Advertisement

Pheromone, Natural Odor and Odorant Reception Suppressing Agent (ORSA) for Insect Control

  • Guoxia Liu
  • Philippe Arnaud
  • Bernard Offmann
  • Jean-François PicimbonEmail author
Chapter

Abstract

Odorant-binding proteins (OBPs) are small “bowl-like” globular proteins, highly abundant in the antennae of most insect species. These proteins are believed to mediate reception of odor molecules at the periphery of sensory receptor neurons. Therefore, they may represent crucial targets for becoming new methods of insect pest control by directly interfering with the olfactory acuity of the insect. The current better understanding of molecular mechanisms underlying odor detection and the knowledge about the functional binding sites of OBPs and many other families of binding proteins in various insect species is elucidated here. Such information forms the basis for the synthesis of new inhibitor olfactory compounds (Odorant Reception-Suppressing Agents, ORSAs) to interact specifically with the groups of insect pests.

Notes

Ackowledgements

Heartfelt thanks to Prof. Em. Karl-Ernst Kaissling (Max Planck Institute of Seewiesen, Germany) for inspiration, discussion and most helpful comments on early versions of this manuscript.

References

  1. Abraham D, Löfstedt C, Picimbon JF (2005) Molecular evolution and characterization of pheromone binding protein genes in Agrotis moths. Insect Biochem Mol Biol 35:1100–1111PubMedGoogle Scholar
  2. Abrell L, Guerenstein PG, Mechaber WL, Stange G, Christensen TA, Nakanishi K, Hildebrand JH (2005) Effect of elevated atmospheric CO2 on oviposition behaviour in Manduca sexta moths. Glob Chang Biol 11:1272–1282Google Scholar
  3. Ageep TB, Damiens D, Alsharif B, Ahmed A, Salih EHO, Ahmed FTA, Diabaté A, Lees RS, Gilles JRL, El Sayed BB (2014) Participation of irradiated Anopheles arabiensis males in swarms following field release in Sudan. Malar J 13:484CrossRefPubMedPubMedCentralGoogle Scholar
  4. Aukema BH, Dahlsten DL, Raffa KF (2000) Improved populations monitoring of bark beetles and predators by incorporating disparate behavioural responses to semiochemicals. Environ Entomol 29:618–629CrossRefGoogle Scholar
  5. Baird E, Kreiss E, Wcislo W, Warrant E, Dacke M (2011) Nocturnal insects use optic flow for flight control. Biol Lett 7:499–501CrossRefPubMedPubMedCentralGoogle Scholar
  6. Ban LP, Napolitano E, Serra A, Zhou XH, Iovinella I, Pelosi P (2013) Identification of pheromone-like compounds in male reproductive organs of the oriental locust Locusta migratoria. Biochem Biophys Res Commun 437:620–624CrossRefPubMedGoogle Scholar
  7. Beale MH, Birkett MA, Bruce TJA, Chamberlain K, Field LA, Huttly AK, Martin JL, Parker R, Phillips AL, Pickett JA, Prosser IM, Shewry PR, Smart LE, Wadhams LJ, Woodcock CM, Zhang Y (2006) Aphid alarm pheromone produced by transgenic plants affect aphid and parasitoid behavior. Proc Natl Acad Sci U S A 103:10509–10513CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bidau CJ (2018) Doomsday for insects? The alarming decline of insect populations around the world. J Insect Biodivers 6:1–5CrossRefGoogle Scholar
  9. Birkett MA, Pickett JA (2003) Aphid sex pheromones: from discovery to commercial production. Phytochemistry 62:651–656CrossRefPubMedGoogle Scholar
  10. Blomquist GJ, Figueoa-Teran R, Aw M, Song M, Gorzalski A, Abbott NL, Chang E, Tittiger C (2010) Pheromone production in bark beetles. Insect Biochem Mol Biol 40:699–712CrossRefPubMedGoogle Scholar
  11. Bocquet N, de Carvalho LP, Cartaud J, Neyton J, Le Poupon C, Taly A, Grutter T, Changeux JP, Corringer PJ (2007) A prokaryotic proton-gated ion channel from the nicotinic acetylcholine receptor family. Nature 445:116–119CrossRefPubMedGoogle Scholar
  12. Boeckh J (1962) Elektrophysiologische Untersuchungen an einzelnen Geruchsrezeptoren auf den Antennen des Totengraebers (Necrophorus, Coleoptera). Z Vergl Physiol 46:212–248CrossRefGoogle Scholar
  13. Bøhn T, Lövei GL (2017) Complex outcomes from insect and weed control with transgenic plants: ecological surprises? Front Environ Sci 5:60 Google Scholar
  14. Boncheva R, Dukiandjiev S, Minkov I, de Maagd RA, Naimov S (2006) Activity of Bacillus thuringiensis δ-endotoxins against codling moth (Cydia pomonella L.) larvae. J Inv Pathol 92:96–99CrossRefGoogle Scholar
  15. Bowers WS, Nishino C, Montgomery ME, Nault LR (1977) Structure-activity relationships of analogs of the aphid alarm pheromone, (E)-b-farnesene. J Insect Physiol 23:697–701Google Scholar
  16. Bradberry SM, Cage SA, Proudfoot AT, Vale JA (2005) Poisoning due to pyrethroids. Toxicol Rev 24:93–106CrossRefPubMedGoogle Scholar
  17. Brown JK, Frohlich DR, Rosell RC (1995) The sweet potato or silverleaf whiteflies: biotype of Bemisia tabaci or a species complex. Annu Rev Entomol 40:511–534CrossRefGoogle Scholar
  18. Butenandt A (1963) Bombykol, the sex attractive substance of the silkworm moth Bombyx mori. Endocrinology 27:9Google Scholar
  19. Butenandt A, Beckmann R, Stamm D, Hecker E (1959) Über den Sexuallockstoff des Seidenspinners Bombyx mori. Reindarstellung Konstitution Z Naturforsch 14b:283–284Google Scholar
  20. Byers J (1991) Pheromone and chemical ecology of locusts. Biol Rev 66:347–378CrossRefGoogle Scholar
  21. Carroll FA, Boldridge DW, Lee JT, Martin RR, Turner MJ, Venable TL (1980) Synthesis and field tests of analogues of the housefly pheromone (Z)-9-tricosene. J Agric Food Chem 28:343–346Google Scholar
  22. Ceballos G, Ehrlich PR, Dirzo R (2017) Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proc Natl Acad Sci U S A 114:E6089–E6096CrossRefPubMedPubMedCentralGoogle Scholar
  23. Corringer PJ, Poitevin F, Prevost MS, Sauguet L, Delarue M, Changeux JP (2012) Structure and pharmacology of pentametic receptor channels: from bacteria to brain. Structure 20:941–956CrossRefPubMedGoogle Scholar
  24. Culler LE, Ayres MP, Virginia RA (2015) In a warmer Arctic, mosquitoes avoid increased mortality from predators by growing faster. Proc R Soc B 282:20151549CrossRefPubMedGoogle Scholar
