Advertisement

Responses of Insect Olfactory Neurons to Single Pheromone Molecules

  • Karl-Ernst KaisslingEmail author
Chapter

Abstract

The status of our understanding of the molecular processes underlying olfactory reception in insects was summarized by Wicher (Progress in molecular biology and translational science, vol 130. Elsevier, New York, pp 37–54, 2015; see also Chap.  4) and recently by Stengl (Chemosensory transduction in arthropods. In: Byrne JH (ed) Oxford handbooks online. The Oxford handbook of invertebrate neurobiology. Oxford University Press, pp 1–42. https://doi.org/10.1093/oxfordhb/9780190456757.013.15, 2017) and Wicher and Grosse-Wilde (Chemoreceptors in evolution. In: Kaas J (ed) Evolution of nervous systems 2e. Elsevier, Oxford, pp 245 -255, 2017). The present chapter adds an overdue review of studies dealing with the responses of moth antennal olfactory neurons (nerve cells) to single impacts of airborne pheromone molecules. Weak pheromone stimuli elicit “elementary receptor potentials” (ERPs) which consist of one or several “bumps”, transient negative deflections of the resting trans-epithelial potential recorded from the tips of single trichoid sensilla, i.e. olfactory mini-organs on insect antennae. In the male silkmoth Bombyx mori a bump may elicit one, seldom two or three nerve impulses, but up to five impulses in the sphingid moth Manduca sexta. According to behavioral, electrophysiological and radiometric studies, the ERPs are elicited by single pheromone molecules. The analysis of the neuro-electrical circuit of moths sensilla revealed that the average bump amplitude (of about 0.5 mV) reflects an increase of the membrane conductance of an olfactory neuron by about 30 pS. The observation of several sublevels of bump amplitudes in B. mori suggest either varying degrees of opening of a single ion channel or varying numbers of superimposed openings of smaller channels. At weak stimulus intensities ion channels might be directly gated by the odor molecule-receptor interaction. At higher intensities intracellular signaling might be responsible for diminished channel opening that causes widening the range of the pheromone dose-response and adaptation (reduced responsiveness) after strong stimuli. In B. mori the temporal characteristics of the responses to single pheromone molecules were used to calculate the apparent residence time of the pheromone molecule at the receptor molecule, in the range of 100 ms.

Notes

Acknowledgement

The author is grateful to Wynand M. van der Goes van Naters, Cardiff, and Uwe Koch, Kaiserslautern, for valuable suggestions and comments to earlier versions of the manuscript. Special thanks are directed to Jean-François Picimbon, Jinan, for most thoughtful editing.

References

  1. Ala-Laurila P, Donner K, Koskelainen A (2004) Thermal activation and photoactivation of visual pigments. Biophys J 86:3653–3662CrossRefPubMedPubMedCentralGoogle Scholar
  2. Barrozo RB, Kaissling KE (2002) Repetitive stimulation of olfactory receptor cells in female silkmoths Bombyx mori L. J Insect Physiol 48:825–834CrossRefPubMedGoogle Scholar
  3. Bhandawat V, Reisert J, Yau KW (2005) Elementary response of olfactory receptor neurons to odorants. Science 308:1931–1934CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bhandawat V, Reisert J, Yau KW (2010) Signaling by olfactory receptor neurons near threshold. Proc Natl Acad Sci U S A 107:18682–18687CrossRefPubMedPubMedCentralGoogle Scholar
  5. Boeckh J, Boeckh V (1979) Threshold and odor specificity of pheromone-sensitive neurons in the deutocerebrum of Antheraea pernyi and A. polyphemus (Saturnidae). J Comp Physiol 132:235–242CrossRefGoogle Scholar
