, Stengl M (2016) No evidence for ionotropic pheromone transduction in the hawkmoth Manduca sexta. PLoS One 11:e0166060CrossRefPubMedPubMedCentralGoogle Scholar
  97. Olivier V, Monsempes C, François MC, Poivet E, Jacquin-Joly E (2011) Candidate chemosensory ionotropic receptors in a Lepidoptera. Insect Mol Biol 20:189–199Google Scholar
  98. Omondi BA, Majeed S, Ignell R (2015) Functional development of carbon dioxide detection in the maxillary palp of Anopheles gambiae. J Exp Biol 218:2482–2488CrossRefPubMedPubMedCentralGoogle Scholar
  99. Pask GM, Jones PL, Rutzler M, Rinker DC, Zwiebel LJ (2011) Heteromeric anopheline odorant receptors exhibit distinct channel properties. PLoS One 6:e28774CrossRefPubMedPubMedCentralGoogle Scholar
  100. Patch HM, Velarde RA, Walden KK, Robertson HM (2009) A candidate pheromone receptor and two odorant receptors of the hawkmoth Manduca sexta. Chem Senses 34:305–316CrossRefPubMedGoogle Scholar
  101. Pelosi P, Zhou JJ, Ban LP, Calvello M (2006) Soluble proteins in insect chemical communication. Cell Mol Life Sci 63:1658–1676CrossRefPubMedGoogle Scholar
  102. Penalva-Arana DC, Lynch M, Robertson HM (2009) The chemoreceptor genes of the waterflea Daphnia pulex: many Grs but no Ors. BMC Evol Biol 9:79CrossRefPubMedPubMedCentralGoogle Scholar
  103. Pitts RJ, Fox AN, Zwiebel LJ (2004) A highly conserved candidate chemoreceptor expressed in both olfactory and gustatory tissues in the malaria vector Anopheles gambiae. Proc Natl Acad Sci U S A 101:5058–5063CrossRefPubMedPubMedCentralGoogle Scholar
  104. Pregitzer P, Greschista M, Breer H, Krieger J (2014) The sensory neurone membrane protein SNMP1 contributes to the sensitivity of a pheromone detection system. Insect Mol Biol 23:733–742CrossRefPubMedGoogle Scholar
  105. Qiao H, He X, Schymura D, ld L, Dani FR, Michelucci E, Caputo B, Torre AD, Iatrou K, Zhou JJ, Krieger J, Pelosi P (2010) Cooperative interactions between odorant-binding proteins of Anopheles gambiae. Cell Mol Life Sci 68:1799–1813CrossRefPubMedGoogle Scholar
  106. Ray A, van Naters WG, Shiraiwa T, Carlson JR (2007) Mechanisms of odor receptor gene choice in Drosophila. Neuron 53:353–369CrossRefPubMedPubMedCentralGoogle Scholar
  107. Robertson HM, Kent LB (2009) Evolution of the gene lineage encoding the carbon dioxide receptor in insects. J Insect Sci 9:19PubMedPubMedCentralGoogle Scholar
  108. Robertson HM, Warr CG, Carlson JR (2003) Molecular evolution of the insect chemoreceptor gene superfamily in Drosophila melanogaster. Proc Natl Acad Sci U S A 100:14537–14542CrossRefPubMedPubMedCentralGoogle Scholar
  109. Rodrigues TB, Moriyama EN, Wang H, Khajuria C, Siegfried BD (2016) Carbon dioxide receptor genes and their expression profile in Diabrotica virgifera. BMC Res Notes 9:18CrossRefPubMedPubMedCentralGoogle Scholar
  110. Rogers ME, Sun M, Lerner MR, Vogt RG (1997) Snmp-1, a novel membrane protein of olfactory neurons of the silk moth Antheraea polyphemus with homology to the CD36 family of membrane proteins. J Biol Chem 272:14792–14799CrossRefPubMedGoogle Scholar