  25. Dahlsten DL, Six DL, Erbilgin N, Raffa KF, Lawson AB, Rowney DL (2003) Attraction of Ips pini (Coleoptera: Scolytidae) and its predators to various enantiomeric ratios of Ipsdienol and Lanierone in California: implications for the augmentation and conservation of natural enemies. Environ Entomol 32:1115–1122CrossRefGoogle Scholar
  26. Darbro J, Millar JG, McElfresh JS, Mullens BA (2005) Survey of Muscalure [(Z)-9-tricosene] on house flies (Diptera: Muscidae) from field populations in California. Environ Entomol 34:1418–1425CrossRefGoogle Scholar
  27. Dawson GW, Pickett JA, Smiley DWM (1996) The aphid sex pheromone cyclopentanoids: synthesis in the elucidation of structure and biosynthetic pathways. Bioorg Med Chem 4:351–361CrossRefPubMedGoogle Scholar
  28. de Brito Sanchez MG, Kaissling KE (2005a) The antennal benzoic- acid receptor cell of the female silk moth Bombyx mori L.: structure-activity relationship studies with halogen substitutes. J Comp Physiol A 191:189–196CrossRefGoogle Scholar
  29. de Brito Sanchez MG, Kaissling KE (2005b) Inhibitory and excitatory effects of iodobenzene on the antennal benzoic acid receptor cells of the female silk moth Bombyx mori L. Chem Senses 30:1–8CrossRefGoogle Scholar
  30. DeGennaro M (2015) The mysterious multi-modal repellency of DEET. Fly (Austin) 9:45–51CrossRefGoogle Scholar
  31. Degraaf M (2016) Attack of the cicadas! Mother captures bug-swarming horror in Ohio as billions of the humming insects descend on the Midwest. MailOnline News and Associated Press, 16 June 2016Google Scholar
  32. Deisig N, Kropf J, Vitecek S, Pevergne D, Rouyar A, Sandoz JC, Lucas P, Gadenne C, Anton S, Barrozo R (2012) Differential interactions of sex pheromone and plant odour in the olfactory pathway of a male moth. PLoS One 7:e33159CrossRefPubMedPubMedCentralGoogle Scholar
  33. Di Luccio E, Ishida Y, Leal WS, Wilson DK (2013) Crystallographic observation of pH-induced conformational changes in the Amyelois transitella pheromone-binding protein AtraPBP1. PLoS One 8:e53840CrossRefPubMedPubMedCentralGoogle Scholar
  34. Diabaté A, Yaro AS, Dao A, Diallo M, Huestis DL, Lehmann T (2011) Spatial distribution and male mating success of Anopheles gambiae swarms. BMC Evol Biol 11:184CrossRefPubMedPubMedCentralGoogle Scholar
  35. Dillon RJ, Vennard CT, Charnley AK (2000) Pheromones: exploitation of gut bacteria in the locust. Nature 403:851CrossRefPubMedGoogle Scholar
  36. Ditzen M, Pellegrino M, Vosshall LB (2008) Insect odorant receptors are molecular targets of the insect repellent DEET. Science 319:1838–1842CrossRefPubMedGoogle Scholar
  37. Downes JA (1969) The swarming and mating flight of Diptera. Annu Rev Entomol 14:271–298CrossRefGoogle Scholar
  38. Du G, Prestwich GD (1995) Protein structure encodes the ligand binding specificity in pheromone binding proteins. Biochemistry 34:8726–8732CrossRefGoogle Scholar
  39. Du Y, Feng B, Li H, Liu C, Zeng L, Pan L, Yu Q (2015) Field evaluation of Agrotis ipsilon (Lepidoptera: Noctuidae) pheromone blends and their application to monitoring moth populations in China. Environ Entomol 44:724–733CrossRefPubMedGoogle Scholar
  40. Duyck PF, David P, Quilici S (2006a) Climatic niche partitioning following successive invasions by fruit flies in La Réunion. J Anim Ecol 75:518–526CrossRefPubMedGoogle Scholar
  41. Duyck PF, David P, Junod G, Gutleben C, Dupont R, Quilici S (2006b) Importance of competition mechanisms in successive invasion by polyphagous tephritids in La Réunion. Ecology 87:1770–1780CrossRefPubMedGoogle Scholar
  42. Emburry-Dennis T (2017) Scientists warn of ‘ecological Armageddon’ after study shows flying insect numbers plummeting 75%. http://www.independent.co.uk/news/science/flying-insects-numbers-drop-ecological-armageddon-75-per-cent-plummet-a8008406.html
  43. Feld L, Hjelmsø MH, Nielsen MS, Jacobsen AD, Rønn R, Ekelund F, Krogh PH, Strobel BW, Jacobsen CS (2015) Pesticide side effects in an agricultural soil ecosystem as measured by amoA expression quantification and bacterial diversity changes. PLoS One 10:e0126080CrossRefPubMedPubMedCentralGoogle Scholar
  44. Feng L, Prestwich GD (1997) Expression and characterization of a lepidopteran general odorant binding protein. Insect Biochem Mol Biol 27:405–412CrossRefPubMedGoogle Scholar
  45. Ferenz HJ, Seidelmann K (2003) Pheromones in relation to aggregation and reproduction in desert locusts. Physiol Entomol 28:11–18CrossRefGoogle Scholar
  46. Ferenz HJ, Luber K, Wieting J (1994) Pheromones as a means of controlling migratory locusts. In: Krall S, Wilps H (eds) New trends in locust control, Schriftenreihe no 245. GTZ, Eschborn, pp 81–89.Google Scholar
  47. Ferveur JF (2010) Drosophila female courtship and mating behaviors: sensory signals, genes, neural structures and evolution. Curr Opin Neurobiol 20:764–769CrossRefPubMedGoogle Scholar
  48. Fischer M, Corringer PJ, Schott K, Bacher A, Changeux JP (2001) A method for soluble overexpression of the α7 nicotinic acetylcholine receptor extracellular domain. Proc Natl Acad Sci U S A 98:3567–3570CrossRefPubMedPubMedCentralGoogle Scholar
  49. Fitzpatrick SM, McNeil JN (1988) Male scent in lepidopteran communication: the role of of male pheromone in mating Pseudaletia unipuncta (haw.) (Lepidoptera: Noctuidae). Mem Entomol Soc Can 120:131–151CrossRefGoogle Scholar
  50. Forêt S, Maleszka R (2006) Function and evolution of a gene family encoding odorant-binding proteins in a social insect, the honey bee (Apis mellifera). Genome Res 16:1404–1413CrossRefPubMedPubMedCentralGoogle Scholar
  51. Gadenne C, Picimbon JF, Bécard JM, Lalanne-Cassou B, Renou M (1997) Development and pheromone communication systems in hybrids of Agrotis ipsilon and Agrotis segetum (Lepidoptera, Noctuidae). J Chem Ecol 23:191–209CrossRefGoogle Scholar
  52. Galvan TL, Burkness EC, Koch RL, Hutchison WD (2009) Multicolored Asia lady beetle (Coleoptera: Coccinellidae) activity and wine grape phenology: implications for pest management. Environ Entomol 38:1563–1574CrossRefPubMedGoogle Scholar