  6. Butenandt A, Beckmann R, Stamm D, Hecker E (1959) Über den Sexuallockstoff des Seidenspinners Bombyx mori. Reindarstellung und Konstitution. Z Naturforsch 14b:283–284Google Scholar
  7. De Brito-Sanchez MG, Kaissling KE (2005) Inhibitory and excitatory effects of iodobenzene on the antennal benzoic acid receptor cell of the female silk moth Bombyx mori L. Chem Senses 30:1–8CrossRefGoogle Scholar
  8. De Kramer JJ (1985) The electrical circuitry of an olfactory sensillum in Antheraea polyphemus. J Neurosci 5:2484–24935CrossRefPubMedGoogle Scholar
  9. De Kramer JJ, Kaissling KE, Keil T (1984) Passive electrical properties of insect sensilla may produce the biphasic shape of spikes. Chem Senses 8:289–295CrossRefGoogle Scholar
  10. Den Otter CJ, Behan M, Maes FW (1980) Single cell responses in female Pieris brassicae (Lepidoptera: Pieridae) to plant volatiles and conspecific egg odours. J Insect Physiol 26:465–472CrossRefGoogle Scholar
  11. Devos M, Patte J, Rouault J, Laffort P, Van Gemert LJ (1990) Standardized human olfactory thresholds. Oxford University Press, Oxford, p 176Google Scholar
  12. Dolzer J, Fischer K, Stengl M (2003) Adaptation in pheromone-sensitive trichoid sensilla of the hawkmoth Manduca sexta. J Exp Biol 206:1575–1588CrossRefPubMedGoogle Scholar
  13. Dratz EA, Hargrave PA (1983) The structure of rhodopsin and the rod outer segment disk membrane. Trends Biochem Sci 8:128CrossRefGoogle Scholar
  14. Frings S, Lindemann B (1988) Odorant response of isolated olfactory receptor cells is blocked by amiloride. J Membrane Biol 105:233–243CrossRefGoogle Scholar
  15. Gawalek P, Stengl M (2018) The Diacylglycerol Analogs OAG and DOG Differentially Affect Primary Events of Pheromone Transduction in the Hawkmoth Manduca sexta in a Zeitgebertime-Dependent Manner Apparently Targeting TRP Channels. Front Cell Neurosci 12:218.  https://doi.org/10.3389/fncel.2018.00218 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Gnatzy W, Mohren W, Steinbrecht RA (1984) Pheromone receptors in Bombyx mori and Antheraea pernyi II. Morphometric analysis. Cell Tissue Res 235:35–42CrossRefPubMedGoogle Scholar
  17. Heinbockel T, Kaissling KE (1996) Variability of olfactory receptor neuron responses of female silkmoths (Bombyx mori L.) to benzoic acid and (+)-linalool. J Insect Physiol 42:565–578CrossRefGoogle Scholar
  18. Henderson SR, Reuss H, Hardie RC (2000) Single photon responses in Drosophila photoreceptors and their regulation by Ca2+. J Physiol 524:179–194CrossRefPubMedPubMedCentralGoogle Scholar
  19. Hille B (2001) Ion channels of excitable membranes, 3rd edn. Sinauer Associates, Sunderland.Google Scholar
  20. Hopf TA, Morinaga S, Ihara S, Touhara K, Marks DS, Benton R (2015) Amino acid coevolution reveals three-dimensional structure and functional domains of insect odorant receptors. Nat Commun 6:6077CrossRefPubMedPubMedCentralGoogle Scholar
  21. Jacquin-Joly E, Francois MC, Burnet M, Lucas P, Bourrat F, Maida R (2002) Expression pattern in the antennae of the newly isolated lepidopteran Gq protein alpha subunit cDNA. Eur J Biochem 269:2133–2142CrossRefPubMedGoogle Scholar
  22. Jin X, Ha TS, Smith DP (2008) SNMP is a signaling component required for pheromone sensitivity in Drosophila. Proc Natl Acad Sci U S A 105:10995–11000Google Scholar
  23. Jones W (2013) Olfactory carbon dioxide detection by insects and other animals. Mol Cells 35:87–92CrossRefPubMedPubMedCentralGoogle Scholar
  24. Jones PL, Pask GM, Rinker DC, Zwiebel LJ (2011) Functional agonism of insect odorant receptor ion channels. Proc Natl Acad Sci U S A 108:8821–8825CrossRefPubMedPubMedCentralGoogle Scholar