  111. Rogers ME, Krieger J, Vogt RG (2001) Antennal SNMPs (sensory neuron membrane proteins) of Lepidoptera define a unique family of invertebrate CD36-like proteins. J Neurobiol 49:47–61CrossRefPubMedGoogle Scholar
  112. Rutzler M, Lu T, Zwiebel LJ (2006) Galpha encoding gene family of the malaria vector mosquito Anopheles gambiae: expression analysis and immunolocalization of AGalphaq and AGalphao in female antenna. J Comp Neurol 499:533–545CrossRefPubMedPubMedCentralGoogle Scholar
  113. Rytz R, Croset V, Benton R (2013) Ionotropic Receptors (IRs): chemosensory ionotropic glutamate receptors in Drosophila and beyond. Insect Biochem Mol Biol 43:888–897CrossRefPubMedGoogle Scholar
  114. Sakurai T, Nakagawa T, Mitsuno H, Mori H, Endo Y, Tanoue S, Yasukochi Y, Touhara K, Nishioka T (2004) Identification and functional characterization of a sex pheromone receptor in the silkmoth Bombyx mori. Proc Natl Acad Sci U S A 101:16653–16658CrossRefPubMedPubMedCentralGoogle Scholar
  115. Sato K, Pellegrino M, Nakagawa T, Nakagawa T, Vosshall LB, Touhara K (2008) Insect olfactory receptors are heteromeric ligand-gated ion channels. Nature 452:1002–1006CrossRefPubMedGoogle Scholar
  116. Schultze A, Pregitzer P, Walter MF, Woods DF, Marinotti O, Breer H, Krieger J (2013) The co-expression pattern of odorant binding proteins and olfactory receptors identify distinct trichoid sensilla on the antenna of the malaria mosquito Anopheles gambiae. PLoS One 8:e69412CrossRefPubMedPubMedCentralGoogle Scholar
  117. Schymura D, Forstner M, Schultze A, Krober T, Swevers L, Iatrou K, Krieger J (2010) Antennal expression pattern of two olfactory receptors and an odorant binding protein implicated in host odor detection by the malaria vector Anopheles gambiae. Int J Biol Sci 6:614–626CrossRefPubMedPubMedCentralGoogle Scholar
  118. Scott K, Brady R Jr, Cravchik A, Morozov P, Rzhetsky A, Zuker C, Axel R (2001) A chemosensory gene family encoding candidate gustatory and olfactory receptors in Drosophila. Cell 104:661–673CrossRefGoogle Scholar
  119. Shankar S, Chua JY, Tan KJ, Calvert ME, Weng R, Ng WC, Mori K, Yew JY (2015) The neuropeptide tachykinin is essential for pheromone detection in a gustatory neural circuit. Elife 4:e06914CrossRefPubMedPubMedCentralGoogle Scholar
  120. Silbering AF, Rytz R, Grosjean Y, Abuin L, Ramdya P, Jefferis GS, Benton R (2011) Complementary function and integrated wiring of the evolutionarily distinct Drosophila olfactory subsystems. J Neurosci 31:13357–13375CrossRefPubMedGoogle Scholar
  121. Slone J, Daniels J, Amrein H (2007) Sugar receptors in Drosophila. Curr Biol 17:1809–1816CrossRefPubMedPubMedCentralGoogle Scholar
  122. Smadja C, Shi P, Butlin RK, Robertson HM (2009) Large gene family expansions and adaptive evolution for odorant and gustatory receptors in the pea aphid, Acyrthosiphon pisum. Mol Biol Evol 26:2073–2086CrossRefPubMedGoogle Scholar
  123. Smart R, Kiely A, Beale M, Vargas E, Carraher C, Kralicek AV, Christie DL, Chen C, Newcomb RD, Warr CG (2008) Drosophila odorant receptors are novel seven transmembrane domain proteins that can signal independently of heterotrimeric G proteins. Insect Biochem Mol Biol 38:770–780CrossRefPubMedGoogle Scholar
