Vector-Valued Modular Forms on Finite Upper Half Planes

  • Yoshinori HamahataEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11321)


Finite upper half planes are finite field analogs of the Poincaré upper half plane. Vector-valued modular forms on finite upper half planes are introduced, and then equivariant functions on these planes are defined. The existence of these functions is an application of vector-valued modular forms.


Vector-valued modular form Equivariant function Finite upper half plane 



The author would like to thank the anonymous referees for careful reading and insightful comments that improved this paper.


  1. 1.
    Angel, J., Celinker, N., Poulos, S., Terras, A., Trimble, C., Velasquez, E.: Special functions on finite upper half planes. Contemp. Math. 138, 1–26 (1992)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bantay, P.: Vector-valued modular forms. Contemp. Math. 497, 19–31 (2009)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Celinker, N., Poulos, S., Terras, A., Trimble, C., Velasquez, E.: Is there life on finite upper half planes? Contemp. Math. 143, 65–88 (1993)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Cohen, H., Strömberg, F.: Modular Forms. AMS, Providence (2017)CrossRefGoogle Scholar
  5. 5.
    Dong, C., Li, H., Mason, G.: Modular-invariance of trace functions in orbifold theory and generalized moonshine. Comm. Math. Phys. 214, 1–56 (2000)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Eichler, M., Zagier, D.: The Theory of Jacobi Forms. Birkhäuser, Basel (1985)CrossRefGoogle Scholar
  7. 7.
    Eholzer, W., Skoruppa, N.-P.: Modular invariance and uniqueness of conformal characters. Comm. Math. Phys. 174, 117–136 (1995)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Freitag, E., Busam, R.: Complex Analysis, 2nd edn. Springer, Heidelberg (2009). Scholar
  9. 9.
    Hamahata, Y.: A note on modular forms on finite upper half planes. In: Carlet, C., Sunar, B. (eds.) WAIFI 2007. LNCS, vol. 4547, pp. 18–24. Springer, Heidelberg (2007). Scholar
  10. 10.
    Knopp, M., Mason, G.: Generalized modular forms. J. Number Theory 99, 1–28 (2003)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Knopp, M., Mason, G.: On vector-valued modular forms and their Fourier coefficients. Acta Arithmetica 110, 117–124 (2003)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Knopp, M., Mason, G.: Vector-valued modular forms and Poincaré series. Illinois J. Math. 48, 1345–1366 (2004)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Saber, H., Sebbar, A.: Equivariant functions and integrals of elliptic functions. Geom. Dedicata 160, 373–414 (2012)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Saber, H., Sebbar, A.: Equivariant functions and vector-valued modular forms. Int. J. Number Theory 10, 949–954 (2014)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Saber, H., Sebbar, A.: On the existence of vector-valued automorphic forms. Kyushu J. Math. 71, 271–285 (2017)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Selberg, A.: On the estimation of Fourier coefficients of modular forms. In: Proceedings of a Symposium in Pure Mathematics, vol. VIII, pp. 1–15. AMS (1965)Google Scholar
  17. 17.
    Shaheen, A., Terras, A.: Fourier expansions of complex-valued Eisenstein series on finite upper half planes. Int. J. Math. Sci. 2006, 1–17 (2006)CrossRefGoogle Scholar
  18. 18.
    Terras, A.: Fourier Analysis on Finite Groups and Applications. London Mathematical Society Student Texts, vol. 43. Cambridge University Pres, Cambridge (1999)CrossRefGoogle Scholar
  19. 19.
    Terras, A.: Harmonic Analysis on Symmetric Spaces - Euclidean Space, the Sphere, and the Poincaré Upper Half-Plane, 2nd edn. Springer, New York (2013). Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Applied MathematicsOkayama University of ScienceOkayamaJapan

Personalised recommendations