  25. Kaissling KE (1971) Insect olfaction. In: Beidler LM (ed) Handbook of sensory physiology IV, 1. Springer, Heidelberg, pp 351–431Google Scholar
  26. Kaissling KE (1974) Sensory transduction in insect olfactory receptors. In: Jaenicke L (ed) 25. Mosbacher Coll Ges Biolog Chemie, biochemistry of sensory functions. Springer, Berlin/Heidelberg/New York, pp 243–273CrossRefGoogle Scholar
  27. Kaissling KE (1977) Structures of odour molecules and multiple activities of receptor cells. In: Le Magnen J, MacLeod P (eds) Olfaction and taste VI. Inf. Retrieval, London, pp 9–16Google Scholar
  28. Kaissling KE (1980) Action of chemicals, including (+)trans Permethrin and DDT, on insect olfactory receptors. In: Insect neurobiology and pesticide action (Neurotox 79). Soc Chem Industry, London, pp 351–358Google Scholar
  29. Kaissling KE (1986) Chemo-electrical transduction in insect olfactory receptors. Ann Rev Neurosci 9:21–45CrossRefGoogle Scholar
  30. Kaissling KE (1987) In: Colbow K (ed) RH Wright lectures on insect olfaction. Simon Fraser University, Burnaby, p 190Google Scholar
  31. Kaissling KE (1995) Single unit and electroantennogram recordings in insect olfactory organs. In: Spielman AI, Brand JG (eds) Experimental cell biology of taste and olfaction: current techniques and protocols. CRC Press, Boca Raton/New York/Tokyo, pp 361–386Google Scholar
  32. Kaissling KE (1997) Pheromone-controlled anemotaxis in moths. In: Lehrer M (ed) Orientation and communication in arthropods. Birkhaeuser, Basel, pp 343–374CrossRefGoogle Scholar
  33. Kaissling KE (1998) Flux detectors versus concentration detectors: two types of chemoreceptors. Chem Senses 23:99–111CrossRefPubMedGoogle Scholar
  34. Kaissling KE (2001) Olfactory perireceptor and receptor events in moths: a kinetic model. Chem Senses 26:125–150CrossRefPubMedGoogle Scholar
  35. Kaissling KE (2009a) The sensitivity of the insect nose: the example of Bombyx mori. In: Marco S, Gutierrez-Galvez A (eds) Biologically inspired signal processing for chemical sensing. SCI 188. Springer, Heidelberg, pp 45–52CrossRefGoogle Scholar
  36. Kaissling KE (2009b) Olfactory perireceptor and receptor events in moths: a kinetic model revised. J Comp Physiol A 195:895–922CrossRefGoogle Scholar
  37. Kaissling KE (2013) Kinetics of olfactory responses might largely depend on the odorant-receptor interaction and the odorant deactivation postulated for flux detectors. J Comp Physiol A 199:879–896CrossRefGoogle Scholar
  38. Kaissling KE (2014) Pheromone reception in insects (the example of silk moths). In: Mucignat-Caretta C (ed) Neurobiology of chemical communication. CRC Press/Taylor & Francis, Boca Raton/London/New York, pp 99–146CrossRefGoogle Scholar
  39. Kaissling KE, Priesner E (1970) Die Riechschwelle des Seidenspinners. Naturwiss 57:23–28CrossRefPubMedGoogle Scholar
  40. Kaissling KE, Thorson J (1980) Insect olfactory sensilla: structural, chemical and electrical aspects of the functional organisation. In: Satelle DB, Hall LM, Hildebrand JG (eds) Receptors for neurotransmitters, hormones and pheromones in insects. Elsevier/North-Holland Biomedical Press, New York, pp 261–282Google Scholar
  41. Kaissling KE, Kasang G, Bestmann HJ, Stransky W, Vostrowsky O (1978) A new pheromone of the silkworm moth Bombyx mori. Sensory pathway and behavioral effect. Naturwiss 65:382–384CrossRefGoogle Scholar
  42. Kaissling KE, Zack-Strausfeld C, Rumbo ER (1987) Adaptation processes in insect olfactory receptors. Mechanisms and behavioral significance. Olfaction and taste IX. Ann N Y Acad Sci 510:104–112CrossRefPubMedGoogle Scholar