  124. Sparks JT, Vinyard BT, Dickens JC (2013) Gustatory receptor expression in the labella and tarsi of Aedes aegypti. Insect Biochem Mol Biol 43:1161–1171CrossRefPubMedGoogle Scholar
  125. Steinwender B, Thrimawithana AH, Crowhurst RN, Newcomb RD (2015) Pheromone receptor evolution in the cryptic leafroller species, Ctenopseustis obliquana and C. herana. J Mol Evol 80:42–56CrossRefPubMedGoogle Scholar
  126. Steinwender B, Thrimawithana AH, Crowhurst R, Newcomb RD (2016) Odorant receptors of the New Zealand endemic leafroller moth species Planotortrix octo and P. excessana. PLoS One 11:e0152147Google Scholar
  127. Stengl M (1993) Intracellular-messenger-mediated cation channels in cultured olfactory receptor neurons. J Exp Biol 178:125–147PubMedGoogle Scholar
  128. Stengl M (1994) Inositol-trisphosphate-dependent calcium currents precede cation currents in insect olfactory receptor neurons in vitro. J Comp Physiol A 174:187–194CrossRefPubMedGoogle Scholar
  129. Stengl M (2010) Pheromone transduction in moths. Front Cell Neurosci 4:133CrossRefPubMedPubMedCentralGoogle Scholar
  130. Stengl M, Funk NW (2013) The role of the coreceptor Orco in insect olfactory transduction. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 199:897–909CrossRefPubMedGoogle Scholar
  131. Stengl M, Zufall F, Hatt H, Hildebrand JG (1992) Olfactory receptor neurons from antennae of developing male Manduca sexta respond to components of the species-specific sex pheromone in vitro. J Neurosci 12:2523–2531CrossRefPubMedGoogle Scholar
  132. Suh GS, Wong AM, Hergarden AC, Wang JW, Simon AF, Benzer S, Axel R, Anderson DJ (2004) A single population of olfactory sensory neurons mediates an innate avoidance behaviour in Drosophila. Nature 431:854–859Google Scholar
  133. Suh GS, Ben-Tabou de Leon S, Tanimoto H, Fiala A, Benzer S, Anderson DJ (2007) Light activation of an innate olfactory avoidance response in Drosophila. Curr Biol 17:905–908CrossRefPubMedGoogle Scholar
  134. Sun M, Liu Y, Walker WB, Liu C, Lin K, Gu S, Zhang Y, Zhou J, Wang G (2013) Identification and characterization of pheromone receptors and interplay between receptors and pheromone binding proteins in the diamondback moth, Plutella xyllostella. PLoS One 8:e62098CrossRefPubMedPubMedCentralGoogle Scholar
  135. Swarup S, Williams TI, Anholt RR (2011) Functional dissection of odorant binding protein genes in Drosophila melanogaster. Genes Brain Behav 10:648–657CrossRefPubMedPubMedCentralGoogle Scholar
  136. Talluri S, Bhatt A, Smith DP (1995) Identification of a Drosophila G protein alpha subunit (dGq alpha-3) expressed in chemosensory cells and central neurons. Proc Natl Acad Sci U S A 92:11475–11479CrossRefPubMedPubMedCentralGoogle Scholar
  137. Tanaka K, Uda Y, Ono Y, Nakagawa T, Suwa M, Yamaoka R, Touhara K (2009) Highly selective tuning of a silkworm olfactory receptor to a key mulberry leaf volatile. Curr Biol 19:881–890CrossRefPubMedGoogle Scholar
  138. Tatler B, O’Carroll DC, Laughlin SB (2000) Temperature and the temporal resolving power of fly photoreceptors. J Comp Physiol A Sens Neural Behav Physiol 186:399–407CrossRefGoogle Scholar