  53. Gaudry Q, Nagel KI, Wilson RI (2012) Smelling on the fly: sensory cues and strategies for olfactory navigation in Drosophila. Curr Opin Neurobiol 22:216–222CrossRefPubMedPubMedCentralGoogle Scholar
  54. Gemeno C, Haynes KF (1998) Chemical and behavioral evidence for a third pheromone component in a North American population of the black cutworm moth, Agrotis ipsilon. J Chem Ecol 24:999–1011CrossRefGoogle Scholar
  55. Gibson NHE (1945) On the mating swarm of certain chironomidae (Diptera). Trans R Entomol Soc Lond 95:263–294CrossRefGoogle Scholar
  56. Gitau CW, Bashford R, Carnegie AJ, Gurr GM (2013) A review of semiochemicals associated with bark beetle (Coleoptera: Curculionidae: Scolytinae) pests of coniferous trees: a focus on beetle interactions with other pests and their associates. Forest Ecol Manag 297:1–14CrossRefGoogle Scholar
  57. Grant AJ, O’Connell RJ (2007) Age-related changes in female mosquito carbon dioxide detection. J Med Entomol 44:617–623CrossRefPubMedGoogle Scholar
  58. Grieco JP, Achee NL, Chareonviriyaphap T, Suwonkerd W, Chauhan K, Sardelis MR, Roberts DR (2007) A new classification system for the actions of IRS chemicals traditionally used for malaria control. PLoS One 2:e716CrossRefPubMedPubMedCentralGoogle Scholar
  59. Guerestein PG, Hildebrand JH (2008) Roles and effects of environmental carbon dioxide in insect life. Annu Rev Entomol 53:161–178CrossRefGoogle Scholar
  60. Hallem EA, Ho MG, Carlson JR (2004) The molecular basis of odor coding in the Drosophila antenna. Cell 117:965–979CrossRefGoogle Scholar
  61. Hallmann CA, Sorg M, Jongejans E, Siepel H, Hofland N, Schwan H, Stenmans W, Müller A, Sumser H, Hörren T, Goulson D, de Kroon H (2017) More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS One 12:e0185809CrossRefPubMedPubMedCentralGoogle Scholar
  62. Hardie J, Holyoak M, Nicholas J, Nottingham SF, Pickett JA, Wadhams LJ, Woodcock CM (1990) Aphid sex pheromone components: age-dependent release by females and species-specific male response. Chemoecology 1:63–68CrossRefGoogle Scholar
  63. Helinski EH, Hassan MM, El-Motasim WM, Malcolm CA, Knols BGJ, El-Sayed B (2008) Towards a sterile insect technique field release of Anopheles arabiensis mosquitoes in Sudan: irradiation, transportation, and field cage experimentation. Malar J 7:65CrossRefPubMedPubMedCentralGoogle Scholar
  64. Hill AS, Rings RW, Swier SR, Roelofs WS (1979) Sex pheromone of the black cutworm moth, Agrotis ipsilon. J Chem Ecol 5:439–457CrossRefGoogle Scholar
  65. Hölldobler B, Maschwitz U (1965) Der Hochzeitsschwarm der Rossameise Camponotus herculeanus L. (Hym. Formicidae). Z Vergl Physiol 50:551–568CrossRefGoogle Scholar
  66. Honson N, Johnson MA, Oliver JE, Prestwich GD, Plettner E (2003) Structure-activity studies with pheromone-binding proteins of the gypsy moth, Lymantria dispar. Chem Senses 28:479–489CrossRefPubMedGoogle Scholar
  67. Horst R, Damberger F, Luginbühl P, Güntert P, Peng G, Nikonova L, Leal WS, Wuthrich K (2001) NMR structure reveals intramolecular regulation mechanism for pheromone binding and release. Proc Natl Acad Sci U S A 25:14374–14379CrossRefGoogle Scholar
  68. Houck LD (2009) Pheromone communication in amphibians and reptiles. Annu Rev Physiol 71:161–176CrossRefPubMedGoogle Scholar
  69. Huang Y, Magori K, Lloyd AL, Gould F (2007) Introducing transgenes into insect populations using combined gene-drive strategies: modeling and analysis. Insect Biochem Mol Biol 37:1054–1063CrossRefPubMedPubMedCentralGoogle Scholar
  70. Imhoof M (2012) More than honey. Documentary from the producers of WE FEED THE WORLD, Switzerland, 95 minutesGoogle Scholar
  71. Inceoglu AB, Kamita SG, Hinton AC, Huang Q, Severson TF, Kang KD, Hammock BD (2001) Recombinant baculoviruses for insect control. Pest Manag Sci 57:981–987CrossRefPubMedGoogle Scholar
  72. Jallow MFA, Cunningham JP, Zalucki MP (2004) Intra-specific variation for host plant use in Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae): implications for management. Crop Prot 23:955–964CrossRefGoogle Scholar
  73. Jansen S, Zidek L, Löfstedt C, Picimbon JF, Sklenar V (2006) 1H, 13C and 15N resonance assignment of Bombyx mori chemosensory protein 1 (BmorCSP1). J Biomol NMR 1:47CrossRefGoogle Scholar
  74. Jansen S, Chmelik J, Zidek L, Padrta P, Novak P, Zdrahal Z, Picimbon JF, Löfstedt C, Sklenar V (2007) Structure of Bombyx mori chemosensory protein 1 in solution. Arch Insect Biochem Physiol 66:135–145CrossRefPubMedGoogle Scholar
  75. Johnston I (2017) Humans are ushering in the sixth mass extinction of life on Earth, scientists warn. http://www.independent.co.uk/environment/mass-extinction-humans-causing-earth-deaths-end-times-warning-a7765856.html
  76. Kaissling KE (1980) Action of chemicals, including (+) trans Permethrin and DDT, on insect olfactory receptors. In: Insect neurobiology and pesticide action (Neurotox 79). Soc Chem Ind, London, pp 351–358Google Scholar
  77. Kaissling KE (2009) Olfactory perireceptor and receptor events in moths: a kinetic model revised. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 195:895–922Google Scholar
  78. Kaissling KE (2014) Pheromone reception in insects (the example of silk moths). In: Mucignat-Caretta C (ed) Neurobiology of chemical communication. CRC Press, Taylor & Francis, Boca Raton, pp 99–146CrossRefGoogle Scholar
  79. Kaissling KE, Meng LZ, Bestmann HJ (1989) Responses of bombykol receptor cells to (Z,E)-4,6-hexadecadiene and linalool. J Comp Physiol A 165:147–154CrossRefGoogle Scholar
  80. Karunker I, Benting J, Lueke B, Ponge T, Nauen R, Roditakis E, Vontas J, Gorman K, Denholm I, Morin S (2008) Over-expression of cytochrome P450 CYP6CM1 is associated with high resistance to imidacloprid in the B and Q biotypes of Bemisia tabaci (Hemiptera: Aleyrodidae). Insect Biochem Mol Biol 38:634–644CrossRefPubMedGoogle Scholar