  43. Kaissling KE, Meng LZ, Bestmann HJ (1989) Responses of bombykol receptor cells to (Z,E)-4,6-hexadecadiene and linalool. J Comp Physiol A 165:147–154CrossRefGoogle Scholar
  44. Kaissling KE, Keil TA, Williams L (1991) Pheromone stimulation in perfused olfactory hairs of Antheraea polyphemus. J Insect Physiol 37:71–78CrossRefGoogle Scholar
  45. Kanaujia S, Kaissling KE (1985) Interactions of pheromone with moth antennae: adsorption, desorption and transport. J Insect Physiol 31:71–81CrossRefGoogle Scholar
  46. Kasang G (1968) Tritium labeling of the sex attractant Bombykol. Z Naturforsch 23b:1331–1335CrossRefGoogle Scholar
  47. Kasang G, Nicholls M, von Proff L (1989a) Sex pheromone conversion and degradation in antennae of the male silkworm moth Bombyx mori L. Experientia 45:81–87CrossRefGoogle Scholar
  48. Kasang G, Nicholls M, Keil TA, Kanaujia S (1989b) Enzymatic conversion of sex pheromones in olfactory hairs of the male silkworm moth Antheraea polyphemus. Z Naturforsch 44c:920–926CrossRefGoogle Scholar
  49. Kaupp UB (2010) Olfactory signalling in vertebrates and insects: differences and commonalities. Nat Rev Neurosci 11:188–200CrossRefPubMedGoogle Scholar
  50. Keil TA (1984) Reconstruction and morphometry of silkmoth olfactory hairs: a comparative study of sensilla trichodea on the antennae of male Antheraea polyphemus and Antheraea pernyi (Insecta, Lepidoptera). Zoomorphology 104:147–156CrossRefGoogle Scholar
  51. Keil TA (1989) Fine structure of the pheromone-sensitive sensilla on the antenna of the Hawkmoth, Manduca sexta. Tiss Cell 21:139–151CrossRefGoogle Scholar
  52. Keil TA (1999) Morphologie and development of the peripheral olfactory organs. In: Hansson BS (ed) Insect olfaction. Springer, Berlin/Heidelberg, pp 5–47CrossRefGoogle Scholar
  53. Kirschfeld K (1966) Discrete and graded receptor potentials in the compound eye of the fly (Musca). In: The functional organization of the compound eye. Proceedings of the international symposium. Pergamon Press, Oxford, pp 291–307Google Scholar
  54. Klein U, Keil TA (1984) Dendritic membrane from insect olfactory hairs: Isolation method and electron microscopic observations. Cell Mol Neurobiol 4:385–396CrossRefPubMedGoogle Scholar
  55. Kodadová B, Kaissling KE (1996) Effects of temperature on responses of silkmoth olfactory receptor neurones to pheromone can be simulated by modulation of resting cell membrane resistances. J Comp Physiol 179:15–27Google Scholar
  56. Laue M, Maida R, Redkozubov A (1997) G-protein activation, identification and immunolocalization in pheromone-sensitive sensilla trichodea of moths. Cell Tissue Res 288:149–158CrossRefPubMedGoogle Scholar
  57. Leal WS, Chen AM, Ishida Y, Chiang VP, Erickson ML, Morgan TI, Tsuruda JM (2005) Kinetics and molecular properties of pheromone binding and release. Proc Natl Acad Sci U S A 102:5386–5391CrossRefPubMedPubMedCentralGoogle Scholar
  58. Li Z, Ni JD, Huang J, Montell C (2014) Requirement for Drosophila SNMP1 for rapid activation and termination of pheromone-induced activity. PLoS Genet 10:e1004600.  https://doi.org/10.1371/journal.pgen.1004600 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Lillywhite PG (1977) Single photon signals and transduction in an insect eye. J Comp Physiol 122:189–200CrossRefGoogle Scholar
  60. Lowe G, Gold GH (1995) Olfactory transduction is intrinsically noisy. Proc Natl Acad Sci U S A 92:7864–7868CrossRefPubMedPubMedCentralGoogle Scholar
  61. Lynch JW, Barry PH (1989) Action potentials initiated by single channels opening in a small neuron (rat olfactory receptor). Biophys J 55:755–768CrossRefPubMedPubMedCentralGoogle Scholar