  139. Tauxe GM, MacWilliam D, Boyle SM, Guda T, Ray A (2013) Targeting a dual detector of skin and CO2 to modify mosquito host seeking. Cell 155:1365–1379CrossRefPubMedPubMedCentralGoogle Scholar
  140. Thorne N, Amrein H (2008) Atypical expression of Drosophila gustatory receptor genes in sensory and central neurons. J Comp Neurol 506:548–568CrossRefPubMedGoogle Scholar
  141. Toda H, Zhao X, Dickson BJ (2012) The Drosophila female aphrodisiac pheromone activates ppk23(+) sensory neurons to elicit male courtship behavior. Cell Rep 1:599–607CrossRefPubMedGoogle Scholar
  142. Touhara K, Vosshall LB (2009) Sensing odorants and pheromones with chemosensory receptors. Annu Rev Physiol 71:307–332CrossRefPubMedGoogle Scholar
  143. Tripathy SJ, Peters OJ, Staudacher EM, Kalwar FR, Hatfield MN, Daly KC (2010) Odors pulsed at wing beat frequencies are tracked by primary olfactory networks and enhance odor detection. Front Cell Neurosci 4:1PubMedPubMedCentralGoogle Scholar
  144. Tsitoura P, Andronopoulou E, Tsikou D, Agalou A, Papakonstantinou MP, Kotzia GA, Labropoulou V, Swevers L, Georgoussi Z, Iatrou K (2010) Expression and membrane topology of Anopheles gambiae odorant receptors in lepidopteran insect cells. PLoS One 5:e15428CrossRefPubMedPubMedCentralGoogle Scholar
  145. Vogt RG (2003) Biochemical diversity of odor detection: OBPs, ODEs and SNMPs. In: Blomquist G, Vogt RG (eds) Insect pheromone biochemistry and molecular biology-the biosynthesis and detection of pheromones and plant volatiles. Elsevier Academic Press, London/San Diego, pp 391–445CrossRefGoogle Scholar
  146. Vogt RG (2005) Molecular basis of pheromone detection in insects. In: Gilbert LI, Iatrou K, Gill S (eds) Comprehensive insect physiology, biochemistry, pharmacology and molecular biology, Endocrinology, vol 3. Elsevier, London, pp 753–804Google Scholar
  147. Vogt RG, Riddiford LM (1981) Pheromone binding and inactivation by moth antennae. Nature 293:161–163CrossRefGoogle Scholar
  148. Vogt RG, Miller NE, Litvack R, Fandino RA, Sparks J, Staples J, Friedman R, Dickens JC (2009) The insect SNMP gene family. Insect Biochem Mol Biol 39:448–456CrossRefPubMedGoogle Scholar
  149. Vosshall LB, Hansson BS (2011) A unified nomenclature system for the insect olfactory coreceptor. Chem Senses 36:497–498CrossRefPubMedGoogle Scholar
  150. Vosshall LB, Amrein H, Morozov PS, Rzhetsky A, Axel R (1999) A spatial map of olfactory receptor expression in the Drosophila antenna. Cell 96:725–736CrossRefGoogle Scholar
  151. Vosshall LB, Wong AM, Axel R (2000) An olfactory sensory map in the fly brain. Cell 102:147–159CrossRefPubMedGoogle Scholar
  152. Wang G, Carey AF, Carlson JR, Zwiebel LJ (2010) Molecular basis of odor coding in the malaria vector mosquito Anopheles gambiae. Proc Natl Acad Sci U S A 107:4418–4423CrossRefPubMedPubMedCentralGoogle Scholar
  153. Wang G, Vasquez GM, Schal C, Zwiebel LJ, Gould F (2011) Functional characterization of pheromone receptors in the tobacco budworm Heliothis virescens. Insect Mol Biol 20:125–133CrossRefPubMedGoogle Scholar