  81. Kramer E (1992) Attractivity of pheromone surpassed by time-patterned application of two nonpheromone compounds. J Insect Behav 5:83–97CrossRefGoogle Scholar
  82. Kruse SW, Zhao R, Smith DP, Jones DN (2003) Structure of a specific alcohol-binding site defined by the odorant binding protein LUSH from Drosophila melanogaster. Nat Struct Biol 10:694–700CrossRefPubMedPubMedCentralGoogle Scholar
  83. Labandeira CC, Sepkoski JJ Jr (1993) Insect diversity in the fossil record. Science 261:310–315CrossRefPubMedGoogle Scholar
  84. La-France D, Shani A, Margalit J (1989) Biological activity of synthetic hydrocarbon mixtures of cuticular components of the female housefly (Musca domestica L.). J Chem Ecol 15:1475–1490CrossRefPubMedGoogle Scholar
  85. Lanter GN (1970) Sex pheromone: abolition of specificity in hybrid bark beetles. Science 169:71–72CrossRefGoogle Scholar
  86. Lartigue A, Campanacci V, Roussel A, Larsson AM, Jones TA, Tegoni M, Cambillau C (2002) X-ray structure and ligand binding study of a moth chemosensory protein. J Biol Chem 277:32094–32098CrossRefPubMedGoogle Scholar
  87. Lartigue A, Gruez S, Spinelli S, Rivière S, Brossut R, Tegoni M, Cambillau C (2003) The crystal structure of a cockroach pheromone-binding protein suggests a new ligand binding and release mechanism. J Biol Chem 278:30213–30218CrossRefPubMedGoogle Scholar
  88. Lartigue A, Gruez A, Briand L, Blon F, Bezirard V, Walsh M, Pernollet JC, Tegoni M, Cambillau C (2004) Sulfur single-wavelength anomalous diffraction crystal structure of a pheromone-binding protein from the honey bee Apis mellifera L. J Biol Chem 279:4459–4464CrossRefPubMedGoogle Scholar
  89. Laue M, Steinbrecht RA, Ziegelberger G (1994) Immunocytochemical localization of General Odorant-Binding Protein in olfactory sensilla of the silkmoth Antheraea polyphemus. Naturwissenschaften 81:178–180Google Scholar
  90. Laughlin JD, Ha TS, Jones DN, Smith DP (2008) Activation of pheromone-sensitive neurons is mediated by conformational activation of pheromone-binding protein. Cell 133:1255–1265CrossRefPubMedPubMedCentralGoogle Scholar
  91. Lautenschlager C, Leal WS, Clardy J (2005) Coil-to-helix transition and ligand release of Bombyx mori pheromone-binding protein. Biochem Biophys Res Commun 335:1044–1050CrossRefPubMedGoogle Scholar
  92. Leite NR, Krogh R, Xu W, Ishida Y, Lulek J, Leal WS, Oliva G (2009) Structure of an odorant-binding protein from the mosquito Aedes aegypti suggests a binding pocket covered by a pH-sensitive “lid”. PLoS One 4:e8006Google Scholar
  93. Leal WS (1998) Chemical ecology of phytophageous scarab beetles. Annu Rev Entomol 43:39–61CrossRefPubMedGoogle Scholar
  94. Leal WS (2003) Proteins that make sense. In: Blomquist RG, Vogt RG (eds) Insect pheromone biochemistry and molecular biology-the biosynthesis and detection of pheromones and plant volatiles. SanDiego/London, pp 446–476Google Scholar
  95. Leal WS (2014) The enigmatic reception of DEET-the gold standard of insect repellents. Curr Opin Insect Sci 6:93–98CrossRefPubMedPubMedCentralGoogle Scholar
  96. Leal WS, Matsuyama S, Kuwahara Y, Wakamura S (1992) An amino acid derivative as the sex pheromone of a scarab beetle. Naturwissenschaften 79:184–185CrossRefGoogle Scholar
  97. Leal WS, Zarbin PH, Wojtasek H, Ferreira JT (1999) Biosynthesis of scarab beetle pheromones. Eur J Biochem 259:175–180Google Scholar
  98. Leal WS, Chen AM, Ishida Y, Chiang VP, Erickson ML, Morgan TI, Tsuruda JM (2005) Kinetics and molecular properties of pheromone binding and release. Proc Natl Acad Sci U S A 102(15):5386–5391Google Scholar
  99. Lee Y, Kim SH, Montell C (2010) Avoiding DEET through insect gustatory receptors. Neuron 67:555–561CrossRefPubMedPubMedCentralGoogle Scholar
  100. Lees RS, Gilles JRL, Hendrichs J, Vreysen MJB, Bourtzis K (2015) Back to the future: the sterile insect technique against mosquito disease vectors. Curr Opin Insect Sci 10:156–162CrossRefPubMedGoogle Scholar
  101. Legeay S, Clere N, Hilairet G, Do QT, Bernard P, Quignard JF, Apaire-Marchais V, Lapied B, Faure S (2016) The insect repellent N,N-diethyl-m-toluamide (DEET) induces angiogenesis via allosteric modulation of the M3 muscarinic receptor in endothelial cells. Sci Rep 6:28546CrossRefPubMedPubMedCentralGoogle Scholar
  102. Lescop E, Briand L, Pernollet JC, Guittet E (2009) Structural basis of the broad specificity of a general odorant-binding protein from honeybee. Biochemistry 48:2431–2441CrossRefGoogle Scholar
  103. Liu GX, Picimbon JF (2017) Bacterial origin of chemosensory odor-binding proteins. Gene Transl Bioinform 3:e1548Google Scholar
  104. Liu GX, Xuan N, Chu D, Xie HY, Fan ZX, Bi YP, Picimbon JF, Qin YC, Zhong ST, Li YF, Gao ZL, Pan WL, Wang GY, Rajashekar B (2014) Biotype expression and insecticide response of Bemisia tabaci chemosensory protein-1. Arch Insect Biochem Physiol 85:137–151CrossRefPubMedGoogle Scholar
  105. Liu GX, Ma HM, Xie HY, Xuan N, Picimbon JF (2016a) Sequence variation of Bemisia tabaci chemosensory protein 2 in cryptic species B and Q: new DNA markers for whitefly recognition. Gene 576:284–291CrossRefPubMedGoogle Scholar
  106. Liu GX, Ma HM, Xie YN, Xuan N, Xia G, Fan ZX, Rajashekar B, Arnaud P, Offmann B, Picimbon JF (2016b) Biotype characterization, developmental profiling, insecticide response and binding property of Bemisia tabaci chemosensory proteins: role of CSP in insect defense. PLoS One 11:e0154706CrossRefPubMedPubMedCentralGoogle Scholar
  107. Liu GX, Arnaud P, Offmann B, Picimbon JF (2017) Genotyping and bio-sensing chemosensory proteins in insects. Sensors 17:1801CrossRefGoogle Scholar
  108. Liu SS, De Barro PJ, Xu J, Luan JB, Zang LS, Ruan YM, Wan FH (2007) Asymmetric mating interactions drive widespread invasion and displacement in a whitefly. Science 318:1769–1772CrossRefPubMedGoogle Scholar
  109. Marceau L, Dohet LA, Grégoire JC (2016) Fallen trees’ last stand against bark beetles. Forest Ecol Manag 359:44–50CrossRefGoogle Scholar
  110. Martinac B, Saimi Y, Kung C (2008) Ion channels in microbes. Physiol Rev 88:1449–1490CrossRefPubMedPubMedCentralGoogle Scholar