  62. Maida R, Redkozubov A, Ziegelberger G (2000) Identification of PLCß and PKC in pheromone receptor neurons of Antheraea polyphemus. Neuroreport 11:1773–1776CrossRefPubMedGoogle Scholar
  63. Maue RA, Dionne VE (1987) Patch-clamp studies of isolated mouse olfactory receptor neurons. J Gen Physiol 90:95–125CrossRefPubMedGoogle Scholar
  64. Menini A, Picco C, Firestein S (1995) Quantal-like current fluctuations induced by odorants in olfactory receptor cells. Nature 373:435–437CrossRefPubMedGoogle Scholar
  65. Minor AV, Kaissling KE (2003) Cell responses to single pheromone molecules may reflect the activation kinetics of olfactory receptor molecules. J Comp Physiol A 189:221–230Google Scholar
  66. Moulton DG (1977) Minimum odorant concentrations detectable by the dog and their implications for olfactory receptor sensitivity. In: Müller-Schwarze D, Mozell MM (eds) Chemical signals in vertebrates. Plenum Press, New York, pp 455–464CrossRefGoogle Scholar
  67. Mukunda L, Miazzi F, Kaltofen S, Hansson BS, Wicher D (2014) Calmodulin modulates insect odorant receptor function. Cell Calcium 55:324–333CrossRefGoogle Scholar
  68. Nakagawa T, Touhara K (2013) Extracellular modulation of the silkmoth sex pheromone receptor activity by cyclic nucleotides. PLoS One 8:e63774CrossRefPubMedPubMedCentralGoogle Scholar
  69. Nakagawa T, Vosshall LB (2009) Controversy and consensus: noncanonical signaling mechanisms in the insect olfactory system. Curr Opin Neurobiol 19:284–292CrossRefPubMedPubMedCentralGoogle Scholar
  70. Nakagawa T, Sakurai T, Nishioka T, Touhara K (2005) Insect sex-pheromone signals mediated by specific combinations of olfactory receptors. Science 307:1638–1642CrossRefGoogle Scholar
  71. Nakagawa T, Pellegrino M, Sato K, Vosshall LB, Touhara K (2012) Amino acid residues contributing to function of the heteromeric insect olfactory receptor complex. PLoS One 7:e32372CrossRefPubMedPubMedCentralGoogle Scholar
  72. Neher E, Sakmann B (1976) Single-channel currents recorded from membrane of denervated frog muscle fibers. Nature 260:779–802CrossRefGoogle Scholar
  73. Neuhaus W (1953) Über die Riechschärfe des Hundes für Fettsäuren. Z vergl Physiol 35:527–552Google Scholar
  74. Nolte A, Funk N, Mukunda L, Gawalek P, Werckenthin A, Hansson B, Wicher D, Stengl M (2013) In situ tip-recordings found no evidence for an Orco-based ionotropic mechanism of pheromone-transduction in Manduca sexta. PLoS One 8:e62648CrossRefPubMedPubMedCentralGoogle Scholar
  75. Nolte A, Gawalek P, Koerte S, Wei HY, Schumann R, Werckenthin A, Krieger J, Stengl M (2016) No evidence for ionotropic pheromone transduction in the hawkmoth Manduca sexta. PLoS One 11:e0166060CrossRefPubMedPubMedCentralGoogle Scholar
  76. Pézier A, Acquistapace A, Renou M, Rospars J-P, Lucas P (2007) Ca2+ Stabilizes the Membrane Potential of Moth Olfactory Receptor Neurons at Rest and Is Essential for Their Fast Repolarization. Chem Senses 32:305–317CrossRefPubMedGoogle Scholar
  77. Pézier A, Grauso M, Acquistapace A, Monsempes C, Rospars JP, Lucas P (2010) Calcium activates a chloride conductance likely involved in olfactory receptor neuron repolarisation in the moth Spodoptera littoralis. J Neurosci 30:6323–6333CrossRefPubMedGoogle Scholar
  78. Pophof B (1998) Inhibitors of sensillar esterase reversibly block the responses of moth pheromone receptor cells. J Comp Physiol A 183:153–164CrossRefGoogle Scholar
  79. Pophof B, Van der Goes van Naters W (2002) Activation and inhibition of the transduction process in silkmoth olfactory receptor neurons. Chem Senses 27:435–443CrossRefPubMedGoogle Scholar