  154. Wanner KW, Anderson AR, Trowell SC, Theilmann DA, Robertson HM, Newcomb RD (2007) Female-biased expression of odourant receptor genes in the adult antennae of the silkworm, Bombyx mori. Insect Mol Biol 16:107–119CrossRefPubMedGoogle Scholar
  155. Watanabe K, Toba G, Koganezawa M, Yamamoto D (2011) Gr39a, a highly diversified gustatory receptor in Drosophila, has a role in sexual behavior. Behav Genet 41:746–753CrossRefPubMedGoogle Scholar
  156. Wicher D (2010) Design principles of sensory receptors. Front Cell Neurosci 4:25PubMedPubMedCentralGoogle Scholar
  157. Wicher D (2015) Olfactory signaling in insects. Prog Mol Biol Transl Sci 130:37–54CrossRefPubMedGoogle Scholar
  158. Wicher D, Schafer R, Bauernfeind R, Stensmyr MC, Heller R, Heinemann SH, Hansson BS (2008) Drosophila odorant receptors are both ligand-gated and cyclic-nucleotide-activated cation channels. Nature 452:1007–1011CrossRefGoogle Scholar
  159. Xu W, Anderson A (2015) Carbon dioxide receptor genes in cotton bollworm Helicoverpa armigera. Naturwissenschaften 102:11CrossRefPubMedGoogle Scholar
  160. Yang Y, Krieger J, Zhang L, Breer H (2012) The olfactory co-receptor Orco from the migratory locust (Locusta migratoria) and the desert locust (Schistocerca gregaria): identification and expression pattern. Int J Biol Sci 8:159–170CrossRefPubMedGoogle Scholar
  161. Yao CA, Ignell R, Carlson JR (2005) Chemosensory coding by neurons in the coeloconic sensilla of the Drosophila antenna. J Neurosci 25:8359–8367CrossRefPubMedGoogle Scholar
  162. Yew JY, Chung H (2015) Insect pheromones: an overview of function, form, and discovery. Prog Lipid Res 59:88–105CrossRefPubMedGoogle Scholar
  163. Zhang DD, Wang HL, Schultze A, Fross H, Francke W, Krieger J, Löfstedt C (2016) Receptor for detection of a Type II sex pheromone in the winter moth Operophtera brumata. Sci Rep 6:18576CrossRefPubMedPubMedCentralGoogle Scholar
  164. Zhang J, Liu Y, Walker WB, Dong SL, Wang GR (2015a) Identification and localization of two sensory neuron membrane proteins from Spodoptera litura (Lepidoptera: Noctuidae). Insect Sci 22:399–408CrossRefPubMedGoogle Scholar
  165. Zhang J, Walker WB, Wang G (2015b) Pheromone reception in moths: from molecules to behaviors. Prog Mol Biol Transl Sci 130:109–128CrossRefPubMedGoogle Scholar
  166. Zhou X, Slone JD, Rokas A, Berger SL, Liebig J, Ray A, Reinberg D, Zwiebel LJ (2012) Phylogenetic and transcriptomic analysis of chemosensory receptors in a pair of divergent ant species reveals sex-specific signatures of odor coding. PLoS Genet 8:e1002930CrossRefPubMedPubMedCentralGoogle Scholar
  167. Ziegelberger G, Vandenberg MJ, Kaissling KE, Klumpp S, Schultz JE (1990) Cyclic-GMP levels and guanylate-cyclase activity in pheromone-sensitive antennae of the silkmoths Antheraea polyphemus and Bombyx mori. J Neurosci 10:1217–1225CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Heinz Breer
    • 1
    Email author
  • Jörg Fleischer
    • 2
  • Pablo Pregitzer
    • 1
  • Jürgen Krieger
    • 2
  1. 1.Institute of PhysiologyUniversity HohenheimStuttgartGermany
  2. 2.Department of Animal Physiology, Institute of Biology/ZoologyMartin Luther University Halle-WittenbergHalle (Saale)Germany

Personalised recommendations