  111. Martinez A, Kolvek SJ, Yip CLT, Hopke J, Brown KA, McNeil IA, Osburne MS (2004) Genetically modified bacterial strains and novel bacterial artificial chromosome shuttle vectors for constructing environmental libraries and detecting heterologous natural products in multiple expression hosts. Appl Environ Microbiol 70:2452–2463CrossRefPubMedPubMedCentralGoogle Scholar
  112. Mason RT, Fales HM, Jones TH, Pannell LK, Chinn JW, Crews D (1989) Sex pheromones in snakes. Science 245:290–293CrossRefPubMedGoogle Scholar
  113. McKenzie SK, Oxley PR, Kronauer DJC (2014) Comparative genomics and transcriptomics in ants provide new insights into the evolution and function of odorant binding and chemosensory proteins. BMC Genomics 15:718CrossRefPubMedPubMedCentralGoogle Scholar
  114. McLean JA, Morgan B, Sweeney JD, Weiler L (1989) Behavior and survival of western spruce budworm, Choristoneura occidentalis Freeman, exposed to an ω-fluorinated pheromone analogue. J Chem Ecol 15:91–103CrossRefPubMedGoogle Scholar
  115. Meurisse N, Couillien D, Grégoire JC (2008) Kairomone traps: a tool for monitoring the invasive spruce bark beetle Dendroctonus micans (Coleoptera: Scolytinae) and its specific predator, Rhizophagus grandis (Coleoptera: Monotomidae). J Appl Ecol 45:537–548CrossRefGoogle Scholar
  116. Miller DR, Asaro C, Berisford CW (2005) Attraction of Southern pine engravers and associated bark beetles (Coleoptera: Scolytidae) to Ipsenol, Ipsdienol, and Lanierone in Southeastern United States. J Econ Entomol 98:2058–2066CrossRefPubMedGoogle Scholar
  117. Miller DR, Asaro C, Crowe CM, Duerr DA (2011) Bark beetle pheromones and pine volatiles: attractant kairomone lure blend for longhorn beetles (Cerambycidae) in pine stands of the Southeastern United States. J Econ Entomol 104:1245–1257CrossRefPubMedGoogle Scholar
  118. Mohanty S, Zubkov S, Gronenborg AM (2002) The solution NMR structure of Antheraea polyphemus PBP provides new insight into pheromone recognition by pheromone binding proteins. J Mol Biol 337:443–451CrossRefGoogle Scholar
  119. Montooth KL, Gibbs AG (2003) Cuticular pheromones and water balance in the house fly, Musca domestica. Comp Biochem Physiol A Mol Int Physiol 135:457–465CrossRefGoogle Scholar
  120. Moyroud E, Wenzel T, Middleton R, Rudall PJ, Banks H, Reed A, Mellers G, Killoran P, Westwood M, Steiner U, Vignolini S, Glover BJ (2017) Disorder in convergent floral nanostructures enhances signalling to bees. Nature 50:469CrossRefGoogle Scholar
  121. Murphy EJ, Booth JC, Davrazou F, Port AM, Jones DN (2013) Interactions of Anopheles gambiae odorant-binding proteins with a human-derived repellent: implications for the mode of action of n,n-diethyl-3-methylbenzamide (DEET). J Biol Chem 288:4475–4485CrossRefPubMedGoogle Scholar
  122. Najar-Rodriguez AJ, Galizia GC, Stierle J, Dorn S (2012) Behavioral and neurophysiological responses of an insect to changing ratios of constituents in host plant-derived volatile mixtures. J Exp Biol 213:3388–3397CrossRefGoogle Scholar
  123. Nojima S, Robbins PS, Salsbury GA, Morris BD, Roelofs WL, Villani MG (2003) L-leucine methyl ester: the female-produced sex pheromone of the scarab beetle, Phyllophaga lanceolata. J Chem Ecol 29:2439–2446CrossRefPubMedGoogle Scholar
  124. Nolte DJ, Eggers SH, May IR (1973) A locust pheromone: locustol. J Insect Physiol 19:1547–1554CrossRefGoogle Scholar
  125. Omondi BA, Majeed S, Ignell R (2015) Functional development of carbon dioxide detection in the maxillary palp of Anopheles gambiae. J Exp Biol 218:2482–2488CrossRefPubMedPubMedCentralGoogle Scholar
  126. Paluch G, Bartholomay L, Coats J (2010) Mosquito repellents: a review of chemical structure diversity and olfaction. Pest Manag Sci 66:925–935CrossRefPubMedGoogle Scholar
  127. Pesenti ME, Spinelli S, Bezirard V, Briand L, Pernollet JC, Tegoni M, Cambillau C (2008) Structural basis of the honey bee PBP pheromone and pH-induced conformational change. J Mol Biol 380:158–169CrossRefPubMedGoogle Scholar
  128. Pesenti ME, Spinelli S, Bezirard V, Briand L, Pernollet JC, Campanacci V, Tegoni M, Cambillau C (2009) Queen bee pheromone binding protein pH-induced domain swapping favors pheromone release. J Mol Biol 390:981–990CrossRefPubMedGoogle Scholar
  129. Picimbon JF (1996) La phéromone du mâle facilite l’acceptation du mâle par la femelle chez la pyrale du maïs, Ostrinia nubilalis (Lep., Pyralidae). CIFCA 96. First “Francophone” International Congress on Animal Behaviour, June 9–13th, Laval University, Quebec, CanadaGoogle Scholar
  130. Picimbon JF (2002) Les péri-récepteurs chimiosensoriels des insectes. Med Sci 18:1089–1094Google Scholar
  131. Picimbon JF (2003) Biochemistry and evolution of CSP and OBP proteins. In: Blomquist GJ, Vogt RG (eds) Insect pheromone biochemistry and molecular biology-the biosynthesis and detection of pheromones and plant volatiles. Elsevier Academic Press, SanDiego/London, pp 539–566Google Scholar
  132. Picimbon JF (2005a) Synthesis of odorant reception-suppressing agents, Odorant-Binding Proteins (OBPs) and Chemosensory Proteins (CSPs): molecular targets for pest management. In: Regnault-Roger C, Philogène B, Vincent C (eds) Biopesticides of plant origin. Intercept-Lavoisier, Hampshire/Paris/Secaucus, pp 245–266Google Scholar
  133. Picimbon JF (2005b) Olfaction & Phytoprotection. Habilitation à Diriger des Recherches (HDR; Biochemistry & Environmental Science). University of Pau and Pays de l’Adour (UPPA; Dir. C. Regnault-Roger), FranceGoogle Scholar
  134. Picimbon JF (2014a) RNA mutations: source of life. Gene Technol 3:112Google Scholar
  135. Picimbon JF (2014b) RNA mutations in the moth pheromone gland. RNA Dis 1:e240Google Scholar
  136. Picimbon JF (2014c) Renaming Bombyx mori chemosensory proteins. Int J Bioorganic Chem Mol Biol 2:201Google Scholar
  137. Picimbon JF (2016) Mutations in the insect transcriptome. J Clin Exp Pathol 6:3Google Scholar