  80. Pophof B, Gebauer T, Ziegelberger G (2000) Decyl-thio-trifluoropropanone, a competitive inhibitor of moth pheromone receptors. J Comp Physiol A 186:315–323CrossRefPubMedGoogle Scholar
  81. Redkozubov A (1995) High electrical resistance of the bombykol cell in an olfactory sensillum of Bombyx mori: voltage- and current-clamp analysis. J Insect Physiol 41:451–455CrossRefGoogle Scholar
  82. Redkozubov A (1996) Protein kinase C is involved in the activation of receptor neurons in the olfactory sensilla of the gypsy moth. Sens Syst 10:307–312Google Scholar
  83. Redkozubov A (2000a) Elementary receptor currents elicited by a single pheromone molecule exhibit quantal composition. Pfluegers Arch-Eur J Physiol 440:896–901CrossRefGoogle Scholar
  84. Redkozubov A (2000b) Guanosine 3´,5´-cyclic monophosphate reduces the response of the moth’s olfactory receptor neuron to pheromone. Chem Senses 25:381–385CrossRefPubMedGoogle Scholar
  85. Renou M, Barthier A, Guerrero A (2004) Disruption of responses to pheromone by (Z)-11-hexadecenyl trifluoromethyl ketone, an analogue of the pheromone, in the cabbage army worm Mamestra brassicae. Pest Manag Sci 58:839–844CrossRefGoogle Scholar
  86. Rogers ME, Sun M, Lerner MR, Vogt RG (1997) Snmp-1, a novel membrane protein of olfactory neurons of the silk moth Antheraea polyphemus with homology to the CD36 family of membrane proteins. J Biol Chem 272:14792–14799CrossRefPubMedGoogle Scholar
  87. Rogers ME, Krieger J, Vogt RG (2001) Antennal SNMPs (sensory neuron membrane proteins) of Lepidoptera define a unique family of invertebrate CD36-like proteins. J Neurobiol 49:47–61CrossRefPubMedGoogle Scholar
  88. Ronnett GV, Moon C (2002) G proteins and olfactory signal transduction. Ann Rev 64:189–222Google Scholar
  89. Sato K, Pellegrino M, Nakagawa T, Vosshall LB, Touhara K (2008) Insect olfactory receptors are heteromeric ligand-gated ion channels. Nature 452:1002–1006CrossRefPubMedGoogle Scholar
  90. Schneider D, Lacher V, Kaissling KE (1964) Die Reaktionsweise und das Reaktionsspektrum von Riechzellen bei Antheraea pernyi (Lepidoptera, Saturniidae). Z vergl Physiol 48:632–662CrossRefGoogle Scholar
  91. Scholes J (1965) Discontinuity of the excitation process in locust visual cells. Cold Spring Harbour Symp Quant Biol 30:517–527CrossRefGoogle Scholar
  92. Silbering AF, Benton R (2010) Ionotropic and metabotropic mechanisms in chemoreception: ‘chance or design’? EMBO Rep 11:173–179CrossRefPubMedPubMedCentralGoogle Scholar
  93. Stange G, Kaissling KE (1995) The site of action of general anaesthetics in insect olfactory receptor neurons. Chem Senses 20:421–432CrossRefPubMedGoogle Scholar
  94. Stange G, Rowe S (1999) Carbon-dioxide sensing structures in terrestrial arthropods. Micros Res Tech 47:416–427CrossRefGoogle Scholar
  95. Starrat AN, Dahm KH, Allen N, Hildebrand JG, Payne TL, Röller H (1979) Bombykal, a sex pheromone of the sphinx moth Manduca sexta. Z Naturforsch 34C:9–12CrossRefGoogle Scholar
  96. Steinbrecht RA, Kasang G (1972) Capture and conveyance of odour molecules in an insect olfactory receptor. In: Schneider D (ed) Olfaction and taste IV. Wiss Verlagsges, Stuttgart, pp 193–199Google Scholar
  97. Stengl M, Funk NW (2013) The role of the coreceptor Orco in insect olfactory transduction. J Comp Physiol A 199:897–909CrossRefGoogle Scholar
  98. Stengl M (2017) Chemosensory transduction in arthropods. In: Byrne JH (ed) Oxford Handbooks Online. The Oxford Handbook of Invertebrate Neurobiology. Oxford University Press, pp 1–42.  https://doi.org/10.1093/oxfordhb/9780190456757.013.15