  138. Picimbon JF, Leal WS (1999) Olfactory soluble proteins of cockroaches. Insect Biochem Mol Biol 29:973–978CrossRefGoogle Scholar
  139. Picimbon JF, Gadenne C (2002) Evolution of noctuid Pheromone Binding Proteins: identification of PBP in the black cutworm moth, Agrotis ipsilon. Insect Biochem Mol Biol 32:839–846CrossRefPubMedGoogle Scholar
  140. Picimbon JF, Regnault-Roger C (2008) Composés sémiochimiques volatils, phytoprotection et olfaction: cibles moléculaires de la lutte intégrée. In: Regnault-Roger V, Philogène B, Vincent C (eds) Biopesticides d’origine végétale. Lavoisier Tech and Doc, Paris, pp 383–415Google Scholar
  141. Picimbon JF, Bécard JM, Sreng L, Clément JL, Gadenne C (1995) Juvenile hormone stimulates pheromonotropic brain factor release in the black cutworm moth. J Insect Physiol 41:377–382CrossRefGoogle Scholar
  142. Picimbon JF, Gadenne C, Bécard JM, Clément JL, Sreng L (1997) Sex pheromone of the French black cutworm moth, Agrotis ipsilon (Lepidoptera, Noctuidae): identification and regulation of a multicomponent blend. J Chem Ecol 23:211–230CrossRefGoogle Scholar
  143. Picimbon JF, Dietrich K, Breer H, Krieger J (2000a) Chemosensory proteins of Locusta migratoria (Orthoptera: Acrididae). Insect Biochem Mol Biol 30:233–241CrossRefPubMedGoogle Scholar
  144. Picimbon JF, Dietrich K, Angeli S, Scaloni A, Krieger J, Pelosi P, Breer H (2000b) Purification and molecular cloning of chemosensory proteins in Bombyx mori. Arch Insect Biochem Physiol 44:120–129CrossRefPubMedGoogle Scholar
  145. Picimbon JF, Dietrich K, Krieger J, Breer H (2001) Identity and expression pattern of Chemosensory Proteins in Heliothis virescens (Lepidoptera: noctuidae). Insect Biochem Mol Biol 31:1173–1181CrossRefPubMedGoogle Scholar
  146. Pickett JA, Wadhams LJ, Woodcock CM (1992) The chemical ecology of aphids. Annu Rev Entomol 37:67–90CrossRefGoogle Scholar
  147. Plettner E (2003) The peripheral pheromone olfactory system in insects: targets for species-selective insect control agents. In: Blomquist GJ, Vogt RG (eds) Insect pheromone biochemistry and molecular biology-the biosynthesis and detection of pheromones and plant volatiles. Elsevier Academic Press, SanDiego/London, pp 477–507Google Scholar
  148. Plettner E, Lazar J, Prestwich EG, Prestwich GD (2000) Discrimination of pheromone enantiomers by two pheromone binding proteins from the gypsy moth Lymantria dispar. Biochemistry 39:8953–8962CrossRefPubMedGoogle Scholar
  149. Pollack GS (2010) Acoustic communication in insects: neuroethology. In: Encyclopedia of animal behavior. Academic, London, pp 1–6Google Scholar
  150. Pophof B (2002) Moth pheromone binding proteins contribute to the excitation of olfactory receptor cells. Naturwissenschaften 89:515–518CrossRefPubMedGoogle Scholar
  151. Pophof B (2004) Pheromone-binding proteins contribute to the activation of olfactory receptor neurons in the silkmoths Antheraea polyphemus and Bombyx mori. Chem Senses 29:117–125CrossRefPubMedGoogle Scholar
  152. Popkin G (2017) Bacteria use brainlike bursts of electricity to communicate. Quanta, September 5Google Scholar
  153. Prentice H, Modi JP, Wu JY (2015) Mechanisms of neuronal protection against excitotoxicity, endoplasmic reticulum stress, and mitochondrial dysfunction in stroke and neurodegenerative diseases. Oxidative Med Cell Longev 2015:964518CrossRefGoogle Scholar
  154. Prestwich GD, Carvalho JF, Ding YS, Hendricks DE (1986) Acyl fluorides as reactive mimics of aldehyde pheromones: hyperactivation and aphrodisiac in Heliothis virescens. Experientia 42:964–966CrossRefGoogle Scholar
  155. Prindle A, Liu J, Asally M, Ly S, Garcia-Ojalvo J, Süel GM (2015) Ion channels enable electrical communication in bacterial communities. Nature 527:59–63CrossRefPubMedPubMedCentralGoogle Scholar
  156. Rahman S, Luetje CR (2017) Mutant cycle analysis identifies a ligand interaction site in an odorant receptor of the malaria vector Anopheles gambiae. J Biol Chem 292:18916–18923CrossRefPubMedPubMedCentralGoogle Scholar
  157. Ren D, Navarro B, Xu H, Yue L, Shi Q, Clapham DE (2001) A prokaryotic voltage-gated sodium channel. Science 294:2372–2375CrossRefGoogle Scholar
  158. Renou M, Guerrero A (2000) Insect parapheromones in olfaction research and semiochemicals-based pest control strategies. Annu Rev Entomol 48:605–630CrossRefGoogle Scholar
  159. Robert D (2010) Hearing: insects. In: Encyclopedia of animal behavior. Academic, New York, pp 49–53CrossRefGoogle Scholar
  160. Roelofs WL (1995) Chemistry of sex attraction. Proc Natl Acad Sci U S A 92:44–49CrossRefPubMedPubMedCentralGoogle Scholar
  161. Rono E, Njagi PGN, Bashir MO, Hassanali A (2008) Concentration-dependent parsimonious releaser roles of gregarious male pheromone of the desert locust, Schistocerca gregaria. J Insect Physiol 54:162–168CrossRefPubMedGoogle Scholar
  162. Røstelien T, Stranden M, Borg-Karlson AK, Mustaparta H (2005) Olfactory receptor neurons in two heliothine moth species responding selectively to aliphatic green leaf volatiles, aromatic compounds, monoterpenes and sesquiterpenes of plant origin. Chem Senses 30:1–19CrossRefGoogle Scholar
  163. Royer L, McNeil JN (1992) Evidence of a male sex pheromone in the European corn borer, Ostrinia nubilalis (Hubner) (Lepidoptera: Pyralidae). Can Entomol 124:113–116CrossRefGoogle Scholar
  164. Royer L, McNeil JN (1993) Male investment in the European corn borer Ostrinia nubilalis (Lepidoptera: Pyralidae): on female longevity and reproductive performance. Funct Ecol 7:209–215CrossRefGoogle Scholar
  165. Sandler BH, Nikonova L, Leal WS, Clardy J (2000) Sexual attraction in the silkworm moth: structure of the pheromone-binding-protein-bombykol complex. Chem Biol 7:143–151CrossRefPubMedGoogle Scholar
  166. Sanes JT, Plettner E (2016) Gypsy moth pheromone-binding protein-ligand interactions: pH profiles and simulations as tools for detecting polar interactions. Arch Biochem Biophys 606:53–63CrossRefPubMedGoogle Scholar