  99. Stühmer W, Roberts WM, Almers W (1985) The loose patch clamp. In: Sakmann B, Neher E (eds) Single-channel recording. Plenum Press, New York, pp 123–132Google Scholar
  100. Thurm U, Küppers J (1980) Epithelial physiology of insect sensilla. In: Locke M, Smith DS (eds) Insect biology in the future. Academic, New York, pp 735–763CrossRefGoogle Scholar
  101. Trotier D, MacLeod P (1987) The amplification process in olfactory receptor cells. Ann N Y Acad Sci 510:677–679CrossRefGoogle Scholar
  102. Vermeulen A, Rospars JP (2001) Electrical circuitry of an insect olfactory sensillum. Neurocomputing 29:587–596Google Scholar
  103. Vijverberg HPM, van der Zalm JM, van den Bercken J (1982) Similar mode of action of pyrethroids and DDT on sodium channel gating in myelinated nerves. Nature (Lond) 295:601–603CrossRefGoogle Scholar
  104. Vogt RG (2003) Biochemical diversity of odor detection: OBPs, ODEs and SNMPs. In: Blomquist GJ, Vogt RG (eds) Insect pheromone biochemistry and molecular biology-the biosynthesis and detection of pheromones and plant volatiles. Elsevier Academic Press, London/San Diego, pp 391–446CrossRefGoogle Scholar
  105. Vogt RG (2005) Molecular basis of pheromone detection in insects. In: Gilbert LI, Iatrou K, Gill S (eds) Comprehensive insect physiology, biochemistry, pharmacology and molecular biology, Endocrinology, vol 3. Elsevier, London, pp 753–804Google Scholar
  106. Vogt RG, Riddiford LM (1981) Pheromone binding and inactivation by moth antennae. Nature (Lond) 293:161–163CrossRefGoogle Scholar
  107. Vogt RG, Riddiford LM, Prestwich GD (1985) Kinetic properties of a pheromone degrading enzyme: the sensillar esterase of Antheraea polyphemus. Proc Natl Acad Sci U S A 82:8827–8831CrossRefPubMedPubMedCentralGoogle Scholar
  108. Wicher D (2015) Olfactory signaling in insects. In: Glatz R (ed) Progress in molecular biology and translational science, vol 130. Elsevier, New York, pp 37–54Google Scholar
  109. Wicher D, Schaefer R, Bauernfeind R, Stensmyr MC, Heller R, Heinemann SH, Hansson BS (2008) Drosophila odorant receptors are both ligand-gated and cyclic-nucleotide-activated cation channels. Nature 452:1007–1011CrossRefGoogle Scholar
  110. Wicher D, Grosse-Wilde E (2017) Chemoreceptors in Evolution. In: Kaas J (ed) Evolution of Nervous Systems 2e. Elsevier, Oxford, pp 245–255CrossRefGoogle Scholar
  111. Zack C (1979) Sensory adaptation in the sex pheromone receptor cells of saturniid moths. Diss Fak Biol LMU München:1–99Google Scholar
  112. Zack-Strausfeld C, Kaissling KE (1986) Localized adaptation processes in olfactory sensilla of Saturniid moths. Chem Senses 11:499–512CrossRefGoogle Scholar
  113. Ziegelberger G, Van den Berg MJ, Kaissling KE, Klumpp S, Schultz JE (1990) Cyclic nucleotide levels and guanylate cyclase activity in pheromone-sensitive antennae of the silkmoths Antheraea polyphemus and Bombyx mori. J Neurosci 10:1217–1225CrossRefPubMedGoogle Scholar
  114. Ziesmann J, Valterova I, Haberkorn K, De Brito Sanchez MG, Kaissling KE (2000) Chemicals in laboratory room air stimulate olfactory neurons of female Bombyx mori. Chem Senses 25:31–37CrossRefPubMedGoogle Scholar
  115. Zufall F, Hatt H (1991) Dual activation of sex pheromone-dependent ion channel from insect olfactory dendrites by protein kinase C activators and cyclic GMP. Proc Natl Acad Sci U S A 88:8520–8524CrossRefPubMedPubMedCentralGoogle Scholar
  116. Zufall F, Hatt H, Keil TA (1991) A calcium-activated nonspecific cation channel from olfactory receptor neurons of the silkmoth Antheraea polyphemus. J Exp Biol 161:455–468PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Max-Planck-Institut SeewiesenStarnbergGermany

Personalised recommendations