  167. Sanford JL, Shields VD, Dickens JC (2013) Gustatory receptor neuron responds to DEET and other insect repellents in the yellow-fever mosquito, Aedes aegypti. Naturwissenschaften 100:269–273CrossRefPubMedGoogle Scholar
  168. Schmidt AKD, Balakrishnan R (2014) Ecology of acoustic signalling and the problem of masking interference in insects. J Comp Physiol A 201:133–142CrossRefGoogle Scholar
  169. Seeley TD (1974) Atmospheric carbon dioxide regulation in honey-bee (Apis mellifera) colonies. J Insect Physiol 20:2301–2305CrossRefPubMedGoogle Scholar
  170. Seidelmann K (2006) The courtship-inhibiting pheromone is ignored by female-deprived gregarious desert locust males. Biol Lett 2:525–527CrossRefPubMedPubMedCentralGoogle Scholar
  171. Seidelmann K, Luber K, Ferenz HJ (2000) Analysis of release and role of benzyl cyanide in male desert locusts, Schistocerca gregaria. J Chem Ecol 26:1897–1910CrossRefGoogle Scholar
  172. Seybold SJ, Vanderwel D (2003) Biosynthesis and endocrine regulation of pheromone production in the Coleoptera. In: Blomquist GJ, Vogt RG (eds) Insect pheromone biochemistry and molecular biology-the biosynthesis and detection of pheromones and plant volatiles. Elsevier Academic Press, SanDiego/London, pp 137–200Google Scholar
  173. Shishika D, Manoukis NC, Butail S, Paley DA (2014) Male motion coordination in anopheline mating swarms. Sci Rep 4:6318CrossRefPubMedPubMedCentralGoogle Scholar
  174. Simpson SJ, Sword GA (2008) Locusts. Curr Biol 18:R364–R366CrossRefPubMedGoogle Scholar
  175. Simpson SJ, Despland E, Hägele BF, Dodgson T (2001) Gregarious behavior in desert locusts is evoked by touching their back legs. Proc Natl Acad Sci U S A 98:3895–3897CrossRefPubMedPubMedCentralGoogle Scholar
  176. Singh NK, Eliash N, Kamer Y, Zaidman I, Plettner E, Soroker V (2015) The effect of DEET on chemosensing of the honey bee and its parasite Varroa destructor. Apidologie 46:380–391Google Scholar
  177. Sivinski JM, Petersson E (1997) Mate choice and species isolation in swarming insects. In: Chloe JC, Crespi BJ (eds) The evolution of mating systems in insects and arachnids. Cambridge University Press, Cambridge, pp 294–309CrossRefGoogle Scholar
  178. Stange G (1997) Effects of changes in atmospheric carbon dioxide on the location of hosts by the moth, Cactoblastis cactorum. Oecologia 110:539–545CrossRefPubMedGoogle Scholar
  179. Stange G, Diesendorf M (1973) The response of the honeybee antennal CO2-receptors to N2O and Xe. J Comp Physiol 86:139–158CrossRefGoogle Scholar
  180. Stange G, Stowe S (1999) Carbon-dioxide sensing structures in terrestrial arthropods. Micros Res Tech 47:416–427CrossRefGoogle Scholar
  181. Steinbrecht RA (1997) Pore structures in insect olfactory sensilla: a review of data and concepts. Int J Insect Morphol Embryol 26:229–245CrossRefGoogle Scholar
  182. Steinbrecht RA, Laue M, Ziegelberger G (1995) Immunolocalization of pheromone-binding protein and general odorant-binding protein in olfactory sensilla of the silk moths Antheraea and Bombyx. Cell Tissue Res 282:203–217CrossRefGoogle Scholar
  183. Stopfler M (2011) Malaria: mosquito bamboozled. Nature 474:40–41CrossRefGoogle Scholar
  184. Su CY, Menuz K, Carlson JR (2009) Olfactory perception: receptors, cells and circuits. Cell 139:45–59CrossRefPubMedPubMedCentralGoogle Scholar
  185. Su CY, Martelli C, Emonet T, Carlson JR (2011) Temporal coding of odor mixtures in an olfactory receptor neuron. Proc Natl Acad Sci U S A 108:5075–5080CrossRefPubMedPubMedCentralGoogle Scholar
  186. Sun M, Liu Y, Wang G (2013) Expression patterns and binding properties of three pheromone binding proteins in the diamondback moth, Plutella xyllotella. J Insect Physiol 59:46–55CrossRefPubMedGoogle Scholar
  187. Svensson BG, Petersson E (1994) Mate choice tactics and swarm size: a model and a test in a dance fly. Behav Ecol Sociobiol 35:161–168CrossRefGoogle Scholar
  188. Symonds MRE, Gitau-Clarke CW (2016) The evolution of aggregation pheromone diversity in bark beetles. Adv Insect Physiol 50:195–234CrossRefGoogle Scholar
  189. Tasin M, Bäckman AC, Anfora GF, Carlin S, Ioriatti C, Witzgall P (2010) Attraction of female grapevine moth to common and specific olfactory cues from 2 host plants. Chem Senses 35:57–64CrossRefPubMedGoogle Scholar
  190. Tilman D, Clark M, Williams DR, Kimmel K, Polasky S, Packer C (2017) Future threats to biodiversity and pathways to their prevention. Nature 546:73–81CrossRefPubMedGoogle Scholar
  191. Tomaselli S, Crescenzi O, Sanfelice D, Ab E, Wechselberger R, Angeli S, Scaloni A, Boelens R, Tancredi T, Pelosi P, Picone D (2006) Solution structure of a chemosensory protein from the desert locust Schistocerca gregaria. Biochemistry 45:1606–1613CrossRefGoogle Scholar
  192. Tsitsanou KE, Thireou T, Drakou CE, Koussis K, Keramioti MV, Leonidas DD, Eliopoulos E, Iatrou K, Zographos SE (2012) Anopheles gambiae odorant binding protein crystal complex with the synthetic repellent DEET: implications for structure-based design of novel mosquito repellents. Cell Mol Life Sci 69:283–297CrossRefPubMedGoogle Scholar
  193. Ulland S, Ian E, Stranden M, Borg-Karlson AK, Mustaparta H (2008) Plant volatiles activating specific olfactory receptor neurons of the cabbage moth Mamestra brassicae L. (Lepidopera, Noctuidae). Chem Senses 33:509–522CrossRefPubMedGoogle Scholar
  194. Vandermoten S, Mescher MC, Francis F, Haubruge E, Verheggen FJ (2012) Aphid alarm pheromone: an overview of current knowledge on biosynthesis and functions. Insect Biochem Mol Biol 42:155–163CrossRefPubMedGoogle Scholar
  195. Vieira FG, Forêt S, He XL, Rozas J, Field LM, Zhou JJ (2012) Unique features of odorant-binding proteins of the parasitoid wasp Nasonia vitripennis revealed by genome annotation and comparative analysis. PLoS One 7:e43034CrossRefPubMedPubMedCentralGoogle Scholar
  196. Villella A, Hall JC (2008) Neurogenetics of courtship and mating in Drosophila. Adv Genet 62:67–184CrossRefPubMedGoogle Scholar
  197. Vité JP, Francke W (1976) The aggregation pheromones of bark beetles: progress and problems. Naturwissenschaften 63:550–555CrossRefGoogle Scholar
  198. Vogel G (2017) Where have all the insects gone? Science 356:576–579CrossRefPubMedGoogle Scholar
  199. Vogt RG (2003) Biochemical diversity of odor detection: OBPs, ODEs and SNMPs. In: Blomquist GJ, Vogt RG (eds) Insect pheromone biochemistry and molecular biology-the biosynthesis and detection of pheromones and plant volatiles. Elsevier Academic Press, SanDiego/London, pp 391–446Google Scholar
  200. Vogt RG (2005) Molecular basis of pheromone detection in insects. In: Gilbert LI, Iatrou K, Gill S (eds) Comprehensive insect physiology, biochemistry, pharmacology and molecular biology. Elsevier, London, pp 753–804Google Scholar
  201. Vogt RG, Riddiford LM (1981) Pheromone binding and inactivation by moth antennae. Nature 293:161–163CrossRefGoogle Scholar
  202. Vogt RG, Köhne AC, Dubnau JT, Prestwich GD (1989) Expression of pheromone binding proteins during antennal development in the gypsy moth Lymantria dispar. J Neurosci 9:3332–3346CrossRefPubMedGoogle Scholar
  203. Vogt RG, Prestwich GD, Lerner MR (1991) Odorant-binding-protein subfamilies associate with distinct classes of olfactory receptor neurons in insects. J Neurobiol 22:74–84CrossRefPubMedGoogle Scholar
  204. Vogt RG, Vieyra M, Anderson D (2002) New discoveries in the olfactory capability of sea turtles, PFRP Newsletters, April–June 2002b. University of Hawai’i at Mãnoa, Honolulu, pp 1–12Google Scholar
  205. Wakamura S, Struble DL, Matsuura H, Sato M, Kegasawa K (1986) Sex pheromone of the black cutworm Moth, Agrotis ipsilon HUFNAGEL (Lepidoptera: Noctuidae): attractant synergist and improved formulation. Appl Entomol Zool 21:299–304Google Scholar
  206. Wake DB, Vredenburg VT (2008) Are we in the midst of the sixth mass extinction? A view from the world of amphibians. Proc Natl Acad Sci U S A 105:11466–11473CrossRefPubMedPubMedCentralGoogle Scholar
  207. Walter GH, Benfield MD (2006) Temporal host plant use in three polyphagous Heliothinae, with special reference to Helicoverpa punctigera (Wallengren) (Noctuidae: Lepidoptera). Austral Ecol 19:458–465CrossRefGoogle Scholar
  208. Wogulis M, Morgan T, Ishida Y, Leal WS, Wilson DK (2006) The crystal structure of an odorant binding protein from Anopheles gambiae: evidence for a common ligand release mechanism. Biochem Biophys Res Commun 339:157–164CrossRefPubMedGoogle Scholar
  209. Wojtasek H, Leal WS (1999) Conformational change in the pheromone-binding protein from Bombyx mori induced by pH and by interaction with membranes. J Biol Chem 274:30950–30956CrossRefPubMedGoogle Scholar
  210. Wojtasek H, Picimbon JF, Leal WS (1999) Identification and cloning of odorant binding proteins from the scarab beetle Phyllopertha diversa. Biochem Biophys Res Commun 263:832–837CrossRefPubMedGoogle Scholar
  211. Wyatt TD (1997) Putting pheromones to work: paths forward for direct control. In: Cardé RT, Minks AK (eds) Insect pheromone research-new directions. Chapman & Hall, New York, pp 445–459CrossRefGoogle Scholar
  212. Wyatt TD (2005) Pheromones: convergence and contrasts in insects and vertebrates. In: Mason RT, LeMaster MP, Müller-Schwarze D (eds) Chemical signals in vertebrates. Springer, New York, pp 7–20CrossRefGoogle Scholar
  213. Xu P, Atkinson R, Jones DN, Smith DP (2005) Drosophila OBP LUSH is required for activity of pheromone-sensitive neurons. Neuron 45:193–200CrossRefPubMedGoogle Scholar
  214. Xu P, Choo YM, De La Rosa A, Leal WS (2014) Mosquito odorant receptor for DEET and methyl jasmonate. Proc Natl Acad Sci U S A 111:16592–16597CrossRefPubMedPubMedCentralGoogle Scholar
  215. Xuan N, Bu X, Liu YY, Yang X, Liu GX, Fan ZX, Bi YP, Yang LQ, Lou QN, Rajashekar B, Leppik G, Kasvandik S, Picimbon JF (2014) Molecular evidence of RNA editing in Bombyx chemosensory protein family. PLoS One 9:e86932CrossRefPubMedPubMedCentralGoogle Scholar
  216. Xuan N, Guo X, Xie HY, Lou QN, Lu XB, Liu GX, Picimbon JF (2015) Increased expression of CSP and CYP genes in adult silkworm females exposed to avermectins. Insect Sci 22:203–219CrossRefPubMedGoogle Scholar
  217. Yin J, Feng H, Sun H, Xi J, Cao Y, Li K (2012) Functional analysis of general odorant binding protein 2 from the meadow moth, Loxostege sticticalis L. (Lepidoptera: Pyralidae). PLoS One 7:e33589CrossRefPubMedPubMedCentralGoogle Scholar
  218. Zhou JJ, Zhang GA, Huang W, Birkett MA, Field LM, Pickett JA, Pelosi P (2004) Revisiting odorant-binding protein LUSH of Drosophila melanogaster: evidence for odour recognition and discrimination. FEBS Lett 558:23–26CrossRefPubMedGoogle Scholar
  219. Zhou JJ, Roberson G, He X, Dufour S, Hooper AM, Pickett JA, Keep NH, Field LM (2009) Characterisation of Bombyx mori odorant-binding-proteins reveals that a general odorant-binding-protein discriminates between sex pheromone components. J Mol Biol 389:529–545CrossRefPubMedGoogle Scholar
  220. Zhu J, Ban L, Son LM, Liu Y, Pelosi P, Wang G (2016) General odorant-binding proteins and sex pheromone guide larvae of Plutella xylostella to better food. Insect Biochem Mol Biol 72:10–19CrossRefPubMedGoogle Scholar
  221. Ziemba BP, Murphy EJ, Edlin HT, Jones DNM (2012) A novel mechanism of ligand binding and release in the odorant binding protein 20 from the malaria mosquito Anopheles gambiae. Protein Sci 22:11–21CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Guoxia Liu
    • 1
  • Philippe Arnaud
    • 2
    • 3
  • Bernard Offmann
    • 2
  • Jean-François Picimbon
    • 1
    • 4
    Email author
  1. 1.Biotechnology Research CenterShandong Academy of Agricultural SciencesJinanPeople’s Republic of China
  2. 2.Protein Engineering and Functionality UnitUniversity of NantesNantesFrance
  3. 3.Centre Universitaire Franco-Malaisien & Service de Coopération Universitaire et Scientifique, Ambassade de France en MalaisieKuala LumpurMalaysia
  4. 4.School of BioengineeringQILU University of TechnologyJinanPeople’s Republic of China

Personalised recommendations